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Foreword 

There are very few serious monographs on polymer thermodynamics. The problems of 
this science are mainly considered in the courses or monographs 011 thc physical chemistry 
of polymers, the statistical physics of molecular chains (conformational and configura- 
tional statistics), in books dealing with the principles of scaling, intramolecular phase or 
cooperative transformations, and, finally, in mini-monographs (I would refer them to the 
category of manuals) treating direct applications of thermodynamics to various chemical 
and physical polymer technologies. Books dealing with either rough applications or new 
high technologies are most abundant, but it is difficult to find in them even a trace of 
thermodynamics-in the proper sense of the word. 

Special books on the thermodynamics of polymers or, at least, on the thermodynamics 
of polymer solutions, at least, have not been widely scattered around the scientific world. 
In contrast, there is a great number of large reviews or original papers on this subject in the 
international or Russian scientific journals. Many of them are of a general character but 
the principle itself of writing problematic or review papers prevents a relatively complete 
consideration of any branch of science on the whole. 

Therefore a possible question of the “why another book again?” type concerning the 
publication of V.J.Klenin’s monograph should not arise. 

It would be wrong to consider it a textbook, although students, post-graduate students 
and fairly ripen researchers are recommended to study macromolecular science by it. 

There was no such monograph before, and one must thank the author for its appearance. 
Another question may be raised: whether it did not appear too late ? At present the 

school of 1.Prigogine (and his followers and proselytes) almost entirely predominated in 
the thermodynamics, physical and chemical kinetics and non-linear dynamics in general. 

The answer to his question is quite definite: the author has not been too late publishing 
this monograph. It is not possible to “jump” into the modern non-equilibrium dynamics 
and several more narrow and specialized sciences and theories developed from it (the 
theory of dissipative structures, synergetics, the theory of catastrophes, fractal “geometry” 
and dynamics, etc.) on the basis of “nothing”. It would be the well-known attempt 
to jump over the precipice in two jumps. However, the founders of classical statistical 
thermodynamics, Boltzmann and Gibbs, doubtless firmly occupy the pedestal built for 
them by History. Any further path begins from their works. 

Moreover, the algorithms of classical thermodynamics can be easily transformed into 
those of Prigogine’s one(however, the latter can already be considered to be classical also 
but with a new shade of meaning). 

To start with, it is sufficient to replace the terms “stable” (“equilibrium”), “metastablen, 
and “unstable” by the terms “stationary”, “metastationary”, and %on-stationary”. Thus, 
with the aid of such a primitive glossary, a complete analogy in description of linear and 
non-linear phenomena may be attained including even the methods of description and the 
criteria of first- and second-order (in Landau’s sense) phase transitions. 

However, this is not the only analogy. There are many situations in which Gibbs’ and 
Prigogine’s thermodynamics are related to each other just as Newton’s and Einstein’s 
physics. 

In many of these situations the New thermodynamics requires such minute corrections 
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(in the sense of corrections of the same type as the famous root d q )  that they 
may be neglected. The author of the present book bears this in mind and restricts himself 
essentially just to such situations that can become sufficiently complicate on the classical 
statistical-thermodynamic level. Nevertheless, the introduction of thermokinetic correc- 
tions or properly termed Prigogine’s corrections into t he conventional thermodynamic 
equations changes the situation even to the first approximation and makes it possible to 
pass from non-realistic to realistic equations, interpretations, and, if necessary, predic- 
tions. 

After the first approximation it is not difficult to pass to the second one and thus still 
to jump over the precipice dividing the two thermodynamics in two jumps! 

Another question may also be raised: wy did the author limit himself to systems with 
flexible-chain polymers ? 

In many publications my colleagues and myself have attempted to give quite an unequiv- 
ocal answer to this question. The “polymer state” may be considered to be a peculiar 
form of condensation of molecules, and the transition into this state may be regarded 
as a special fundamental phase transition’ on the background of which “usual” phase 
transitions take place. This concept may be proven and developed just for flexible-chain 
polymers capable of the manifestation of rubber-like elasticity, i.e. of reversible 1000-fold 
and greater deformations which involve forces of the entropy nature. 

In this case it is easy to make a transition to rigid-chain or cross-linked (3D) polymers 
without introducing any fundamentally new factors into the equations for flexiblechain 
systems. 

For example, chain rigidity may be regarded as due to an increase in internal energy or 
enthalpy. The results of this concept become clear if an example which I have repeatedly 
reported is used. 

If the melting or dissolution temperature of the polymer system is expressed not by the 
conventional equation 

but by a ratio of binomials in which subscripts Uln and “2” at the entropy and enthalpy 
terms refer to conformational and configurational contributions 

it becomes clear that upon melting or dissolution of flexiblechain polymers when great 
changes in both entropies occur, it is possible to increase markedly T* by simple super- 
position of external restrictions (e.g., tensile stress which in this case is equivalent to 
pressure in conventional van der Waals systems). This trick may be used in reverse tran- 
sitions in technology or for the production or transformation of energy. In contrast, in 
rigid-chain polymers the changes in both entropies are slight (a rod can be only a rod, 
hence, AS, + 0) and all the “load” is applied to the enthalpy terms. 

Moreover, under the conditions of the same uniaxial stretching, the Poisson coefficient 
that reduces AS2 to zero and increases AH,, predominates. This can also be directly 

’Here I refer to my mini-tractat “Polymers: problems, prospects, and prognoses’’ in: “Physics today and 
tomorrow” (in Russian) Leningrad, “Nauka Press’’ 1973, p. 176-270 
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used in technology in the preparation of superfibers from rigid-chain polymers, However, 
in this case the process occurs quite differently from that for flexible-chain polymers. 

This is also related to a more fundamental factor: flexiblechain polymers are usually 
soluble and fusible, whereas rigid-chain ones are thermally stable and often neither dissolve 
nor melt. This property involves considerable technological difficulties, although in many 
cases modern high technologies require the application of just rigid-chain polymers. 

This postulate may be reinforced as follows: rigid-chain or super-oriented flexible-chain 
polymers lose to a considerable extent their specific “polymer nature” which combines 
the possibility of the coexistence of three phase and aggregate states depending on the 
method of treatment. In many respects they cannot be distinguished from simple solid 
bodies (it is in this form that L.P.Myasnik0v.a has expressed this principle which is of 
great importance for polymer physics)2. 

In contrast, in flexiblechain polymers virtually any superpositions of phase, aggregate 
and relaxation (glass, rubber, and viscous fluid) states are possible. Hence, the phase 
equilibria are extremely varied and complex, and phase diagrams are unusual (the author 
characterizes the states of the system according to Gibbs’ configurative points) and the 
morphological kinetics of phase transformations are also unusual. 

Again, this situation, as well as the author’s didactics itself, may lead to some miscom- 
prehension of his main aims which became apparently too trended forward essentials of 
polymers materials science and, consequently, applications. However, in the same Preface 
V.J.Klenin points several times that the book is planned as a foundation of polymers 
materials science, and one can attain just nothing if the fundamentals (pure science) are 
omitted. 

The epigraph from Minster (A.Minster, Chemical Thermodynamics) restarts wholly 
the logistics and didactic order in the book. 

And this book just substantiates this consequence. It deals with the methodology 
rather than with the methods. This methodology is very logical but often this logic is 
not sufficiently apparent, and the author confidently leads the reader along the labyrinths 
of imaginary and real difficulties (that may result from the fact that the readers are 
not accustomed to the specific form of physical thinking) to indisputable and rigorously 
demonstrable truths. 

In this sense the book might be called “Introduction to the thermodynamics of poly- 
mers,’ but it should be borne in mind that the term “Introduction to.. . ” has two meanings 
in the scientific literature. 

One on them is primitive. The reader is provided with a certain primary information 
so that he can subsequently begin to study the more special literature. 

In the German scientific literature the term “Introduction” or “Einfiihrung” has a 
much deeper meaning. It need not be followed by a “Handbuch” or “Manual”. The 
“Einfiihrung” gives an almost complete summary of facts, theories, and general principles 
that should be used by the researcher in his own work and developed not only on the 
“low” technical level but also on the high fundamental level. Of course, I do not mean 
to neglect the practice (as was already hinted), which would be silly, but only should 

’See in “Oriented Polymer Materials”, S.Fakirov editor, Huthig and Wepf Verlag, Heidelberg-Oxford, 
1996, chapter 2 (by V.A.Marikhin and L.P.Myasnikova: Structural basis of high strength and high mod- 
ulus polymers) 
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like to emphasize once more that technical applications should naturally follow from pure 
(fundamental) science. 

This is the kind of “Introduction” that V.J.Klenin’s book represents. It cannot be ruled 
out that it will be the last monograph on the classical thermodynamics of polymers. 

However, it already contains the break through to neoclassicism and, in general, to the 
“neoclassical” future. 

For example, the new principles and approaches based on the hypothesis of similarity 
(scaling, Chapter 4) are excellently described. After reding this chapter, one should 
again come back to Chapter 2 dealing with fluctuations. 

Scaling for polymers is based just on the fact that fluctuations of segment concentration 
of a flexible macromolecule are of the same order of magnitude as segment concentration 
itself. Hence, we notice at once a similarity to magnetics or some other systems in which 
giant fluctuations appear as these systems approach the second-order transition point (or 
rather the critical point which term is presently preferred since the 2-nd order transitions 
are continuous3). 

This similarity makes it possible to calculate almost automatically the secalled critical 
indices, i.e. in this case the exponents relating the chain dimensions and the parame 
ters that are derived from them to the degree of polymerization in various temperature- 
concentration ranges. In this similarity scheme, the Flory 8 temperature plays the role of 
a tricritical point. 

However, in many cases, after obtaining these critical indices it is better to ignore 
scaling and carry out further analysis by classical methods. One should only remember 
that the methods and technical usages should be changed on passing to a region with 
other critical indices. 

In contrast to most authors of monographs dealing with polymer science where thermo- 
dynamics is considered only “to a certain extent”, V.J.Klenin’s in considering the general 
principles, methods, formalisms, amd methodology profoundly analyzes the related prob- 
lems of molecular physics, colloidal chemistry, and optics of polymers and describes the 
procedure for some types of polymer technology. 

Moreover, in all cases the author analyzes the phase diagrams or the coexistence ones 
and according to the movement of the configurative point in these diagrams, characterizes 
the trajectory (according to Prigogine), i.e. the evolution of multicomponent systems. 

In particular, he analyzes complex phase equilibria in which “amorphous” and “crystal- 
like” phase separations coexist. The kinetics of these processes are profoundly affected 
by the position of the configurative point and its trajectories. If this is not understood, 
any well-developed technology may become “antitechnology”. 

The tremendous importance of renormalization group transformations, in particprksr, 
in very &e applications, becomes quite comprehensible literally today. I shall give myself 
liberty to advance just one example. Presently new separation and purification principles 
are developed starting with more or less conventional column high selectivity chromatog- 
raphy, but aiming to a somewhat chimerical “membrane chromatography” (chimerical 
since the main spatial dimension of chromatographs, the length of the column is “lost”). 
A whole group of particular methods turns to be exclusively effective in biotechnologies, 

SConcerning this terminology see R.M.White and T.H.Geballe “Long range order in solids” (New York, 
1979) 
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ecology, biomedical applications, pharmacology, and even biological modelling. However, 
the methods are supported only by truncated and somewhat vulgar kinetic half-theories. 

In my opinion, the correct theory must be based on the dimensionality renormalization 
group transformation (see Chapter 5), with a gradual loss of the “main” dimensionality. 

Much attention is devoted to scattering, in particular, to colloidal light scattering. A 
number of scientific and practical problems is solved in this connection but the main of 
them is related to the secalled ill-defined systems: colloidal particles of uncertain shape, 
dimensions, composition, and degree of swelling. It should be noted that the works of 
V.J.Klenin and his co-workers in this field are widely recognized in the international level. 
In fact, in Chapters 2, 3, and 6 a fundamental direction in the physics and colloid chemistry 
of polymers is established. In this case the author successfully avoids the shadow of Hodel’s 
theorem of insufficiency and gives rigorous methods of single and double regularization of 
incorrect inverse problems of different degrees of complexity with different scientific and 
applications importance (ranging from the analysis of molecular mass distributions or cell 
populations to purely technological problems in which the superposition of continuously 
generated colloidal particles in solution or melt may lead to process failure). 

However, it is not this foreword to the book that should be read but the book itself. I 
have written this foreword to make the faint-hearted avoid its reading. Hope, nevertheless, 
that there will be very few of them. 

Professor S. Ya.Frenke1, Head of the Department of Anisotropic Polymer Sys- 
tems of the Instatute of Macromolecular Compounds, Russian Academy of Sci- 
ences. St. Petersbourg, March 
1998 
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The mathematics of thermodynamics is, in fact, extremely simple, 
apart from a few special cases, and consists mainly of the methods 
of partral differentiation and of ordinary differential equataons of 
sample form. The conceptual aspect of thermodynamics is, an con- 
tmst, extraordinary abstract and it is here that the rwrl dificulties 
anse. It has long been customary to try to avoad these dificultaes 
by means of spunous analogies. It has, however, become clear 
that this method makes a deeper understanding leading to mas- 
tery of the subject more dificult. The chamcterastac properties of 
this field must be accepted and, on the one hand, basic concepts 
must be developed from concrete expenence whale, on the other, 
the mathematical structure must be analyzed. These consideration 
determine the way zn which this book as written. 

A. Munster. Chemical Thermodynamics4 

Preface 

Modern materials science is mainly based on three sections of physical chemistry, 
namely, the thermodynamics of multicomponent multiphase systems, the kinetics of phase 
transitions, and morphology. The location of the configurative point on the state diagram, 
the trajectory and velocity of its transfer determine the type of phase separation and the 
mechanism of kinetics, which, in turn, determines the morphology of the system, and, 
finally, the performance of materials and articles. 

The interrelation of these concepts is sketched on the flyleaf. 
The advances and achievements of low-molecular materials science are well known: 

creation of an abundance of general-purpose materials from metal alloys, glasses, liquid 
crystals. Every possible mixtures, composites, and solutions are employed in various fields 
of up-to-date high technologies. 

By contrast, polymer materials science still is in its early days. In the collection “Physics 
today and tomorrow”, S.Frenke1 contrasts nuclear energetics with polymer materials sci- 
ence: the theoretical principles of nuclear physics were developed before their introduction 
to practice, while polymer technology started for before science p e r  se and still uses widely 
trial-and-error met hods. 

However, the scientific background of polymer materials science lags behind not only 
nuclear energetics but also its low-molecular counterpart. To make clear why it is so, let 
us compare the thermodynamics-kinetics-morphology triad for low- and high-molecular 
compounds (see the schematic on the flyleaf). 

The exploitation and structural study of metals and glasses (low-molecular compounds) 
are performed in deep overcooling and quenching, which causes no time changes in the 
structure of systems. To say nothing of performance, this provides convenient condi- 
tions for in-depth investigations. Mixtures of low-molecular compounds feature a variety 
of phases, which leads to rather sophisticated state diagrams. However, due to their 
sharp morphological distinction, the phases can be completely analyzed by means of a 
set of sensitive and information-bearing instrumental methods, such as X-ray analysis, 
electronography, differential thermal analysis, etc. This enabled rich information of the 

4C~pyright @ 1970 John Wiley & Sons Limited. Reproduced with permigsion 
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structureproperty type to accumulate and effective methods for controlling the perfor- 
mance of materials and articles to emerge. On the other hand, the high molecular mass 
and the chain structure of macromolecules, polymolecularity (multicomponent composi- 
tion of even an individual polymer), the drastic difference in molecular sizes in mixtures 
with low-molecular compounds find their reflection in thermodynamics (state diagrams). 

At the same time, there are great analogies between the thermodynamics (state dia- 
grams) of low- and high-molecular compounds (see the flyleaf). Perhaps, they are systems 
with network polymers which are specific for the polymer world. Nevertheless, it is they 
that are associated with the establishment and development of polymer materials science: 
production of rubber, fibrons, plastics, contact lenses, food, ctc. 

The largest distinctions between systems with low- and high-molecular compounds are 
observed, of course, in the kinetics of phase separation and, as a consequence, in the 
morphology of polymer systems. Due to significant kinetic hindrances, the process of 
phase separation in polymer mixtures, even in the presence of low-molecular compounds, 
is retarded already at the early stages, i.e. on the colloidal-disperse level of particles 
(structures) of the new phase. Therefore, despite of the distinguishing nature of phase 
separation (eg., liquid-liquid or liquid-crystal), the system remains heterogeneous for a 
long period of time, showing no distinctive features of the equilibrium state morphology. 

The question mark on the scheme shows this circumstance. 
The configurative point during operation and study is not located in the range of great 

overcooling but is located near (or even inside) the region of phase separation, which causes 
time changes in morphology - this is sometimes called “aging”, “ripening”, “structure 
formation”, etc. 

Polymer systems are often used under conditions of a hydrodynamic field, changing 
significantly the thermodynamics (state diagram) of the system. The hydrodynamic field 
strongly influences the thermodynamics and kinetics of phase separation just in the case 
of polymer systems, as the structure (conformation) of macromolecules change noticeably 
under the action of a mechanic field. Because of their chain structure, crystallizing poly- 
mers cannot form perfect crystal structures and show almost no variety of modifications. 
In many cases there is no solidus on the state diagram of a crystallizing polymer+LMWL 
system. 

On the other hand, it is kinetic retardation which makes amorphous polymers not 
to  reach, as a rule, the thermodynamically equilibrium structureless state, and ordered 
arms of various order and length are observed in polymer samples. Because of this, sys- 
tems, remote from each other along the thermodynamic-morphological scale (crystals and 
liquids), may prove to differ insignificantly in their actual morphology which is experi- 
mentally recorded by conventional methods. Such uncertainty in morphological forms, 
and the kinetic retardation of phase conversions on the colloidal level of dispersity, give 
rise to principal difficulties in the phase analysis of polymer systems, and conventional 
methods may well turn out insensitive and/or non-specific. 

These are the circumstances which obviously explain the fact that systematic studies of 
phase equilibria in polymer systems began since the late 30ies only (Schulz, 1936, 1937ab, 
1939ab; Papkov et al., 1937ab; rtogovin et al., 1937; Kargin et al., 1939; Schulz and 
Jirgensons, 1940). 

In spite of the fundamental difficulties in the phase analysis of polymer systems, progress 
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in polymer materials science should only be expected on the way of developing the classi- 
cal thermodynamics-kinetics-morphology triad. Polymer systems therefore require novel 
approaches and experimental methods to make possible phase analysis at the early stages 
of phase separation, i.e. on the colloidal-disperse level of the system’s organization. 

In this respect, well suited is the turbidity spectrum method, letting one determine 
the concentration of the disperse phase (the degree of phase conversion) and the particle 
sizes on very simple and available apparatus (colorimeters and spectrophotometers of any 
kind). 

The mentioned approach, in combination with other methods, permitted the identifica- 
tion of the nature of phase separation and the development of state diagrams for a num- 
ber of practically-important systems: poly(viny1 alcohol) + water, polydimethoxyethy- 
lene+water, poly( m-phenylenisophthalamide) + dimethylacetamide, polyamidoimide + 
dimethylformamide, etc. In the poly(ethy1ene oxide)+water system, a new morphological 
form of crystallites in the polymer-dilute concentration range was revealed. Describing 
this approach in the framework of general problems constitutes an object of this book. 

When authors want to give their reasons for writing, “gaps” are often spoken of. The 
present case makes it reasonable to speak of “yawning gulfs”. Neither this book, nor one 
or two dozens of others on the same topic will drive polymer materials science to the 
host of books and monographs devoted to the materials science and phase conversions of 
low-molecular compounds. 

In the current polymer literature, common discussions of the structure (in general) of 
a polymer in a solvent (in general as well) with no specific state diagram, configuration 
point, or its trajectory still make up a large proportion. To speak more specific is rather 
difficult, the more so if the state diagram of a given system is unknown or disputable. 

Cite the following fact to illustrate the difficulties in the phase analysis of polymer 
systems. For the poly(viny1 alcohol)+water system, some researchers propose a state 
diagram of amorphous phase separation with an upper critical solution temperature, oth- 
ers - amorphous separation with a lower critical solution temperature about 100°C; 
there are some who Ihink that there is no region of amorphous separation below 150” - 
instead, they observe liquid-crystal phase separation. Such are the discrepancies on the 
basic question of thermodynamics! 

In any case, at this point discussing the structure and properties of a polymer-containing 
system with no, even hypothetical, state diagram proposed makes no sense. As an exam- 
ple, take a popular, among polymer researchers, topic of association in polymer solutions 
(see the section with this title in Tager’s (1978) book). 

There is a considerable body of liberalure describing the association (aggregation) phe- 
nomenon in specific systems and under specific conditions. Actually, this material con- 
cerns the morphological aspect only. None of the authors has put a question as to the 
thermodynamic stimulus of association as correlated with a certain configurative point 
on a certain state diagram. 

Restricting oneself with morphology gives no clue to the control over the structure of 
a system and leads, sooner or later, to internal contradictions in the description of the 
system’s properties. For example, the mentioned section coritains a phrase that, by its 
briefness and clarity, sounds like a law: “The degree of association increases with increas- 
ing concentration of solution and the molecular mass of a polymer” (this can often be met, 
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in various words, in the literature). However, the same page states that “as the binodal 
or liquidus curve is approached, the degree of association always increases”. But the con- 
figurative point can also approach the binodal along an isotherm with decreasing polymer 
concentration, what’s then ? Another example from the same source: “Association is a 
reversible process, and, in contrast to aggregates, associates are statistical fluctuational 
formations, that are formed and destroyed reversibly”. The reader so has left aggregates 
and approached, to indistinguishability, concentration fluctuations, not saying of what 
aggregates in their essence are. If association is regarded identical to  concentration fluc- 
tuations, why a new, confusing term ? Otherwise, what is association ? What is the 
thermodynamic stimulus for it ? And how can the following fact fit in with the picture 
of increasing degree of association with increasing concentration: the macromolecule sizes 
were experimentally established to decrease as the concentration increases ? 

By now, sufficient information on the dynamics of macromolecules in solution has been 
accumulated by means of dynamic light scattering, this method being sensitive to the 
internal modes of a macromolecule’s motion and to the process of its reptation among 
similar molecules in solution or in the condensed state. A t  the same time, there is a 
lack of unambiguous evidence for “association modes” or the lifetime of associates in the 
voluminous literature on dynamic light scattering from polymer solutions. 

If one accepts that aggregates (associates) are particles of a new phase upon phase 
separation, then almost all the enormous material on association in systems without 
specific interactions is explained naturally, of course, with the exception of “formed and 
destroyed”. In addition, this means that phase particles (aggregates, associates) are 
formed not with furthermore approaching the binodal or liquidus curve, but at intersecting 
one of these curves. 

In the nearest proximity around the binodal, there appear critical phenomena with their 
characteristically high level of correlated fluctuations of the order parameter (density for 
a substance or component concentration for a mixture ). By virtue of the universality 
principle, the properties of such fluctuations are similar for both a one-component liquid- 
vapour system, a solution of low-molecular compounds, and a polymer solution. The 
critical phenomena in these systems are discussed in this book in detail. The question as 
to the absence of any pretransition phenomena near the liquidus is discussed a5 well. 

In the case of an unknown state diagram of a polymer + low-molecular-weight liquid 
(PtLMWL), studying the properties of aggregates (phase particles) arising under various 
circumstances can serve to identify the phase separation type with determining the phase 
separation boundary (phase analysis) - this was mentioned above (the turbidity spectrum 
method). In particular, Chapter 6 will discuss the poly(ethy1ene oxide) + water system, 
where the turbidity spectrum method revealed a most interesting situation, when, under 
the same conditions (at the same configurative point), particles of one type (crystalline) 
dissolve while those of another type (amorphous) appear. 

The closest to this book are, definitely, S.P.Papkov’s (1971, 1972, 1974, 1981) mono- 
gaphs5. As the author designed, his books take “an intermediate place between pure 
theoretical monographs . . . and narrow-technical manuals on polymer solution process- 
ing” (Papkov, 1971). 

’in Russian 
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Following this nomenclature, my book belongs to the first kind. I advocate consideration 
of the whole problem by parts in the thermodynamics-kinetics-morphology sequence. To 
start this consideration, the thermodynamics of the systems confined in the dashed frame 
on the flyleaf schematic is dealt with in this book. Therefore, systems with rigid-chain 
polymers, polyelectrolytes, and copolymers are not covered. 

At  this stage of development of polymer materials science, deeper detalization with an 
adequate language is required. “Any natural science contains as much truth as much 
mathematics it involves” (Kant). This, proposition must obviously be emphasized for the 
scientific principles of polymer materials science because of the very stable, persistent 
traditions and opinions of “spurious analogies” (Miinster, 1969). 

These traditions have, of course, objective reasons (too!). 
The thermodynamic and related properties of compounds and materials are known 

to be rigorously and consistently described in terms of statistical physics with its well- 
elaborated ideology. A model letting the partition function to be written is proposed 
for a given system, then the standard formulae calculate the thermodynamic functions 
and associated quantities measurable in experiment. Provided that the theoretical and 
experimental values agree well, the model is regarded adequate, as is the approach (model, 
etc.), which opens up possibilities to control the structiire of substances and materials. 

However, this rigorous approach faces serious mathematical difficulties even for an 
ensemble of simple molecules (inert gases) - one can make sure that this is so if one 
looks through “Physics of simple liquids” (Temperley et al., eds., 1968) or Croxton’s 
“Liquid state physics - a statistical mechanical introduction” (1974). For the reader’s 
convenience, sections 1.7-1.8 give some quotations from Croxton. 

This circumstance is the reason for refusing this methodology when more complicated 
(in particular, polymer) systems are dealt with. Just here a treacherous danger waylays us. 
While partition functions and formulae restrict in a way our imagination, their rejection 
in the case of more complicated systems provokes one to sink into fantastical voluntarism 
with no limitations towards complication or simplification. To say more, it is simplification 
that is obviously preferred and expressed in rejection of mathematical language in favour 
of pure belles-lettres. 

Indeed, being enthusiastic about “the freedom from formulae”, one may “talk away” 
whatever he likes, including such things which cannot be proved or disproved. 

To enhance the descriptive capabilities, plenty of neologisms are introduced, with vari- 
ous prefixes like “quasi-”, “pseude”, and even “crypte” (!), etc. 

As a result of such belles-letters, the macromolecular world appears ingenuous and sim- 
ple, where almost numbered groups of macromolecules interact with each other according 
to the “energetic” principle like “advantageous - disadvantageous” while completely ig- 
noring the entropic factor which, indeed, is difficult to be interpreted purely verbally. 

Another typical example of imposed simplicity is that systems of obviously different 
degrees of simplicity (eg., the binary PSLMWL system and the complicated quaternary 
system: ternary charged-groups polymer+water+salt +organic solvent) are described with 
an equal degree of conviction (authentity), using the same language, with no reservation 
as to the hierarchy of complexity. 
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Lest false analogies arise between the said simplicity and that spoken of by Ya.Frenke16, 
the principal difference between these two “simplicities” must be pointed out. Frenkel 
demanded simplicity just within the framework of a certain model of a system, as distinct 
from unrestricted simplicity (vulgar structure-speaking). 

The present monograph offers the reader a scenario for the thermodynamics of polymer 
systems, which is different from traditional presentations of the problem. The specific 
features of the approach follow just from how the material is distributed among the 
chapters and sections. 

In Chapter 1 are presented all the basic terms and definitions needed for the sub- 
sequent description of both low-molecular and polymer systems, thereby serving as an 
always-at-hand manual. 

The conditions of the stable one-phase state of multicomponent systems are also deter- 
mined in Chapter 1. Loss of such stability leads to phase separation. Specially considered 
is the critical state of a system, where the one-phase state is close to the threshold of 
violation of the stability condition. 

The one-phase state of a binary system is stable at constant temperature and pressure if 
and only if ( a p 1 / d z 2 ) p , ~  < 0 (there are some equivalent quantities such as ( d p L l / d z l ) p , ~  > 
0, etc.). The reverse inequality satisfied, the stability is lost while the corresponding 
equalities define the stability boundary (the spinodal). 

The quantity ( t?pl /6’x2)p,~ (and the corresponding ones) in the one-phase region is 
associated with the level of order parameter fluctuations, the order parameter being the 
density of a substance (a one-component system) or the concentration of a component 
(two-and morecomponent systems). Near the stability boundary, the level of order pa- 
rameter fluctuations rises, and the system’s properties largely depend on the correlation 
of these fluctuations. 

To help the reader to apprehend the principle of universality (discussed at length 
throughout the book), in Chapter 1 are compared the state equations as virial expan- 
sions for ideal and real gases on the one hand, and for ideal and real (regular) solutions 
on the other. Section 1.5 gives a classification of phase transitions, and introduces into 
consideration critical indices, which bear a great reason load. That is why a detailed de- 
duction of the critical indices for relatively simple systems (a magnet and real gas-liquid) 
is given in the mean field approximation. Precisely these systems start detailed devel- 
opment of the mean field methodology, which gets its logical completion in the Landau 
phenomenological theory (section 1.6) and is applied to describe the properties of polymer 
systems in Chapter 3. 

The Landau formalism possesses a universal meaning and is applicable to a wide range 
of problems. The chief restriction of this version of the mean field theory is in the lack 
of proper account for the correlation of order parameter fluctuations, which particularly 
affect the system’s properties near the critical point. In the same paragraph, the concept 
of the tricritical point is introduced, which seems reasonable in connection with the great 
popularity of this term in polymer theory since de Gennes showed the 0 point in the 
P+LMWL system to be an analogue of the tricritical point in the field theory formalism. 

Certainly, statistical physical methods are successfully applied in the theory of polymer 

“The descnption of a system should be simple like a cartoon” 
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systems, and in section 1.7 are given the relevant formulae needed in what follows. 
Finally, section 1.8 briefly reports a more rigorous state equation of real gas as a virial 

expansion with elements of the diagrammatic technique involved, this technique finding 
wider application later. The intermolecular interactions in real gas are emphasized to be 
of a common nature with the interactions of chain-far segments in a macromolecular coil. 

Chapter 2 treats in detail light (radiation) scattering and diffusion, as the experi- 
mentally observed quantities (scattering intensity I and diffusion coefficient D )  depend 
immediately on the derivative ( a p l / & c 2 ) p , ~  (or the equivalent quantities). This deriva- 
tive stands in the denominator and nominator in the formulae for I and D,  respectively, 
and I -+ 00, D + 0 near the stability boundary, which characterises a whole set of 
phenomena, named critical (eg., critical opalescence). 

As the diffusion coefficient is not a purely thermodynamic quantity, but also specifies 
the transport (kinetic) properties of a system, this leads to a most important phenomenon 
in the critical region, namely, critical retardation, discussed in the literature more seldom 
than critical opalescence. 

In their relation to critical retardation, the dynamics of order parameter fluctuations in 
the critical region and the theoretical principles of the dynamic (inelastic) light scattering 
to characterize fluctuation dynamics are fully considered. Detailed discussion is given for 
the key sections of classical light scattering, beginning with a dipole’s scattering. 

Only systems of low-molecular compounds are treated in Chapter 2. They serve the 
objects of exercising in vocabulary and approaches before passing to high-molecular com- 
pounds in Chapter 3, to avoid terms with “quasi-” and “pseude”. 

Such a sequence and completeness of problem presentation (first on the level of low- 
molecular stuff) seem important and necessary, since the specific character of polymer 
systems is often overestimated, especially in belles-letters writings. This often causes an 
unjustified rejection of the universal terminology in favour of neologisms. On the other 
hand, such arrangement of the material enables the true peculiarities of polymer systems 
to be seen obviously and specifically. 

The detailed consideration of critical phenomena in this chapter will play its role not 
only in discussing really critical phenomena in polymer systems in the traditional way 
(where the specific character of polymer systems is minimal), but also in describing criti- 
cal phenomena in the new treatment, because a formally-structural analogy between the 
behaviour of molecular coils in a good solvent (far away from traditional critical phenom- 
ena!) with critical phenomena in other systems has been found: in both cases, the level 
of order parameter fluctuations is comparable with the value of the order parameter itself 
(the concentration of segments in the case of a macromolecule). 

At the end of Chapter 2 is given a version of the general mean-field theory to account for 
the correlations of order parameter fluctuations. The hypothesis of similarity (scaling) and 
the hypothesis of universality are considered. Table 2.5 contains a summary of physical 
systems whose properties are successfully studied by means of the field theory methods, 
including the conformations of a macromolecule coil in a good solvent. 

Finally, section 2.6 represents the Lagrangian formalism of general field theory, following 
Amit (1978). This formalism was developed in the quantum field theory and has recently 
come into use in polymer theory. 

Chapter 3, the chief one in the book, is devoted to the Flory-Huggins theory, its 
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premises, main consequences, and applications. The theory of corresponding states is 
also discussed (section 3.8). The main attention is paid to phase separation processes of 
the liquid-liquid type and accompanying phenomena and methods such as fractionation, 
critical opalescence, etc. 

There are ample books in the literature considering in detail the thermodynamics of 
polymer solutions, i.e. the state of the P+LMWL system above the 8 point (for systems 
with an upper critical solution temperature) (see the bibliography). With the exception 
of Flory (1953) and Tompa (1956), the other authors either did not deal with phase 
separation or mentioned it only in its relation to fractionation. A need has, therefore, 
arisen to look into the questions of liquid-liquid phase separation (including multiphase 
separation) as carefully as possible, the more so that many applications of these problems 
can be introduced into the technology of polymer materials. 

Much attention is given to the experimental methods for determining the phase sepa- 
ration boundary, the critical point, the spinodal, and the interaction parameter. 

In Chapter  4, the problems of polymer science are brought into line with other systems, 
well-studied by means of the rigorous methods of statistical physics. Such an interrelation 
has proved possible due to the principle of universality, whose capabilities are most clearly 
seen in predicting the properties of polymer systems with such prototypes, which would 
seem rather far from polymers, as magnets. 

The chapter begins with de Gennes’ pioneering work where he presents the results of 
his comparison of the conformational problem of a macromolecule in a good solvent (the 
trajectory of self-avoiding linked-segment walking on a lattice - see Figure 1.23) with 
the problem of the correlated fluctuations of the order parameter (magnetization) near 
the critical point of a magnet. Both have appeared to be similar but one element, loops, 
which are absent in the problems of segment walking. The contribution of these loops is 
proportional to the n - dimension of the order parameter. Be n formally accepted as 
aero, the magnetic problem becomes a polymer one. 

Later, the version with n = 0 for macromolecular conformations was proved analyti- 
cally by several French researchers from Saclay (Daoud et al., 1975) and expounded in 
de Gennes’ (1979) book. Here Emery’s version is presented. 

The next serious step toward the application of the universality principle to polymer 
theory was done by des Cloizeaux, who found a glossary between the parameters of the 
magnet state equation in a magnetic field and those of the P+LMWL system within a wide 
polymer concentration range (section 4.2). As the main instrument to realize this glossary 
for building the P+LMWL state diagram, the scaling approach was taken (section 4.3). 
In this version, the scaling regularities, examined and proved on magnets, were extended 
to the polymer system. Such an approach, by analogy in the framework of the universality 
principle, led to experiment-consistent qualitative dependences, i.e. to correct exponents 
in the power functions of the characteristic values, but gave no preexponential factor, i.e. 
the amplitude of a characteristic quantity. 

Then, such an approach was named simple (naive, intuitive) scaling. One of de Gennes’ 
remarkable books (1979) is devoted to it, where some fundamental questions of phase sep- 
aration are discussed as well. The scaling approach, even in the mean field approximation 
framework, led to a more adequate-teexperiment results concerning critical opalescence 
in comparison with Debye’s early consideration (cf. paragraph 3.3.1.2 and section 4.4). 
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The scaling ideas have also proved to be useful to interpret dynamic quantities, such 
as diffusion, viscosity, etc. (section 4.5). 

Chapter 5 deserves a special comment, being composed of some abridged and adapted 
papers devoted to the most up-&date and rigorous methods in polymer theory, which 
are based on the Lagrangian formalism of general field theory, and employes several ver- 
sions of renormalization group transformations, originally developed to describe critical 
phenomena in general-type systems. Being the developer of the renormalization group 
transformation method, Kenncth Wilson won the 1982 Nobel prize for physics. 

In the critical region, the structure of any system is very complicated. Correspondingly, 
the Hamiltonian describing it is complex, too, and involves many degrees of freedom. 
K.Wilson compares this situation with some pattern of a complex structure under a 
microscope with a focused objective lens. Now, if one slightly drives the lens out of focus, 
the pattern becomes vague: its fine details become invisible while the big ones are blurred. 
Such unfocusing corresponds to some transformation of the Hamiltonian HI = .r(H0). 
Applying this transformation once again will allow access to a more generalized pattern 
with its Hamiltonian Hz = T ( H ~ ) ,  and so on. One can find such a transformation T ,  

that the Hamiltonian would reach a certain fixed point H', where H* = T(B*). Here, it 
proves to be rather simple to permit the researcher to apply all the procedures needed to 
simulate experimentally measured quantities. 

The chief feature is that the experimentally measured quantities become actually insen- 
sitive to the fine elements of the structure; instead, they perceive j u t  the scaled-enlarged 
pattern of the system's structure. Such a bridge between the theoreticemathematical 
procedure of scaling the Hamiltonian (the renormalization group transformation) and an 
experimentally measured quantity offers considerable scope for studies on substances in 
their critical state. 

All this ideology of renormalization group transformations has proved to be suitable 
and very effective for the rigorous description of the conformational properties of macro- 
molecules. 

Edwards' continuous chain with its corresponding Hamiltonian Ho is obviously the 
most suitable, in every respect, model of a polymer chain. However, this model involves 
plenty of fine details of the conformational structure, which actually have no influence on 
the experimentally measured quantities, eg. the mean-square end-to-end distance. The 
theoreticians (Freed, des Cloizeaux, Oono, Ohta, Duplantier, Schaffer, et el.) have found 
such renormalization group procedures of the source Hamiltonian Ho to drive it to the 
fixed point Hamiltonian H*, which allow access, by the conventional methods of statistical 
physics, to characteristic quantities close to their experimental values. 

In the course of the renormalization group transformation, the structural elements are 
getting larger step by step, but, even at the fixed point, the Hamiltonian provides for the 
correlations of order parameter fluctuations, and this approach proves to be more rigorous 
in comparison with the mean field approximation. 

The success of renormalization group transformations for describing conformational 
changes means a great leading idea for whole polymer science. Indeed, the conformation- 
dependcnt expcrimental quantities perceive this conformation in scaled, enlarged form, 
and are insensitive to fine details, eg., the structure of one or few monomer units. There 
fore, to explain the conformation-dependent quantities adequately, scaling transforma- 
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tions (even of a qualitative nature) should be sought for; one should not try to find 
explanations at the level of fine details (a monomer unit, etc.). 

Certainly, some scaling transformations were also in other theories and approaches, 
which were in good agreement with experiment. For example, Kuhn’s segment includes 
various short-range details (the interactions between the closest neighbours). The size of 
a blob characterizes, on the average, the specific character of long-range interactions (the 
interactions between distant segments) in a macromolecule, in a good solvent and at a 
given coricen tratiou. 

The idea of step-by-step scaling transformations serves as the basis for the scaling (phe- 
nomenological) approach, which leads to power functions for the characteristic quantities 
and to the property of uniformity of the system’s thermodynamic potentials. 

However, only in renormalization group methods did the ideas of step-by-step scal- 
ing transformations find their rigorous analytical and beautiful realization. One of such 
procedures was put forward by de Gennes and described in his book. 

Chapter 0 occupies the most modest place. This is due to the fact that an enormous lit- 
erature has accumulated on liquid-crystal phase separation, including Wunderlich’s (1973, 
1976, 1980) fundamental monographs. Nevertheless, the matter of this chapter, in its re- 
lation to the others, must play a positive role in any research on identification of the 
nature of phase separation in polymer systems. This chapter also reports the results of 
application of the turbidity spectrum method to phase analysis of some systems with a 
crystallizing polymers: poly(viny1 alcohol) + water and poly(ethy1ene oxide) + water, 
whose treatment by well-established methods did not yield comprehensive information. 

Each chapter ends with a summary to briefly describe its content, the main conclusions, 
and some additional comments. 

Due to the huge number of formulae, they are numbered by sections. Within each 
section, a formula is referenced only by its number. When a formula is referred to from 
any other section, its number is preceded by the dashed section number. If a reference 
concerns several formulae from onc section, the section number is omitted starting with 
the second formula. For example, in subsection 3.1.1, I refer to some formulae from 
sections 1.2 and 1.3 as (1.2-52,-53), (1.3-19,-20). To cite a continuous row of formulae, 
the following denomination is accepted: (5.1-248.. .250). 

Some of the figures in this book have been made with GNUPLOT, Version 3.5 (Copy- 
right @ 1986-93 Thomas Williams, Colin Kelley), the others were scanned from their 
originals in ink into pcx-files and then processed by the e m w  device driver. A small 
program (Copyright @ 1998) by Sergei Shmakov, my secretary and a reader at my chair, 
enables ‘&X’s formulae to be inserted into pcx-pictures. The text has been written with 
BTl$ 2E using an original Elsevier style file espcrcl . s ty .  
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Chapter 1 

Stability and Phase Separation 

1.1. Stability conditions of the one-phase multicom- 
ponent system 

1.1.1. Main thermodynamic relationships 
Let us consider an open thermodynamic system consisting of v components, i.e. con- 

taining particles of v kinds. The first and second principles of thermodynamics written 
together for a quasi-static process in such a system represent the Gibbs fundamental 
equation in its energetic expression: 

Y 

dU = T dS - P dV + C pI dn,, 
t=l 

U being the internal energy of the system, S the entropy, V the volume, T temperature, 
P pressure, pg and ns the chemical potential and number of moles of the kth component, 
respectively. 

This equation can be written in the entropy expression as well: 

dS = -dU 1 + -dV P - x - d n , .  II, 
T T ,=1 T 

and, in the integral form, 

S = S(U,V7n1,. . . ,nu), U = U(S,V,nl,.  . . ,nu). (3) 

As the internal energy U is a state function of the system, Equation 1 is a total 
differential: 

from which 
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follows and the corresponding mixed derivatives are equal to each other (Maxwell's 
relationships). Eg. 

The variables in the right-hand side of Equation 1 under the sign of differentiation (i.e. 
S, V ,  n,) are called thermodynamic coordinates. Let us denote them by a common 
letter If, 6 = 1, . . ., v + 2 to write the following formulae compactly. By virtue of their 
additivity, the thermodynamic coordinates are extensive parameters . 

The parameters defined as 

are called thermodynamic forces. As follows from Equation 1, they are T, ( - - P ) ,  and 
p,. They have the same values over all any equilibrium system, so they are intensive 
parameters. The values and X I  related by Equation 6 are called conjugate parameters. 

With these designations Equation 1 takes the form 
r 

d U = x X t d X ,  r = v + 2 .  
1=1 

(7) 

The internal energy U is a first-power homogeneous function. According to Euler's 
theorem for such functions it follows from Equations 1 and 6 that 

U r 

U = T S - P V + x p , n ,  or U = c X l x ,  
t=l k 1  

and its differentiation yields 
v U 

(9) dU = TdS + SdT - PdV - V d P  + C p ,  dn, + E n ,  dp,. 
i=l a=1 

Comparison of Equations 9 and 1 leads to the Gibbs-Durgham equation: 
Y 

SdT - V d P  + n, dp, = 0. 
*=1 

If an intensive parameter is represented as a function of extensive ones, the correspond- 
ing equation 

(11) x, = Xl(Y1,. . . ,I$), I = 1 , .  . . , T  

is referred to as a state equation (Kluge and Neugebauer, 1976; Sposito, 1981; Zhukov- 
sky, 1983). It can be obtained from Equation 3 by substituting the corresponding specific 
symbols U = U ( S ,  V, 121,. . . , n,), therefore the latter is called the state equation as well. 

From the internal energy 

U=U(Y,, . . . , y r ) ,  (12) 
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where the variables Y are arranged according to a certain order, the thermodynamic 
potentials can be found by means of the Legendre transformation (Miinster, 1969): 

k 
$k = u - c x l x ,  k < r. 

I= 1 

Differentiating Equation 13 taking into account Equation 7 leads to 

k r 

d & = - ~ ~ d x l +  X,dY,.  
k 1  3=k+l 

Substituting Equation 8 into Equation 13, one obtains 

whence it follows that &'S are first-power homogeneous functions of the extensive vari- 
ables. With k < r all the thermodynamic potentials are characteristic functions, since 
they completely characterize the system. Eg. from Equation 14 it follows that 

and 

-- a h  -x3, j = k + l ,  ...,?-- 
au, 

The Gibbs thermodynamic potential  

G = G(T,  P,n i , .  . . ,nu) 

is defined by Equation 13 as 

G = U - TS + PV, 

According to Equation 14 

where IC = 2. 

Y 

dG = -SdT + V d P  + C p t  dn,, 
r = l  

with the partial derivatives (see Equations 16 and 17) 

= 4, i.e. S = S(T, P, n,), 
0, 

= V ,  i.e. V = V ( T , P , n , ) ,  (E) T,n, 
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where n{q points to the dependence on all the n,, i = 1,. . . , Y. 
The Helmholtz thermodynamic potential 

F=F(T,V,nl,  ..., nv),  i = l ,  ..., v (24) 

(25) 

is also defined by Equation 13 but when k = 1: 

F = [J - TS. 

According to Equation 14 
Y 

dF = -SdT - PdV + x p L , d n ;  
%=1 

with the partial derivatives (see Equations 16 and 17) 

= -S, i.e. S = S(T,  V,n,), ('1 V,n, 

Equations 19, 21-25, 27-29 are also called equations of state. Those of them which 
involve two mechanical parameters (P, V) and a thermal parameter (T or S) are referred 
to as mechanical state equations. The equations that involve two thermal parameters 
and one mechanical parameter are called thermal state equations. 

The enthalpy is defined as 

H=U+PV.  (30) 

Taking into account Equation 19, we have 

G =  H - T S ,  

or (see Equation 21) 

Hence, 

This is one of the Gibbs-Helmholtz equations which relate the thermodynamic 
potentials. 
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Define the mean molar  quant i ty  of any extensive parameter Z as 

- 2  Z = -, where n = E n , .  
n 

U 

1=1 
(34) 

In the following discussion we will sometimes call it just a molar  quantity. Let Z be a 
function of T ,  P ,  nl,. . . ,nV; then the partial molar quantity 2, of the i th component is 
determined as 

Z=(”i  . 
T,P,n3+ 

Since 

(35) 

and Z is a first-power homogeneous function of each n,, then, according to Euler’s theorem 
and in view of Equation 35 with P = const, T = const, 

U 

Z = 1 Zzna. 
a=1 

Differentiating Equation 37 and comparing it with Equation 36, one obtains 

(37) 

Equation 38 is called a generalized Gibbs-Durgham equation. 
Define the mole fraction (concentration) of the ith component in the system as 

nz 
5, = - 

n 

(note that 

222’ = 1). 
,=l 

(39) 

As independent variables, we now use ( X I , .  . . ,zu-1, n) ,  not (n1,. . . ,nv). In view of 8 being 
independent on n when d P  = 0, dT = 0, we have 

(the subscript ‘IC’ is supposed not to be equal to v). Dividing both sides of Equation 36 
by n, for dP = 0,  dT = 0,  dn = 0 ,  and in view of Equation 39, one has 
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and (see Equations 35 and 40) 

u-1 

$2 = C(Zi - Z U )  d x t .  
*=1  

Comparison of Equations 41 and 42 indicates that 

Dividing both sides of Equation 37 by n: 

U z = z , x ,  
*=l 

and substituting 2, from Equation 43, one obtains 

u-1 

*=1  T,P,xk+ t=l 

Hence, in view of Equation 40, it follows that 

(43) 

(44) 

(if the vth component is not the last one, the summation must be taken over all the 
components but v). 

In the important specific case of Y = 2 (a binary system) 

The tangent line equation to the plot 2 = Z(Q) at a certain point Z; has the form 

It follows from Equations 46-48 that this tangent line cuts off intervals on the ordinate 
axes ZZ = 0 ( 2 1  = 1) and x 2  = 1 ( 1 1  = 0 ) ,  that are numerically equal to 2, and 2 2 ,  

respectively, for a given mixture composition (Figure 1.1). 
The mean molar quantities are convenient due to their independence on n, so they are 

unambiguously defined by (Y+ 1) parameters ( T ,  P ,  2 1 , .  . . , z v - l )  only, and not by (v+2)  
parameters ( T ,  P ,  nl,. . . ,nu). From here on, when speaking of the mean molar quantities 
we will consider the mole fractions of the first (v-1) components as independent variables. 
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Figure 1.1. Determination of 2, by the tangent line 
method 

The theory of solutions uses the quantities of mixing 
U U Y Y 

AZ, = Z - 2 0 ,  = 2 - ~ ~ ~ 2 0 :  = n,Z, - YZ,ZO,,  (49) 
:=l r = 1  r=1 , = I  

where 2 is an extensive parameter of the mixture, 2% is the corresponding parameter 
of the ith component in its individual state under the same external conditions. For the 
mean molar quantities of mixing, Equation 49 can be rewritten as 

Y U 

According to Equations 50 and 23, for the mean molar Gibbs potential of mixing, the 
following equation holds: 

v ” 
AGm = Z ~ ( P :  - = XzAPa. (51) 

r = l  i=l 

All the relationships derived above for 2 are valid for AZ, as well. 
In an external field with an intensity A, the Gibbs fundamental equation takes the form 

Y 

dU = T dS - P d V  + p, dn, + d d u ,  ( 5 2 )  
t = l  

a being the thermodynamic coordinate conjugate to the field. 
In particular, for a system placed in a magnetic field, 

U 

d U = T d S - P d V + C p , d n . , + H d M ,  
t = l  

where H is the magnetic field strength, M is magnetizability. 
Then, according to Equation 1.1.1-13, 

(53) 

G =  U - T S $  PV - H M ,  

and 
U 

dG = -S dT + V dP - M dH + pi  dn,, 
r = l  

and, correspondingly, 

(54) 

(55 )  
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For the Helmholtz potential, 

F = U - T S -  H M ,  
U 

d F  = - S d T  - P dV - M dH + C p ,  dn; ,  
t = l  

and, correspondingly, 

1.1.2. Stability conditions 
We will consider phase separation as a process caused by loss of stability in a one-phase 

multicomponent system. First of all, it is necessary to discuss the stability conditions of 
the one-phase state. 

Speaking of stability, one should keep in mind the stable equilibrium with the envi- 
ronment (the thermostat). By the thermostat we understand a large embracing thermo- 
dynamic system, the intensive properties of which remain constant on a change in the 
system parameters. in the embraced system. 

Any isolated system spontaneously attains a state that undergoes no further changes. 
Such a state is called equilibrium. In the case of equilibrium, the thermodynamic 
parameters of a system are timeindependent unless some perturbation occurs. 

By stability we mean the system property of returning to the equilibrium state after 
a short-time perturbation. 

In usual courses of thermodynamics it is shown that spontaneous processes are 
characterized by the Carnot-Clausius inequality 

dQ d S  > -, T 
where d S  is the change in the entropy of the system, dQ is the quantity of heat put into 
the system at the temperature T for an infinitely small part of the whole process. The 
equality 

dQ dS = - 
T 

applies to reversible equilibrium processes. 
Relationship 1 reflects a universal principle of entropy increase in systems seeking an 

equilibrium. Consequently, the equilibrium itself is characterized by a maximum of en- 
tropy. 

Replacing dQ by its expression from the first principle of thermodynamics 
Y 

i t & = d U + P d V - x p , d n t ,  

one obtains for a spontaneous process 
Y 

T dS - dU - P d V  + x p ;  dn; > 0. 
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If, for a certain state of the system, no dS,  dU, d V ,  and dn, are available so that 
Equation 4 could be realized, it means that the given state is stable. Thus, the stability 
condition is expressed as 

with 6 to denote infinitely small, but otherwise arbitrary increments (virtual motions). 

increments. Eg. if after perturbation the entropy takes the value S, its increment is 
As a result of perturbation, the thermodynamic parameters can also undergo finite 

A S  = S -  So, (6) 

So being the value in the equilibrium state. 
It should be emphasized that perturbation may not necessarily be of an external char- 

acter, since molecular fluctuations may lead to small spontaneous deviations of the system 
parameters from their mean values (Prigogine and Defay, 1954). 

We now turn to consider the specific conditions of the existence of a system. 
For an isolated system (U = const, V = const, n, = const ), Equation 5 gives the 

condition for stability toward infinitely small perturbations: 

( J A T ) , v , n t  < 0. ( 7 )  

(As)rI,v,nz < 0 (8) 

The system is stable toward any finite perturbations if the inequality 

holds, i.e. any such perturbation would lead to a decrease in entropy. 

are as follows: 
The corresponding conditions for a system with (S = const, V = const, n, = const ) 

There may be situations when Equations 7 and 9 are realized while Equations 8 and 10 
are not realized, i.e. the system is stable toward infinitely small perturbations while being 
unstable toward finite ones (a local maximum of entropy or a minimum of internal energy 
with at least one additional extremum). In such cases it is generally agreed to speak 
of a metastable equilibrium (metastable state) of the system. Conditions 8 and 10 
define a stable equilibrium. When simultaneously breaking conditions 7-10, the system 
proves to be absolutely unstable. 

In a similar way one can define the stability conditions for the thermodynamic potentials 
G, F, and H. They are summarized in Table 1.1. 

The equality sign denotes the equilibrium state of the system (lack of perturbation). 
Assume that the state, which the system has transformed into as a result of a per- 

turbation, obeys Equation 1.1.1-3. In view of this, the increment of internal energy in 
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Table 1.1 
Conditions for stability of a one-phase multicomponent system to finite per- 
turbations 

Conditions for existence Stability to finite Extremum 
of the system perturbations of function 

U ,  V ,  nt A S  5 0 max S 
S, V ,  n, A U 2 O  min U 
T ,  P ,  n, A G > O  min G 
T ,  v, na A F 2 0  min F 
S, P ,  n, A H 2 0  min H 

Equation 5 is expressed its changes of the thermodynamic coordinates 6Y, i.e. bS, SV, 
and h i .  

We will also assume that after the perturbation the internal energy increment is suffi- 
ciently small and permits one to retain two terms in the Taylor series expansion. Multi- 
plying Equation 5 by (-1) and inverting the inequality, we have 

s I/ 

Y 

- T 6 s  + P 6 V  - c p i  6n, 2 0. 
;=l 

Based on Equationsl.l.l-4 the first and last summands can be reduced, and the condition 
of stability toward infinitely small perturbations is, therefore, brought to 

6’17 can be presented in two equivalent forms: first, 

and second, 

The latter expression is derived by differentiating Equation 1.1.1-7 while keeping in mind 
that the second differential of the independent variable is equal to zero (d2K = 0). Equal- 
ities 13 and 14 are readily obtainable from each other with 
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From the Gibbs fundamental equation in its entropy form, one can similarly derive the 
condition of stability to infinitely small perturbations: 

P S  5 0. (16) 

Inequality 12 means that the quadratic form 13 is positively defined (Madelung, 1957; 
Korn and Korn, 1968). For such a form to be positive, all the main minors of its coefficient 
matrix [ulk] must be positive, that is 

1.e. 

all > 0; az2 > 0; . . . urr > 0 

........................................... 
j ::: 2; 1 'O; 1:;: 2 I 

det[cark] > 0. 

The first of conditions 18 is the positiveness of all the diagonal terms of the coefficient 
matrix. Consequently, 

where 

is the heat capacity at V = const (the condition of thermal stability), 

or, having introduced an isoentropic compressibility 

.= - - (  1 dV ) , 
, v ap S,n, 

x, > 0 

(the condition of mechanical stability); 

(23) 

(24) 

(the condition of diffusional stability). 
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The next condition of stability is the positiveness of the second-order minor: 

I a2u a2u I 

IdSdV d V 2 I  
or 

Let us write the stability conditions in terms of the thermodynamic potentials '$k 

By analogy with Equation 14, Equation 1.1.1-14 can (Gibbs, 1928; Miinster, 1969). 
be written as 

k r 

s 2 $ k  = - ski 8x1 + 6x, b q .  
I=1 j = k + l  

In view of Equations 1.1.1-16 and 1.1.1-17, note that 

k 
[62*k(xl,xz ,.", Xk)Iy,  = -Cak;sxf, j = l c + l , " .  Y.. 

f = 1  

From the stability condition (Equations 12 and 14) one has 

r k r 

s 2 u = C s X l s k i = C s k i s X I +  sx,sV, > o s  
I=1 I =  1 j = k + l  

In view of Equations 27 and 28 it follows from Equation 29 that 

(29) 

In the general case, this inequality holds if and only if the former quadratic form is 
positively-defined, and the latter one is negatively-defined, i.e. 

which is equivalent to 

< 0, 
> 0, 

for the odd-order main minors, 
for the even-order main minors, (33) 
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> 0 for all the main minors. (34) 

The above considerations also hold good for the mean molar quantities defined by (v+ 1)- 
indepcndent parameters only (see subsection 1.1.1). 

For the mean molar Gibbs potential, conditions 33 reduce to 

Only two of these three conditions are independent. 

pressure according to 
In view of Equation 1.1.1-21 and the determination of the heat capacity at constant 

w = T ( % ) ,  P 

inequality 36 leads to 

CP - > 0. T 
From inequality 37 and Equ 

XT > 
where 

x=--( 1 av ) 
V a p .  

tion 1.1.1-22, it follows that 

is the isothermal compressibility. Inequality 35 allows us to derive 
2 

a 2 G  a2G x CP -.-- - aT2 ap2 (gfp) =*>"  

(39) 

(40) 

Further analysis of inequalities 39, 40, and 42 (Miinster, 1969; Stanley, 1971) yields other 
important results: 

CP > cv (43) 

YT > X S .  (44) 

and 
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For the mean molar Gibbs potential, conditions 34 reduce to 

for all the main minors i, j = 1 ,. . . , v - 1. 
In the case of a binary system, from Equation 45 it follows that 

and 

For a binary system, Equation 1.1.1-43 yields 

= P2 - Pl,  
aG 
ax2 
- 

and from the Gibbs-Durgham equation (Equation 1.1.1-10) at T = const and P = const 
it follows that 

a P l  aP2 
ax2 ax2 51- + 52- = 0. 

Differentiating Equation 48 leads to 

a Z C :  aPz aPl 
ax; ax, ax; -- __-_ - 

(49) 

Making a replacement of ap2/axz or apl/dx2 in Equation 50 using Equation 49, we obtain 

a 2 G  1 a p 2  
ax; x1 ax2 __-  - 

and 

a2G 1 .% 
ax; x2  ax2* 
__ - -- - 

Then, condition 47, according to Equations 51 and 52, reduces to 

and 

(52) 

(53) 

ax2  P,T 
(54) 
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Analogous transformations of Equation 46 lead to the conditions 

pj-q 
P,T 

and 

”l P,T 

(55) 

Inequalities 54 and 56 follow from to each other on the basis of the reciprocity relationship 

which is one of Maxwell’s relationships (cf. Equation 1.1.1-5). 
Prigogine and Defay (1954) have shown the validity of Equations 46 or 47 to cause 

the validity of Equations 39 and 40, hence, the diffusional stability condition (any of 
Equations 46, 47, 53-56) is a necessary and sufficient stability condition of the 
one-phase state of multicomponent systems (including the metastable state). 

1.1.3. Ideal binary system 
The state equation of an ideal gas is the well-known Clapeyron-Clausius equation 

PV = nRT. (1) 

For a one-component system under isothermal conditions and without any phase transi- 
tion, Equation 1.1.1-20 reduces to 

dG= V d P .  (2) 

Substitution of V from Equation 1 into Equation 2 and integration of the latter from 
a certain initial state to the current state lead to 

(3) 
P 

G = Go(T) + nRT In -, 
PO 

where the subscript ‘0’ denotes the state accepted as initial. 
Equation 3 by n we obtain 

Dividing both sides of 

P 
p = po(T) + RT In -. 

Po (4) 

A mixture is referred to as ideal if its components behave as if they were in their 
individual states. Eg. a gas mixture can be described by 

for each ith component. 
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From the Dalton law 

where P is the total pressure in the mixture, I, is the mole fraction of the ith component, 
Equation 5 can be rewritten as 

p, = p2 + RT In x,, (7) 

where 
P 

Po, 
p$ = po,(T) + RT In -. 

For condensed matter, Equation 7 (for each component) can be thought of as a definition 
of an ideal mixture. Having represented it as 

one can easily see that if d # j ,  then 

(cf. Equations 1.1.2-54,-56). If i = j ,  then 

(cf. Equations 1.1.2-53,-55). According to Equations 1.1.1-44,-35,-23, 

G = p1x1+ pzx2 

and 

(cf. Equation 1.1.2-47). 
The inequality 

AG, < 0. (14) 
is a necessary condition for the existence of a solution. 

Equations 7 and 1.1.1-51 together yield 

AGm,id = RT xi In xi < 0 (15) 
1 

for an ideal mixture. Consequently, condition 14 is valid over the whole range of mixture 
concentrations. We note in passing that the following relationships are also realized for 
an ideal mixture 
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(see Equations 1.1.1-22,-30,-33). When P = const 

AHm = AU, + PAV,, (18) 

whence, according to Equations 16 and 17, it follows that 

which means a lack of difference in the interactions between molecules of one component 
and of different components in an ideal mixture. For the molar entropy of mixing 

A s .  - _  m,rd - 

(see Equations 15 and 1.1.1-21). 

46,-47,-53.. .56)  are valid for the corresponding quantities of mixing as well, since 
One can easily see that the one-phase solution stability conditions (Equations 1.1.2- 

d2G d2AG, -- - 
ax; ax; 

(see Equation 1.1.1-51). 

decreasing functions of 2 2  

The stability conditions are well illustrated in Figure 1.2. Indeed, p1 and Apl are 

and p2 and Apz are increasing functioIls of x2. The condition 

- a 2 G  ax,” > ( F . 0 )  

defines convexity of the G(z2) and AG,(zz) functions by definition (Stanley, 1971). 
The formalism of ideal mixtures proves to be very helpful, since real mixtures are 

often characterized by the degree of deviation of their properties from the corresponding 
ideal properties. 

If one writes the chemical potential pa for a real substance in form 5, the value corre- 
sponding to P, is called fugacity f,, and 

1‘ 

where fo. is the standard-state fugacity and the ratio 
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Figure 1.2. Composition dependences of chemical potentials pJRT, mean molar Gibbs 
potential GIRT, chemical potentials of mixing Ap,/RT,  and mean molar Gibbs potential 
of mixing AGJRT for an ideal binary system with pol/RT = 1 and pO2/RT = 1.2 
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defines the activity of the ith component. The activity coefficient is introduced ac- 
cording to 

The excess quantities of the ith component are introduced according to 

z t ,ex  = 2% - Zz,id. (28) 

Eg. 

p t , e x  = pz - b , i d  RT In 7s. (29) 

Therefore, the activity coefficient T~ directly characterizes the degree of the deviation 
of the system’s properties from those of the ideal system. 
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1.2. Conditions for equilibrium and stability of the 
mult iphase multicomponent system 

1.2.1. General conditions for equilibrium and stability 
Let us consider a closed system containing u components and y phases'. The phases 

are assumed to  be in internal equilibrium and to be open with respect to each other, i.e. 
the entropy, volume, and mole fractions are variables for each phase. 

Write the fundamental equation (Equation 1.1.1-1) for each phase: 
U 

6Ua = TaSSa - PaSV, + &,dnta, (Y = I , .  . . ,7. (1) 
*=l 

As the internal energy of the system is a state function, under the conditions 
'y 2 as, = 0, 

av, = 0, 
0 = I  

7 

C6nia=0  ( z = l ,  ..., u), 
a = I  

the equality 
Y 

(3) 

(4) 

holds and should formally be considered as the extremum condition of U in the Lagrange 
problem with additional relations 2 4 ,  which is solved, by tradition, using the Lagrange 
multiplier method (Rusanov, 1960, 1967; Semenchenko, 1960b; Storonkin, 1967, 1969; 
Munster, 1969; Kluge and Neugebaucr, 1976). Multiply Equation 2 by an indeterminate 
but constant multiplier XI, Equation 3 by (-Xz), and F4uations 4 by X3r '~ .  The equations 
so obtained are subtracted from Equation 5. Taking Equation 1 into account, we have 

Y - l  

C(Ta - h)asa - C ( P a  - h)SVa + Z(Paa - X3*)6%, = 0, (6) 
(1 LY i=l a=I 

from which 

'Hereinafter, phase numbers are denoted by Roman digits and Greek letters 



1.2.2. Membrane equilibrium. Osmotic pressure 21 

These equalities are the equilibrium conditions for a multiphase multicomponent 
system. 

Such a system is stable as a whole, i.e. it is in the state of a stable or metastable 
equilibrium, if the stability conditions hold for each coexisting phase (see Equation 1.1.2- 
18) (Gibbs, 1928; Rusanov, 1960, 1967) 

with all the main minors, or 

> 0. 

The above relationships have been derived without regard for the effects of surface 
phenomena. The equilibrium conditions of a multiphase (e.g. two-phase) system with 
allowance made for the interface (the subscript a)  take the form 

The mechanical equilibrium conditions depend on the degree of the interface curvature. 
E.g. a flat surface implies that 

and for an interface with the curvature c = l/rl + l/rz 

and for a sphere interface with the radius r 

where u is the interface tension coefficient. Thus, the condition for the interface stability 
should be taken into account when surface phenomena begin to play a significant role. 

1.2.2. Membrane equilibrium. Osmotic pressure 
Consider an isolated system with v components and y phases, with all the phases 

separated from each other with a solid semipermeable’ membrane. The volume of each 
phase is therefore fixed. Due to the membrane impermeability to the (v - s )  components, 
variations in the (v - s) mole fractions are equal to zero. 

By analogy with the formulae given in subsection 1.2.1, we write 

7 

C S U , = O  
a=I 

*i.e. permeable to molecules of s components only (s < v) 

(15) 



22 1.2. Stability of muhiphase multicomponent system 

under the conditions 
Y c ss, = 0, 

a=Z 

sv, = 0 (a = I , .  . . ,7), 

sni, = 0 (i = 1,. . . ,a); 
7 

a = Z  
6 n j a = 0  ( j = s + I ,  ..., v; a =I, 

By means of Lagrange’s multipliers (see subsection 1.2.1), the equilibrium conditions can 
be obtained: 

TI = TII = * .  . = T,, (19) 

(20) p,I = p,zz = . . * = p,? (i = 1,. . . , s). 

The presence of the solid semipermeable membrane leads to the possibility for the co- 
existing phases to be under different pressures. Certainly, the equality of the chemical 
potentials holds only for those s components which the membrane is permeable to. 

Osmotic equilibrium is a most important special case of membrane equilibrium. Let 
y be 2: one phase (I) is the solvent (componcnt 1) and the other (ZZ)  is the solution of 
component 2 in 1 (mixture 1 -t 2). The membrane is impermeable to the molecules of 
solute 2. 

According to the stability condition (Equation 1.1.2-55), 

( E)T,p ’ O .  

Assume the pressures in both the phases to be equal at the initial moment (Pz = P ~ I  at 
t = 0); then the chemical potential of component 1 in solution (say, with x1 = r; < 1, 
see Figure 1.3) = 1, i.e. in 
phase I ) ,  pi l l  < p11 = pol, which indicates no equilibrium between phases I1 and Z (scc 
Equation 20). For the solvent (Equation 1.1.1-22), 

is less than that in the individual state pol (with 

(2) T = % > O ,  

where is the molar volume of the solvent. It follows that the chemical potential de- 
pression of component l due to the presence of component 2 can be compensated by a 
pressure increase in phase 11 (&). Indeed, experience shows that PII increases owing to 
the transport of solvent molecules from phase I to phase 11 through the membrane. The 
related concentration changes can, however, be neglected. Therefore, in equilibrium (see 
Equation 20) 
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X 

equilibrium 4 
21  = 1 

Figure 1.3. Towards the definition of osmotic pressure in solutions 

The excessive pressure 

7r = PI* - PI 

is called the osmotic pressure. On the basis of Equations 23 and in view of Equation 22, 
one can write for x1 = x; 

PI I 

POI(PI)  = pl(PI,z;) + J i4 dP. (24) 
PI 

Assuming to be constant over the pressure range PI and PII, we obtain 

p o i ( p ~ )  - p i ( P 1 , ~ 3  = G ( ~ I I  - PI) .  

API = P I ( ~ I , X ; )  - POI(PI), 

(25 )  

(26) 

If we introduce the chemical potential of mixing of the first component according to 
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then from Equations 25 and 26 it follows that 

or, for sufficiently dilute solutions (c N GI), 
APl 

Vol 
% --. 

An ideal dilute solution allows one to combine Equations 1.1.3-9 and 27 

RT RT ~ n 2  R T c ~  l n q  = -- ln(1 - z2) N ?z2 2 - . - - - - RT RT a -- 
Vol VOl VI1 V M2 M2 ’ 

(27) 

where m2, c2, Mz are the mass, concentration (g/cm3), and molecular mass (g/mol) of 
the second component, respectively. 

For the reduced osmotic pressure i ~ l R T c ~ ,  the s ta te  equation of an ideal dilute 
solution (Equation 28) shows no concentration dependence 

This equation is used to determine the molecular mass M2 using the method of osmotic 
pressure. 

From this point on we will omit the subscript ‘2’ in state equation 29. 

1.2.3. Phase rule 
We continue to consider the system containing v components and y phases (Gibbs, 

1928; Miinster, 1969). It is supposed to be in equilibrium, so conditions 8 hold, and in 
the case of infinitely small variations of T, P ,  p, the equalities 

dT, = dT; dP, = d P ;  dp,, = dp, ( 30) 

are realized for all y phases and v components. Write the Gibbs-Durgham equation 1.1.1- 
10 for each phase for the mean molar extensive quantities using Equation 30 

Y 

S, dT - V, dP + z,,, dpz = 0 (CY = I , .  . . , y). 
,=I 

This expression can be regarded as a system of y equations with respect to the (v + 2) 
unknowns dT, d P ,  and dp,. Hence, the number of independent variations in temperature, 
pressure, and chemical potentials (provided the phase number is kept) is 

f = v + 2  - y. (32) 

This equation is called Gibbs’ phase rule. It defines the number of thermodynamic degrees 
of freedom f, i.e. the number of variables T, P ,  p; which can arbitrarily be varied without 
breaking the equilibrium among 7 phases. When f = 0, the equilibrium is referred to as 
non-variant, with f = 1 it is monovariant, when f = 2 it is bivariant, and with f 2 3 it 
is polyvariant. 



1.2.4. Critical phase 25 

1.2.4. Critical phase 
One-component systems 

The state equation of a one-component system (Equations 1.1.1-11,-28) written as 

f(P, v, T )  = 0 (33) 

specifies a surface in 3 0  space P ,  V ,  T that represents a state diagram of the system 
(see Figure 1.20). Every point on this surface corresponds to an equilibrium state and is 
called a configurative point. 

To present the surface more clearly, its projections on the planes P = 0, V = 0, and 
T = 0 are considered. They are called state diagrams as well (Kirillin et al., 1983). 

Let us consider a onecomponent system which obeys the van der Waals equation for 
one mole of substance 

(P+ &) (V - b )  = RT, (34) 

where R is the gas constant. 
The constants u and b allow for the repulsion and attraction molecular forces. The 

simplest way to take the repulsion forces into account is to introduce an effective volume 
of molecules v,. Then, we specify the moleculeavailable volume that can be correlated 
with x d  from Equation 1.1.3-2 

where b = E, is the excluded volume. 
The existence of attraction forces among the molecules leads to a certain decrease in 

the real gas pressure on the vessel walls ( P  < E d ) .  Assuming that the attraction forces 
cause a decrease both in the number of molecule collisions with the walls and in the 
collision momentum as well, and that each of these effects is proportional to the gas 
density ( w  N A / V ) ,  we obtain 

Substitution of and g d  from Equations 36 and 35 into 

& q d  = RT 

leads to the van der Waals equation 

( P  + g) (V - b)  = RT. 

In the case of a model for the interacting molecular solid spheres of a radius ro, no 
two molecules can approach each other at a distance less than their diameter. Hence, the 
excluded volume is determined as 

4 3 2 ~  Per = 3~(2r0)3  = -2 3 *’ 
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and per molecule 

and per mole 

b = ~NAv,.  

Let us analyze Equation 34 using a state diagram on the coordinates P us V (see 
Figures 1.4 and, also, 1.20, 1.21). 

P 

Figure 1.4. State diagram of the van der Waals one-component system: sp ,  bi, C denote 
the spinodal, binodal, and critical point, respectively 

The boundary of the stability of the one-phase state to infinitely small perturbations 
is called the spinodal. Because the region of mechanical stability is defined by Equa- 
tion 1.1.2-37 (see also Equations 1.1.2-38.. .41, 1.1.1-22) 

the spinodal is given by the equation 

and corresponds to the locus of the isotherms extrema on the state diagram (curve 
BB’CC’C) in Figure 1.4. 

Every configurative point inside the spinodal implies the violation of the mechanical 
stability conditions for the one-phase state, and this region of the state diagram is char- 
acterized as absolutely unstable to the one-phase existence. As a result, the system 
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is divided into two phases, their existence conditions for one-wmponent systems (Equa- 
tion 8) being 

Let us find two configurative points on diagram 1.4, one for the liquid phase and the 
other for the gas one, for which conditions 40 (Kubo, 1968) hold. The first two equalities 40 
mean that both the points must belong to a common isotherm (eg. 2'1 = comt)  and be 
located on the line parallel to the abscissa axis. Let AD be one of such lines. Then the 
third condition 40 is expressed in the following form 

/ ($) d P = -  1 (2) dP. 
A B 0  T OCD T 

Taking Equation 1.1.1-23 into account, Equation 41 can be written as 

J V d P = -  J V d P .  (42) 
A B 0  OCD 

It follows that the condition pi = pgas implies the equality between the areas bounded by 
the isotherm's branches and line AD: 

Area of A B 0  = Area of OCD, (43) 

which is known as Maxwell's rule. A and D are, therefore, the points on the state diagram, 
for which conditions 40 are realized, and their abscissae determine the values of the molar 
volumes of the liquid and gas phases in equilibrium at the temperature TI and under the 
pressure PI. The set of such pairs of points corresponding to the phases the system is 
divided into at different temperatures is called the binodal (or the boundary curve , 
the curve AA'CD'D in Figure 1.4), and the lines, which connect the points on each pair, 
are called the tie lines, or nodes. 

Outside the binodal dome the equilibrium conditions (Equation 1.1.2-37) are fulfilled, 
and the system exists in its onephase state: the liquid phase is to the left of the left-hand 
branch and the gas one is to the right of the right-hand one. Continuous liquid+gas 
transition is possible outside the binodal curve with T > T,. Between the binodal and 
spinodal is the region of the metastable state, where the one-phase system is stable 
with respect to infinitely small density fluctuations and unstable with respect to finite 
ones. 

The system evolution upon transfer of the configurative point from outside the binodal 
to inside its dome is considered in a special division of phase transition science, namely, 
phase transition kinetics. The mechanism of evolution will cssentially depend on where 
the configurative point is: in the metastable or in the absolutely unstable region of the 
state diagram (even under the same pressure when the final twephase states will be 
equal). 

As can be seen from Figure 1.4, the values of the molar volumes of the two phases 
approach each other on an increase in pressure. The configurative point, where they will 
be equal, is called the critical point. 
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It follows that the critical point is a point of the isotherm inflection (the tangent line 
is horizontal), i.e. is given by the system of equations 

There is a region of absolutely unstable states between two coexisting phases situated 
its closely to the critical point as one likes. Thus, the critical point must belong to both 
the spinodal and binodal, it is the point of their being tangent. 

A more general approach will give the following form of the spinodal equation for a 
one-component system (see Equation I .1.2-12) 

d2U = 0, (46) 

with S and V taken as independent variables. 

be arbitrary due to the conditions of the temperature constancy imposed. 
Contrary to Equation 1.1.2-12, 6 is replaced here by d,  since variations of U can not 

Equation 46 is equivalent to 

(see Equations 1.1.2-13,-23), which defines the first equation for the critical point. 
Now we have to find the second equation. As Figure 1.4 suggests, the isotherm passing 

through the critical point nowhere enters the absolutely unstable region, i.e. provides the 
validity of 

d2U 2 0 and D 2 0. 

It follows from Equation 47 that with an additional relation T = const there is a 
conditional minimum of D in the critical point, i.e. 

The condition of solvability for this system with respect to dS and dV (with allowance 
made for T = aulas) is: 

= 0. (49) 
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This is the second equation for the critical point. 
In principle, Equations 47 and 49 reduce to Equations 44 and 45, but the proof is 

The isoentropic spinodal corresponds to the condition 
clumsy (Miinster, 1969). 

(g)s=O 
(see Equation 1.1.2-21) and appears behind the isothermal spinodal (Equation 44), 
toward the region of absolutely unstable state on the state diagram (Skripov and Koverda, 
1984). 

Multicomponent systems 
In the general case, two coexisting phases in a u-component system may prove to 

be identical at certain values of the intensive parameters and, therefore, constitute one, 
critical phase. 

As the mean molar thermodynamic potentials of a v-component system are functions of 
the (v+ 1) variables, it is necessary to have at least (v+ 1) parameters to describe the state 
of such a system. Correspondingly, the state diagram is found to be (v + 1)-dimensional. 

The tie lines are defined as the lines in the two-phase region (y = 2) on which the system 
intensive parameters are constant. It follows from Equation 8 that tie lines connect the 
binodal points corresponding to the coexisting phases. It should be noted that any tie 
line is unambiguously defined by v intensive parameters, according to the phase rule 
(Equation 32). 

The equation for the critical phase of a multicomponent system can be derived in the 
same way which has led to Equations 47 and 49 for u = 1. 

The spinodal equation, as Equation 1.1.2-12 shows, has the form 

a277 a26 - ... - a2u 
v 

dS2 as  av as as,-, 

D =  = 0. 

Further, let us draw a curve through every point of the critical phase, which holds v 
(of the (v + 1) intensive parameters) values constant 

None of such curves can find its way into the absolutely unstable region, since specifying v 
intensive parameters defines the tie line unambiguously (here, this tie line degenerates into 

3The choice of these v values is arbitrary and in no caae affects the final result 
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a point in the critical phase). Consequently, the D value has a conditional minimum on 
each curve D 2 0 where the curve intersects the critical phase, according to Equation 51. 

For definiteness, assume v first values to be chosen for Equation 52. Then, it follows 
from the above reasoning that under the condition 

....................................................................... I 
the equation 

holds for the critical phase. 

only if its determinant is equal to zero 
The linear homogeneous system of equations 53 and 54 has a non-trivial solution if and 

D' = 0. (55) 

This is the second equation for the critical phase. Note that D' (Equation 55) is distin- 
guished from the determinant D (Equation 51) only by the last row which is replaced 
bY 

... dD aD 
a S a v  

If any other v parameters (not the first v ones) had been chosen out of the (v + 1) 
ones in Equation 52, the determinant D' would have differed from D in that the row 
corresponding to the remaining parameter would have been replaced by row 56. 

One can derive the critical phase equation in a much simpler form in many specific cases 
using Equations 1.1.2-30.. . 34  as the stability conditions rather than Equation 1.1.2- 
12. The subsequent line of argument should remain unchanged. The molar Helmholtz 
potential F is convenient to use for a one-component system with Equations 1.1.2-31 
and 1.1.2-32 to express the thermal and mechanical stability conditions, respectively. 
As the second inequality is stronger, one can confine oneself with it. In this case, the 
determinant DF degenerates into one term 

and D' will be D)F = - ( a 2 P / d V z ) ~ .  
immediately. 

The critical point equations 44 and 45 follow 
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For a multicomponent system containing condensed phases only, it is only the diffusional 
stability condition (Equation 1.1.2-45) that matters as the strongest one (Miinster, 1969; 
Glansdorff and Prigogine, 1971), so D is 

1 (58) 

and a determinant that differs from DG by any row replaced by 

~ D G  ~ D G  
ax1 ax2 
- - ... 8% 

8%-1 (59) 

can be accepted as Db. Then the critical phase equations have the form 

DG = 0 (spinodal equation) (60) 

Db = 0. (61) 

and 

1.2.5. Law of the corresponding states. Virial expansion 

eters of a one-component system 
From Equations 34,44, and 45, the following expressions emerge for the critical param- 

a 
pc = m' 
E = 3b, (63) 

and 
8Q RT - -. - 27b 

Thus, 

z Pc% a 27b 3 
- -3b - E - = 0.375. '- RT, 2762 8e 8 

Real liquids possess 2, somewhat less than 0.375 (Stanley, 1971) and significantly less 
than zid for ideal gas (Equation 1.1.3-1) 

PV z. - - = 1. 
I d -  RT 

If both sides of Equation 34 are multiplied by 27b/a, and then a and 6 are eliminated 
using Equations 6244, one obtains the state equation in reduced quantities 
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(where b E P/P,,  E V/V,, ? E T/T,). It appears that Equation 67, holds good for 
many substances. Substances with equal reduced parameters G, p ,  and T are considered 
to be in corresponding states, and Equation 67 is called the law of corresponding 
states. 

Generally speaking, many onecomponent state equations have been proposed (Read 
et al., 1977), but the van der Waals equation 34 and the virial expansion equation 

1 1 Iv = 1 + Bz- + B3'- + . . . 
RT V V2 

( B2 and B3 being the second and third virial coefficients, respectively, and so on) are most 
often used. 

The second virial coefficient Bz reflects pair interactions among the molecules during 
their collisions, the third one B3 characterizes ternary interactions. 

Let us confine ourselves to two terms of expansion 68 

1 
- = 1 + &-. PV 
RT V 

In contrast to the van der Waals equation, only one quantity, Bz, is responsible here 
for the interactions among molecules. It is desirable to compare it with Q and b from 
Equation 34. 

Remove the brackets in Equation 34. Let Q and b be sufficiently small to neglect the 
term d / V 2  and to replace Y in ( -Pb)  by bRT/V according to the ideal gas equation, 
After some algebra we have 

B z g b -  
Q - 

RT' 
i.e. Bz is proportional to the excluded volume and varies with temperature. At the 
Boyle temperature TB, there occurs compensation of repulsion and attraction forces (b  = 
Q/RTB) and B2 = 0, which makes the isotherm degenerate into that one of ideal gas 

PV = RTB 

(see Figure 1.4). When T >> TB the second term in Equation 71 (attraction forces) can 
be neglected, and interaction forces can only be treated as repulsion forces only (excluded 
volume). 

1.3. Phase separation of regular mixtures 
1.3.1. Liquid-liquid separation 

A mixture is called regular if, though intermolecular forces are taken into account in 
the enthalpy part of G, the interaction is assumed not to be so strong as to affect the 
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chaotical motion of molecules in the mixture, i.e. no account of this interaction in the 
entropy part is needed 

Let us calculate AH, for the lattice model of binary mixtures in the zero approximation 
(Prigogine and Defay, 1954; Kubo, 1968; Glansdorff and Prigogine, 1971; Andreyev et al., 
1974), where molecules of the liquid are presumed to be in the cells of a rigid lattice with 
the coordination number u. Every cell contains either a molecule of component 1 or that 
of component 2. Only molecules in neighbouring cells (ith and j th )  interact, with the 
energy E , ~  < 0 (z,j = 1, 2 are the numbers of components). Thus, short-range repulsion 
forces are taken into account by a finite volume of the cells while van der Waals attraction 
forces are allowed for by the energy ct l .  

With m to denote the total number of cells, mz, is the number of the ith molecules. 
Each of them has vx, of its j t h  neighbours (on the average). The total system energy is 
the sum of all the pair interactions 

When each component is in its individual state, every i th molecule is surrounded only 
by molecules of the ith type, and the total energy is 

1 Vl,U 
Uo = 5 m w E , ,  = - ( . w l l +  ~ 2 2 ) .  2 t=1,2 

As the lattice is rigid, 

AVm=O and AH,=AUm. 

Subtracting Equation 3 from Equation 2 and performing simple transformations for the 
enthalpy of mixing, we get 

AH, = m ~ z z ( 1 -  z~ )AE,  

where 

defines the energy of mixing per contact. On a per-mole basis (n = m/NA = 1, NA being 
the Avogadro number) 

AHm = NAvzz(1- xZ)AE. 

AGm = N A V Z Z ( ~  - z2)Ae + RT(rl l n q  + 22Inq) .  

f 5 )  

Substitution of Equations 5 and 1.1.3-20 into Equation 1 yields 

(6) 



34 1.3. Phase separation of regular mixtures 

(endothermic mixing). 

(exothermic mixing). 
When AH, = 0, the mixing is called athermic (ideal solution). 
The assumption of the molecules being distributed chaotically is valid if only AE << kT. 

Having denoted 

a = NAUAE, (9) 

AGm = RT(z1 In z1+ x2 In 2 2 )  + m1x2 (10) 

AG, = RT(nl In $1 + 722 In x2) + cynxlz2. (11) 

AG, = AGm,id + AGm,=, (12) 

AGm,ex = ax112 = AH,. (13) 

Ap1 = RT ln(1 - 5 2 )  + ax;, (14) 

Apa = RT In x2 + a( 1 - Q)'. (15) 

we can write 

and 

Now we introduce excess quantities of mixing according to Equation 1.1.3-28: 

(see Equation 1.1.3-15), 

It follows from Equations 11 and 1.1.1-23 that 

Differentiating expression 14 leads to 

and the solution stability condition (Equation 1.1.2-54, see also Equation 1.1.3-21) r e  
duces to 

and for the spinodal one has 

RT - ~ z $ p ( l -  xz,Sp)' 

20 1 -- 

In the case of a two-component system (u = 2), the determinants DG (Equation 1.2-58) 
and Db (see Equations 1.2-58,-59) degenerate to 
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and 

35 

(20) 
PAG, 

a x ;  . 
Within the limits of the regular solution model (Equation 10) the critical phase equa- 
tions 1.2-60,-61 (here concerning only the critical point) look as 

whence 

and 
(Y 

T - -. '- 2R 
When T > T,, the stability condition (Equation 17) is fulfilled at any 2 2 .  When T < T,, 

the solution is stable only within the ranges 2 2  < xzSpz and 2 2  > ~ 2 ~ ~ 1 1 ,  where x z S p z  and 
x 2 s p ~ ~  are the roots of the quadratic equation 18 

1 ( Y - ~ R T  
2 J 4a x2spz  = - - 

Correspondingly, when T < T,, the function AG, = x l A p l  + xZAp2 is convex within the 
ranges x z  < xzspI and x z  > xzSp11 (azAGm/axi > 0) and concave over < xz < x z s p z ~  
(azAG,/axi < O)(see Figure 1.5b). 

The set of xzSpz and x 2 s p ~ z  at different T is the spinodal (sp in Figure 1 .5~) .  The binodal 
is defined using the conditions 

Apii = A p i ~ i ,  (26) 

Ap2z  = Ap-62~1 (27) 

(see Equation 1.2-8). 

and 15 into account 
We can rewrite the equality condition of the chemical potentials, taking Equations 14 

RT In(] - X Z I )  + 
RT In x z z  + a( 1 - xZz)' = RT In xzzz  + a( 1 - X ~ Z I ) ~ .  

= RT ln(1 - X Z I Z )  + (28) 

(29) 

As the AG, us x z  plot is symmetrical about the axis x z  = xzc  = 0.5, 

221 = 1 - X Z Z Z ,  (30) 
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Figure 1.5. Concentration dependence of the chemical potential of mixing Ap,/RT (a), 
the molar Gibbs potential of mixing AG,/RT ( 6 )  for regular mixtures with a/RT (the 
digits at the curves) = 3,2$, 2, 1 (endothermic mixtures), 0 (ideal mixture), -1 (exother- 
mic mixture). p,, stands for aApi/dxj. State diagram (c): bi-binodal, q-spinodal, 
C-ritical point. CrlRTc = 2 at T = Tc 
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and Equations 28 and 29 are equivalent. Substituting x21 from Equation 30 into Equa- 
tion 28, we obtain 

5211 a 
1 - 5211  RT 

In ___ = -(2x211 - I). 

With a new variable 

Y = 252II - 1 ,  

l S y  a In--- 

it looks as 

I - ~ - R T ~ ’  (33) 

which is simply solved numerically (or graphically, see Figure 1.6). Eg. at a/RT = 3, 

3 

2 

cy - my 
and 

l + Y  In - 
1-Y 

1 

v 
/ 2 . 5 ~  

7 

Y 

Figure 1.6. Schematic solution of Equation 1.3-33 for a/RT = 2.5 and 3, y = 2x211 - 1 

y = 0.86 and 2211  = 0.93 (Figure 1.5). 
The value of x21 is calculated using Equation 30. The functions so obtained T ( x 2 1 )  

and T ( x ~ I I )  at 2 2 1  5 0.5 and 2211  > 0.5, respectively, form the left-hand and right- 
hand branches of the binodal (see Figure 1 .5~) .  According to Equations 1.1.1-46,-47 and 



38 1.3. Phase separation of regular mixtures 

conditions 26 and 27, the tangent lines to the curve AGm(x2) coincide at the points 2 2 1  

and X ~ I I ,  cutting off the same intercepts on the ordinate axes: 

Apir(xzi) = &i~i(xzr~)  (34) 

APLZI(XZI) = Apzrr(zm) (35) 

at the left and 

at the right (see Figure 1.5b for a/RT = 3). The values xzspr and x z s p I I  correspond to 
the inflection points of the curve A&,(x~) :  

-- - 0. 
d2AGm 
ax; 

Figure 1.5a shows that aAp,/dx, > 0 and aApi/dx, < 0 over the stability range and 
that it is vice versa within the absolutely unstable range. 

The x2  dependence of Apl (provided that there exists a region of liquid-liquid phase 
separation) has as characteristic a shape as the P us V dependence for a one-component 
system within the two-phase region (cf. Figures 1.5 and 1.4), which reveals a general 
character of any {thermodynamic force}-{thermodynamic coordinate} dependence in a 
twephase equilibrium. 

The state diagram (Figure 1 .5~)  indicates the stability of a one-phase solution outside 
the binodal and the absolute unstability of any solution inside thc spinodal. There is a 
region of metastable state between the binodal and spinodal. 

When the critical point is a maximum on the binodal (and also on the spinodal), as in 
Figure 1.5c, it is called upper  critical solution temperature (UCST). In the case of 
systems, where phase separation occurs on an increase in temperature, the critical point 
corresponds to a binodal (and spinodal) minimum and is referred to as lower critical 
solution temperature  (LCST). 

Within the framework of the model under consideration, at T > T, the reduced osmotic 
pressure (see Equations 1.2-17 and 14) is expressed as 

Therefore, in the virial expansion of osmotic pressure 

for the second virial coefficient we obtain 

If slRTc2 us cz is plotted, both the molecular mass M2 (from the intercept on the 

When there is no interaction, a = 0 (AB, = 0), AGm,, = 0 (see Equations 12 and 13) 
y-axis at c2 -+ 0) and the interaction constant (Y (from the slope) can be determined. 

and Equation 36 reduces to the state equation for an ideal solution (Equation 1.2-29). 
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It seems to be relevant to consider the analogy between the values which charactcrize 

Let us confine ourselves to the first two terms in Equation 37 and transform it, with 
the properties of real solutions and gases. 

the aid of Equation 36, to the form 

where M2/c2 is the volume containing one mole of the solute (component 2). It follows 
that it is like the molar volume V in the state equation for real gases (Equation 1.2-70). 
Certainly, n corresponds to P.’ Then, correlation between Equations 1.2-70,-71 and 
Equation 39, in view of Equations 1.2-37,-38, leads to 

(see Equations 1.2-37,-38) and 

We will now look more closely at the T < T, situation (Becker, 1938; Andreyev et al., 
1974). Figure 1.7 presents a typical isotherm G(z2)  with the characteristic points of the 
binodal and spinodal marked aa bil, biII and spl, spII. 

Suppose that the configurative point has been moved from outside the binodal into the 
region between the binodal (221) and spinodal (zzsP1) with the concentration 2 2  = x2,o 

(the point D). The system is composed of nl moles of component 1 and of nz moles of 
component 2, so that n1 + n2 = n and x2,o = n2/n. Further, assume that a fluctuation 
of composition spontaneously occurred in a certain local region and the concentration of 
component 2 became xk there (Figure 1.7 and 1.8). Then, this concentration in the 
rest of the system is 2;. In terms of mole numbers, there are n’ moles in the local region 
(n’ = n; + n;; n; = .an’) and n; moles in the rest of the system (n; = ( n  - n’)z)2)). As a 
result of such a fluctuation, the Gibbs potential varies by 

AG = G2 - GI. 

If this value is positive, then the solution is stable (Table l . l ) ,  but if it is negative, the 
solution is unstable and phase separation will occur. According to the accepted model, 

AG = Gz - G I  = n‘G(xi)+(n - n’)G(xg)- nG(zz,o). 

n2 = nx2,0 = ng + ni = ( n  - n’)x; + n’zi. 

(41) 

(42) 

The total number of moles in the system remains constant, 

Adding and subtracting n’x2,o to/from the right-hand side and some additional manipu- 
lations yield 

.‘(xi - X Z , O )  

n - n’ x2,o - 2 2  = (43) 

*However, this analogy is not complete 
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Figure 1.7. An isotherm of the average Gibbs molar potential for a two-component mixture 
at T < T, 

Figure 1.8. Schematic sketch of the appearance of a concentration fluctuation in solution 

As x: is close to x2,0, G(z:) can be expanded into a Taylor series near x2,o to the terms 
of 1st-order infinitesimal: 
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This expression is substituted into Equation 41, and by simple transformations we get 

and, in view of Equation 43, 

Figure 1.7 demonstrates that 

B C = C D  (;E) - = (4 - x2,o) (E) , (47) 

AC = G ( x : )  - G(x2.0) and AG = AG/n‘ = AC - BC = AB. (48) 

AG > 0 when AC > BC, i.e. AB is under the curve G(zz), and the solution is stable. 
As Figure 1.7 shows, this condition is met up to 1: = 1; (where the tangent line to G(Q) 
at 1 2  = z2,o meets the curve G ( z 2 ) ) .  If, however, 1; > 1; in the fluctuation region (eg. 
zi &), then AfB‘ is situated above the curve G(x2), IB’C‘I > IA’C’l (Figure 1.7), and 
AG < 0 (Figure 1.9a), and a loss of the solution stability will occur. As illustrated in 

0 

aG 
0 

2 

a 

AG 

4 

b 

Figure 1.9. AG variation as a result of a concentration fluctuation (u)  in the metastable 
region, ( b )  in the unstable region 

Figure 1.7, the line segment AB is always under the curve G(Q) to a certain x; at any 22.0 

concentration within the ranges 2 2 1  < 1 2  < x z S p ~  and x z s p ~ ~  < x2 < 2 2 1 1 .  These ranges 
imply the solution stability to fluctuations less than (x; - Q,O) (more exactly, (z;,,, - z ~ , o ) ,  
see Figure 1.9a) and the instability to fluctuations larger than the mentioned value. It is 
this property that is characteristic of the metastable state. 
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Let us discuss the case of aa small fluctuations as those which permit G(dJ to be 
represented as a Taylor series expansion near 22 ,o  to the terms of 2nd-order infinitesimal 

and 

("'") (z; - 22,o) 2 . 
qz;) - G(Z2.0) - ( (2: - Q,O) - - 2 ax; ,, 

From Equation 46, in view of Equation 50, it follows that 

Thus, the sign of AG is defined by that of (a2G/ax;)o.-When the curve G ( x 2 )  is concave 
(i.e. ( a z G / a x i )  < 0 within xzSpI < x2 < zzspii), then AG < 0, which means the condition 
of solution instability even to small fluctuations (see Figure 1.9b). In the metastable and, 
later on, stable regions, (a'G/az;) > 0 and AG > 0 (the curve G(z2) is convex). 

In the metastable region, the solution is stable to small fluctuations and unstable to 
large ones, as noted above. 

Within 0 < x2 < 2 2 1  and 2211  < 2 2  < 1, the solution is stable to any fluctuations; the 
tangent line to G(Q) at any point never meets the curve, and the line segment A B  is 
always under G(x2)  (see Figure 1.7), i.e. AG > 0 at any 2 2  (Figure 1.10). 

AG 

0 

Figure 1.10. AG variation as a result of a 
concentration fluctuation in solution (the 
stable region) 

The above considerations are a relatively rough scheme of the initiation of new-phase 
particles. In particular, the change of the particle entropy owing to their Brownian motion 
is not taken into account. In view of this change one can conclude that a certain (and 
high) concentration of overcritical (with the peak value 2'2 > qm, see Figure 1.9a) centres 
of the new phase is necessary for the phase transition to start. 
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More realistic models for the initiation and growth of new-phase particles are considered 

The condition 
in the literature on phase transition kinetics. 

AG, < 0 (52) 

is often adduced as the condition for component dissolution. However, in order to ob- 
tain a one-phase solution, condition 52 is necessary, but not sufficient. The nccessary 
and sufficient condition for a one-phase solution to be obtained is represented by two 
inequalities: 

while the concentration range must lie outside the binodal 0 < 2 2  < 2 2 1  or 2211 < x2 < 1. 
Figure 1.5 illustrates this statement (see the function AG,/RT at a/RT = 2.5). Other 
models of liquid-liquid mixtures can be found elsewhere (Read et al., 1977). 

1.3.2. Liquid-crystal separation 
Only one simple case of the binary system ( A  + B )  with eutectic crystallization and no 

region of the mixed crystal existence (Daniels and Alberty, 1975) will be considered here 
as an example of liquid-crystal phase separation (see Figure 1.11). This kind of phase 
separation is of special importance for polymer systems as most typical. 

The wide variety of the state diagrams of crystal and mixed (semicrystalline) equilibria 
for low-molecular compounds have been fully considered in the literature (Kogan, 1968; 
Shpil’rain and Kassel’man, 1977; Vol and Kagan, 1979). 

Attention should be paid to the fact that, according to Figure 1.11, Crystallization pro- 
ceeds under conditions of solution thermodynamic stability to liquid-liquid separation: the 
criteria AG, < 0 and d2AG,,,/dxi > 0 are realized over the whole range of temperatures 
and concentrations. 

The thermodynamic stimulus for crystallization (liquid-crystal phase separation) is the 
equality of the chemical potentials of each component in the crystal phase Got,cr and in 
the solution Gt,s at a certain temperature Tr and concentration x,!: 

The locus of configurative points on the state diagram in the temperature-concentration 
coordinates which meet condition 54 defines a liquidus curve, Figure 1.lla. 

If the configurative point is at an infinitely small distance from the liquidus curve toward 
the solution existence region, condition 54 is not satisfied while the solution is obviously 
stable to amorphous separation. Thus, the closeness of the liquidus manifests itself in no 
case (cf. Figures l . l l b  and c). 

The absence of specific precrystallization phenomena in a one-component liquid is the 
subject of a number of papers (Skripov and Baydakov, 1972; Skripov, 1975). 
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Figure 1.11. State dia- 
gram of the binary mixture 
A + B with a liquid-crystal 
phase separation region of 
the eutectic type in the ab- 
sence of a mixed crystal re- 
gion. The dashed line denotes 
the liquid-liquid phase sepa- 
ration region ( u ) .  Composi- 
tion dependence of the aver- 
age molar Gibbs potential ( b -  
4. Go,,c,, Go,,, denote the 
molar Gibbs potential of the 
ith component in its individ- 
ual crystal and liquid states; 
G+(zB) stands for the par- 
tial molar Gibbs potential of 
the ith component in solution 
with the concentration 28 

(Daniels and Alberty, 1975) 
[F.Daniels and R.A.Alberty. Phys- 
rcal Chernastry. Copyright @ 1975 
by Wiley. Reprinted by permission 
of John Wiley & Sons, Inc.] 
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1.4. Stability and fluctuations 
We will consider fluctuations in a system as such its states in which the fundamental 

Gibbs equation 1.1.1-3 remains valid, but the equilibrium with the environment (ther- 
mostat) is disturbed. According to the Boltzman equation, the total entropy both of the 
system S and of the thermostat 9 is 

S + S' = kln W, (1) 

where W is the statistical weight of the system and the thermostat as a whole, i.e. the 
number of their microstates. From Equation 1 it follows that 

w = exp (7) s + S' 

According to Einstein (1910), we write the probability of a fluctuation of the system R 
as 

A S  + A S  
I C '  R N exp (3) 

with A S  and AS* to denote the entropy deviations of the system and of the thermostat, 
respectively, from their equilibrium values. 

As we presume fluctuations to be small, it permits us to keep only the second-order 
infinitesimal terms in the variational series expansion of A S  (see Equation 1.1.1-2) 

1 P " P  1 
A S  = - SU + - 6V - L S n ,  + -S2S + ... , 

T 2 T 2=1 T 

where 

(4) 

The thermostat being much larger than the system, the fluctuations in the latter in no 
case affect the thermostat intensive parameters and 

The use of the equalities SU' = -6U, 6V' = -SV, Sn: = -bn, ( z  = 1,. . . ,v) reduces the 
first-order terms on substituting Equations 4 and 6 into Equation 3 and we get 

62s 
0 - exp -. 

2k ( 7 )  

It is obvious that the greater the deviation of the system from its equilibrium state, the 
less is the probability of such fluctuations, given equilibrium is stable. From Equation 7, 
it means that 

S2S < 0 (8) 
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is in full accordance with Equation 1.1.2-16. Hence it follows that one can obtain the 
same results which were deduced in Subsection 1.1.2 on the basis of Equation 1.1.2-12; 
in particular, 

c, - > o  T 

(the thermal stability condition, Equation 1.1.2-39), 

x, > O  or (z)T<o 
(the mechanical stability condition, Equation 1.1.2-40), 

( gLP ’ O 

(the diffusional stability condition, Equation 1.1.2-47), 

(see 

(see 

( 2)T,p ’ O 

Equation 1.1.2-53), 

(E) T,P < O  

Equation 1.1.2-54). 

(9) 

Let X be the difference between any fluctuating thermodynamic parameter and its 
mean (equilibrium) value. Eg. X = T - (T), whence (X) = 0. The probability of X 
taking a value within [X, X + dX] is expressed by Equation 7, but the arbitrary second- 
order variation S’S has to be replaced by a second-order derivative of S with respect to 
X, which transforms Equation 7 into 

R(X)dX = Cexp ( -- -;’) dX, 

where 

The normalization condition 

7 R(X)dX = 1 
-00 

gives us 
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and, therefore, 

112 

R ( X ) d X  = (E) 2T exp (-$) d X ,  

which is the well-known Gaussian distribution. 
One can calculate the mean-square fluctuation value using the conventional method: 

1 ( x ~ )  = (E)  J X2exp (-$) dX = - 
112 - 

a 
--oo 

and rewrite Equation 17 as 

Let us calculate the fluctuation probabilities for some specific thermodynamic quantities 
(Landau and Lifshitz, 1964; Miinster, 1969; Anselm, 1973; Kluge and Neugebauer, 1976). 
Eg. for the isothermal volume fluctuation X = AV = V - ( V ) ,  dX = dV, since d ( V )  = 0. 
It follows from Equation 1.1.1-2 that 

P ( $)T,n, = - T 

Then 

The relationship obtained defines the probability that the system has a volume within 
[V, V + dv], where V differs from its equilibrium value ( V )  by AV. 

Equation 21 can be applied to any part of the system (a subsystem) if only this part 
contains a large enough number of molecules to provide the validity of the Gibbs funda- 
mental equation. In this case, the other part of the system relates to the thermostat. 

Formula 21 readily illustrates the mechanical stability condition (Equation 10): the 
system is in stable equilibrium if volume fluctuations are small and decrease substantially 
with increasing AV. This is realized when the exponent in Equation 21 is negative. As 
(AV)z ,  I C ,  T are always positive, then 

which is identical to the thermodynamic condition of mechanical stability (Equation 10). 
Combining Equations 17, 18, and 20, we can write 

( (AV)' )=-kT - . (:x,%, 



48 1 A. Stability and A uctuations 

Represent it as 

where N is the number of molecules in the system. 

1968), it follows that 
In the case of constancy of the volume which fluctuations occur in (Landau and Lifshitz, 

and 

T 

For an ideal gas 

(27) 
N 

P V  = nRT = -NAkT = N k T  
NA 

and 

V2 - -- N k T  (%) = -7 - N k T '  

Substituting Equation 28 into Equation 26 yields 

 AN)^) = N. 

Now we are able to write an expression for the mean-square fluctuations of the second 
component mole fraction x2 in a binary solution at T ,  P ,  n = const (see Equations 15 
and 18): 

( (Ax#)  = - k / ( E )  . 
ax; T,P,n 

From Equations 1.1.1-2 and 1.1.143, it follows that 

as aS - -  12 

8x2 T 
__- axz - n- = n(S2 - SI) = -(PI - ~ 2 ) .  

The second derivative of S, in view of Equation 1.1.2-50, is expressed as 

--- 32s n tap l  --- 2) - _ _ -  talc) - 
ax;- T 1 2  T,P' 

Finally, from Equation 30, using Equations 1.1.2-51,-52, we get 

kT = -  kT - kT 
((AXd2) = - n ( - )  a2G - :(%) 

:(w) . Ox; T,P dx2  T,P ax2 T,P 

(33) 
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The equation obtained should be followed by incqualities 11-13 (which are identical 
to the diffusional stability conditions from Subsection 1.1.2) to allow the solution stabil- 
ity condition (the decrease in the probability of composition fluctuations as the system 
deviates from equilibrium) to be true. 

The entropy being an extensive quantity, the probability of fluctuation of a given mag- 
nitude rises sharply when the system size diminishes. 

In a more general way, the problem of stability and fluctuations is expressed on the basis 
of the concepts of nonequilibrium thermodynamics (Glansdorff and Prigogine, 1971; Nico- 
lis and Prigogine, 1977; Prigogine, 1978). In accordance with this, the entropy differential 
in Equation 1.1.2-1 is expressed as the sum of two summands 

dS = d,S + d,S, (34) 

where d,S is the entropy flux caused by energy and matter exchange with the envi- 
ronment (des = dQ/T),  and d,S is the entropy production within the system due to 
irreversible processes such as diffusion, thermal conduction, chemical reactions, etc. 

From the second law of thermodynamics, we have 

d,S=O and d S = d , S > O  (35) 

for an isolated system. Letting dt be the time to produce the entropy d,S, we can obtain 
the entropy production per unit time: 

d, S P = - > O o .  
dt - 

When expanding the entropy expression into a Taylor series, keeping the second-order 
infinitesimal terms, and differentiating with respect to t ,  it can be proved (Glansdorff and 
Prigogine, 1971) that 

I d  
--(62s)o = P 2 0 
2 at (37) 

holds near equilibrium (the subscript ‘O’),  
While inequality 35 is the evolution criterion for systems near equilibrium, the reverse 

inequality, together with Equation 37, can be regarded as a generalized stability condition: 

(S2S)0 i 0, (38) 

(39) 

On the basis of Equations 7, 38, and 39, a statement is formulated for stable systems: 
the more the system deviation due to spontaneous fluctuations of any thermodynamic 
parameter is away of equilibrium, the less such deviation is probable (see Equation 7) 
and the fluctuations, that have caused this deviation, will decrease (resolve) with time 
(Figure 12). 
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a 
at -(62S)o > 0 

t 

Figure 1.12. Fluctuation disappearance with time in the solution stability region (Pri- 
gogine, 1978) 

1.5. Loss of stability and phase transitions (phase 
separation) 

1.5.1. Types of phase transition 
Under certain conditions the phase composition of a system may change as a result of 

loss of stability. Such a process of the system structure being reorganized is called phase 
transition, or, if the number of phases increases, phase separation. 

There are different kinds of phase transitions (Figures 1.13-1.15). As an example, 
let us consider the diagram state of a binary system with liquid-liquid phase separation 
(Figure 1.13). Along the line AI + A2 the system can be driven to the metastable region 
where the initial phase will be remaining for a certain induction period 7: the system is 
“waiting” for overcritical fluctuations which the initial state is instable to. During this 
period, the initial phase retains all its specific properties, namely, the thermodynamic 
potentials and its derivatives. 

There is another way, namely, B1 + Bz (through the critical point) for the configurative 
point, with no induction period: the system immediately finds itself to be in the region of 
absolute instability. The final state (stable equilibrium) is the same in both the cases, two 
phases with their concentrations 2 2 1  and x211 and different volumes (due to the difference 
in the initial concentrations) exist. 

In the former case, the transition is termed first-order phase transition (via the 
metastable state) whereas in the latter case it is called continuous transition. 

Here are more rigorous definitions: if the first partial derivatives of the thermodynamic 
potentials G and F with respect to their natural variables have breaks during transition, it 
is called a first-order phase transition. If the mentioned derivatives remain continuous 
but some higher ones have their breaks (in particular, become infinite), we speak of high- 
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1 2 1  X 2 s p l  5 2 s p l l 5 2 1 1  2 2  
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Figure 1.13. State diagram of a bi- 
nary system with liquid-liquid amor- 
phous separation: a presents the bin- 
odal (solid curve) and spinodal (dashed 
curve). The temperature dependences 
of the correlation length of the con- 
centration fluctuation & (at T > T,) 
and of the order parameter Ax2 (at 
T < T,) are described by power func- 
tions; b shows the average molar Gibbs 
potential at T = TI ( b e ,  s p  are points on 
the binodal and spinodal, respectively) 

Figure 1.14. State diagram of a magnetic: 
a presents the projection of the surface 
f ( H , M , T )  = 0 on the plane H = 0; b is 
the dependence of the Helmholtz potential 
F ( M ,  T )  - F ( 0 , T )  on the order parameter 
(magnetization) M in zero field ( H  = 0). 
The temperature dependences of the corre- 
lation length of the fluctuations of the order 
parameter (at T > T,) and of the order 
parameter A4 (at T < Tc) are described by 
power functions 

b 
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Tc 

T 

e 

Figure 1.15. the projection of the surface 
f ( P ,  e,  T )  = 0 on the plane P = 0. Temperature dependences of the correlation length 
of fluctuations of density sp (T > T,) and of an order parameter analogue Ae = pl - ps  
(2’ < T,) are described by power functions 

State diagram of a gas-liquid system: 

order phase transitions, or continuous transitions, see Figure 1.16 (Brout, 1965; 
Fisher, 1965, 1967; Stanley, 1971; Bruce and Cowley, 1981). 

1.5.2. Order parameter 
In order to describe such phenomena quantitatively, an additional system parameter 

varying with phase transitions should be introduced. As these transitions are usually 
accompanied by changes in symmetry (from the structural point of view), the sc- 
called order parameter Q is used to characterize these changes (Landau and Lifshitz, 
1964; Brout, 1965; Patashinski and Pokrovski, 1979). Eg. in case of a ferromagnetic in 
a zero field ( H  = 0) the spontaneous magnetization serves as the order parameter (see 
Figure 1.14) (Equation 1.1.1-56) 

M = - ( E )  , 
T,H+O 
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A first-order transition 
G or F 

A continuous transition 
G or F 

metastable 

Ptl 

Figure 1.16. Variations in the ther- 
modynamic potentials and their deriva- 
tives during phase transitions 

h, 
G 

k 

k 

where H is the magnetic field strength. 
There are several cases (liquid-liquid, Figure 1.13; liquid-gas, Figure 1.15) with, strictly 

speaking, no changes in symmetry. Here we can formally choose the difference between 
the component concentrations in the coexisting phases Ax2 = 2 2 1 1  - 221 or the density 
difference between the liquid and gas phases Ae = el - e, as order parameter (Brout, 
1965). Being equal to zero on one side of phase transition (see Figures 1.13-1.15322 = 0, 
M = 0, and A@ = 0 when T > T,) is a usual requirement to the order parameter. 

The dependences of G and F on the order parameter are characteristic of phase tran- 
sition of both kinds, and are often used to identify the type of transition. 
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In Figures 1.17 and 1.18 (Umanski and Skakov, 1978; Sonin, 1983), you can see a 

G 

a-phase 

Figure 1.17. Dependence of the Gibbs molar potential G on the order parameter Q during 
first-order phase transition (Umanski and Skakov, 1978) 

sketch of G = G(Q) for the hypothetical transition P-phase + a-phase of both kinds. In 
Figure 1.17, the Gibbs potential originates from its value for the initial phase p at any 
temperature. It is presumed that TI > Tz > . . . T6. 

Let us discuss the dependence G = G(Q) (Figure 1.17). At TI and Tz, the ,&phase is 
thermodynamically stable, i.e. it is stable with respect to order parameter fluctuations of 
any magnitude. At T3 = Ttl, the Gibbs potentials of both the phases are the same (cf. 
Figure 1.16a), but there is a certain potential barrier for the transition p -+ a, and the 
metastable state of P is very probable, to recover from which a sufEcient concentration of 
large enough fluctuation regions of the a-phase is necessary. 

Small fluctuations occur quite frequently (see section 1.4), but formation of new-phase 
particles is associated with an input of energy to form the interface: in case of small 
(undercritical) particles (a large enough surface area/volume ratio), this input is not 
compensated by energy decrease during the phase transition. Such is the nature of the 
potential barrier (cf. Figure 1.9a). So, the @-phase is stable to small fluctuations of the 
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G 

.. a .  

@-phase 

7’5 a-phase 

Q 

Figure 1.18. Dependence of the Gibbs molar potential G on the order parameter Q during 
continuous phase transition (Umanski and Skakov, 1978) 

order parameter. 
It is important that with first-order phase transitions the thermodynamic potentials of 

both the phases are defined on both the sides of transition (see Figure 1.16ad), with the 
potential of one phase having a lower value (the equilibrium state) and that of the other 
phase having a higher value (the metastable state). 

In the metastable region, the potentials G and F of the initial phase “invade the foreign 
territory” (see the dashed lines in Figure 1.16ad) and have no singularities at the transition 
(equilibrium) point itself. Their values on the “foreign field” correspond to the natural 
interpolation from their “own field”. 

During first-order phase transitions, the configurative point moves (with a certain rate, 
either following a certain time program or at once) to a new position where the parameter 
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T or P (see Figure 1.16ad) takes on a value differing from that of equilibrium (Tt1 or 
&I) .  The differences (Ttl - T )  or (T - Z'tl), (Pt1 - P )  or ( P  - Pti) define the degree of 
overcooling/overheating overstretching/overshrinking, respectively. 

In the case of conditionally-instantaneous shift of the configurative point to its new 
position, the thermodynamic potential takes on a value characteristic for the old phase 
and keeps it (more exactly, does not take on the equilibrium value) for a certain period 
called an induction period r.  

The duration of r depends, in particular, on how distant from Ti1 the configurative point 
is, i.e. on the degree of overheating (T- Ttl) or overcooling (Ttl- T). Problems associated 
with the induction period are discussed in the literature on phase transformation kinetics. 

The real delay in potential change causes a delay in the appearance of a new phase, 
called hysteresis, which is a most important criterion of first-order transitions. 

It should be noted that the system's response always lags behind the external effects 
or condition changes that are not necessarily related to phase transitions. These delays 
are defined with relaxation time. As a rule, the more gradually external conditions 
vary, the less is the relaxation time. However, some first-order phase transitions show 
no decrease in the delays mentioned while slowing up the external condition change. It 
is in such cases that hysteresis and hysteresis phenomena are spoken of. Therefore, the 
manifestation of hysteresis is characteristic of first-order transitions (Brout, 1965; White 
and Geballe, 1979). 

At Ts = T (Figure 1.17), there is no potential barrier and the @-phase is absolutely 
unstable. When T 5 T,, the so-called barrierless (not going through nuclei) transition 
occurs (cf. Figure 1.10). 

The presence of two minima of G (or F )  as functions of the order parameter is the main 
distinguishing feature of first-order phase transitions. 

Different details, of course, depend on a specific system. Currently, the question is 
discussed as to whether barrierless transition is possible during crystallization. 

In view of the factors determining the behaviour of enormous ensembles of molecules, 
namely, intermolecular interactions and thermal motion, one can expect first-order phase 
transitions to be universal in onecomponent systems. In such cases, the isotherm en- 
closing three states of aggregation, has to have the form as in Figure 1.19. Four points 
corresponding to the thermodynamic stability boundary r3PIdV = 0: A,  B,  C, D are 
marked on this isotherm. However, no critical point of the liquid-crystal transition has 
been discovered in spite of numerous attempts. 

Geometrical analysis of the state equation surfaces of liquid-vapour and crystal-liquid 
equilibria (Equation 1.2-33, Figures 1.20 and 1.21), analysis of experimental data and 
computer simulation results lead to the conclusion' of that there is no spinodal of the 
liquid -+ crystal phase transition while the spinodal of crystal + liquid transition does 
exist (Skripov, 1975; Skripov and Koverda, 1984). Consequently, the liquid crystallization 
occurs only through the formation of critical nuclei (through the metastable state) and 
no barrierless transition is possible. 

At the same time, Roytburd (1975) discusses the reality of the barrierless transition 
during martensite-type crystallization (see also: Umanski and Skakov, 1978). 

'This conclusion seems questionable for stretchable melts and polymeric solutions. Editor's note 
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Figure 1.19. An isotherm of a one-component system with four boundaries of thermody- 
namic stability (Skripov, 1975) 

In the case of the continuous transition ,B H a (Figure 1.18), the temperature of 
absolute instability and that of phase transition Ttcon are the same. The presence of only 
one minimum of G (or F )  as a function of the order parameter at any temperature near 
the transition point is a specific feature of continuous phase transitions. Therefore, the 
thermodynamic potentials of each phase are not defined on the other side (on entering 
the “foreign field”) in principle; therefore, there are no phase equilibria and metastable 
states. The appearance of system properties characteristic for the new phase takes place 
all over the bulk simultaneously and no special input of energy to form the interface is 
required. The continuous transition is prepared in the initial phase with T approaching 
T,,,, by the scale growth of correlation of fluctuations of thermodynamic quantities and 
the order parameter that show specific properties of the new phase. 

There are real singularities of G and F in the continuous transition point-their second 
derivatives with respect to the corresponding variables undergo a first-order break (a finite 
step) or a second order one (+ m), that makes any interpolation to the “foreign field” 
meaningless. 
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Figure 1.20. Surfam defined by Equation 1.2-34 to characterize the gas and liquid states 
of a onecomponent system in the coordinates P-V-T (Q). Surface defined by Equa- 
tion 1.2-33 for the crystal and liquid states (b). ACD is the binodal of liquid-vapour 
phase equilibria; BCC is the spinodal of liquid-vapour phase transition; E e  and F f  are 
fragments of the binodal of the crystal-liquid phase equilibria; K j  is the spinodal of the 
crystal-liquid phase transition; GAD is the straight line of three-phase (vapour-liquid- 
crystal) equilibrium at the triple point (Skripov and Koverda, 1984) 

1.5.3. Critical indices 

transition point as power functions 
It is interesting that the main thermodynamic functions can be approximated near the 

f ( E )  - E’ and f ( ~ )  N ( - E ) ” ,  (2) 

where 

(3) 
T - T, 

&E- 
T, ’ 
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\ I 
I K 

Figure 1.21. State diagram of a one-component system in the coordinates P-V: ACD 
is the binodal of liquid-vapour phase equilibria, Ee and Ff are portions of the binodal 
of crystal-liquid phase equilibria, GL and D M  are portions of the binodal of crystal- 
vapour phase equilibria (no corresponding surface defined by Equation 1.2-33 is shown 
in Figure 1.20), BCC is the spinodal of the liquid-vapour phase transition, K j  is the 
spinodal of the crystal-liquid phase transition, GAD is the straight line of threephase 
(vapour-liquid-crystal) equilibrium at the triple point (Kirilin et al., 1983; Skripov and 
Koverda, 1984) 

T, being the phase transition temperature or the critical temperature. The dimensionless 
parameter E characterizes the temperature distance of the system from the phase transi- 
tion or critical temperature. The indices X and A' are called critical indices and vary 
within 0.3. . .0.5 in most cases. 

More generally, 

f ( E )  = B0&X(1 + B E 2  + . . a ) ,  (4) 
Bo and B being constants, and x > 0. Therefore, 

The interest in critical indices is caused by their easiness of experimental determination 
from the plot lnf(E) ws In&. On the other hand, the modern theories of phase transitions 
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allow the determination of relationships among different critical indices that makes it 
possible to describe a system near its points of phase transitions more fully (White and 
Geballe, 1979). 

Table 1.2 comprises some critical indices of a number of functions for three systems. 
The behaviour of cv = f(T) on both sides from the phase transition point (with the 
critical indices a and a’) is shown in Figures 1.16c,h. The isothermal compressibility 
x, behaves similarly. While approaching the critical point, E -+ 0 (in the general case, 
while approaching the spinodal), ( ~ P / B V ) T  -+ 0 (see Figure 1.4). Therefore, from Equa- 
tion 1.1.2-41, x, -+ co, which is represented by the formulae in Table 1.2 (the critical 
indices y‘ and y correspond to the sides T < T, and T > T,, respectively). 

In the region T > T,, the order parameter is equal to zero only on the average, but its 
local value differs from zero owing to the fluctuations. The characteristic magnitude of 
such fluctuations (the correlation length [) obeys Equations 2-4 with the critical indices 
v and J as well (see Table 1.2). 

When approaching the critical points in a binary system (generally, approaching the 
spinodal), 8p2/8z2 + 0. From Equation 1.4-33, the mean square concentration fluctu- 
ation ( ( A Z ~ ) ) ~  -+ 00. In terms of the order parameter, it means & + co in accordance 
with & - E - U  and & - ( -E)+ ’ .  

Noticeable growth of fluctuations, while the configurative point approaches T,, affects 
many properties of the system. This set of phenomena is referred to as critical phe- 
nomena with critical opalescence (significant rise of scattered light (or other radiation) 
intensity) as their part. 

Critical opalescence will be discussed in detail later in this book (see subsections 2.3.5, 
2.4.2, and 3.3.1). Preliminarily it should be noted that the stability parameter (aP/BV)T 
or ( 8 p z / a ~ ) ~ , ~  enters into the denominator of the formula for the scattered light intensity 
I ,  which causes I -+ co in the critical point, where E -+ 0. 

I also obeys Equations 2-4 with a corresponding critical index (see Table 1.2). On 
the other hand, the stability parameter enters into the nominator of the formula for the 
diffusion coefficient D ,  and D -+ 0 when E -+ 0. This also leads to a number of interesting 
phenomena (see Subsections 2.3.3, 2.4.3, and 3.6.2.7). 

1.5.4. Static similarity (scaling) hypothesis 
In the theory of phase transitions, the so-called hypothesis of static similarity, or 

scaling hypothesis, has become very popular (Patashinski and Pokrovski, 1964, 1975; 
Brout, 1965; Fisher, 1965; Widom, 1965; Kadanoff, 1966; Stanley, 1971; de Gennes, 
1979; White and Geballe, 1979). This hypothesis is based on the fact that near the 
points of continuous phase transition the correlation length of thermodynamic quantity 
fluctuations gets so large, and gains such importance for the system properties, that the 
specific features of short-range intermolecular interactions no longer play their significant 
role. The scaling hypothesis has proved to be very fruitful because it emphasizes the 
common character (universality) of continuous phase transitions regardless of the features 
of specific systems. It enables one to extend some regularities of continuous transitions 
(critical phenomena) from the systems where they are well-known (eg. ferromagnetics) 
to other systems: the formulae to describe critical phenomena in different systems are 
mathematically identical and need replacing some symbols by others only with the aid of 
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Table 1.2. Some critical indices for t’hree systems 

E ( T  - Tc)/Tc < 0 l e > 0 

Magnetic intensity H = 0 

P = const 

E < O  I E > O  

xT denotes magnetizability for ferromagnetics and osmotic compressibility for binary liquids 
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a special glossary. 

ferred to those for a ferromagnetic by means of 
Eg. the thermodynamic equations for the one-component system liquid-gas are trans- 

V + M ,  ( - P ) + H .  (6) 

Equation 1.1.1-5 becomes 

and so on. Table 1.2 and comparison of Figures 1.13-15 are also significant in this respect. 
The scaling ideas have turned out to be very helpful not only with respect to the critical 

phenomena but also for a wide range of problems in the physical chemistry of polymers 
(de Gennes, 1979) (for details, see Chapter 4). 

The similarity hypothesis (with a ferromagnetic as an example) states that the Gibbs 
potential G is a generalized homogeneous function of E and H ,  i.e. there are two similarity 
parameters Q, and QH, for which 

G(X"'E; X a H H )  = XG(E, H )  (8) 

holds for any X value. As has been specially proved (Stanley, 1981), if Equation 8 holds 
good, then all the thermodynamic potentials are generalized homogeneous functions. 

There are certain relationships between the critical indices and the similarity parameters 
that are deduced from common thermodynamic or statistical postulates and from the 
homogeneity property of the thermodynamic potentials. Therefore, they are valid for any 
specific system. 

Thus, if experiment or a model theory allows us to determine the values of any two 
critical indices, then all the others can be found using these relationships, and the system 
will turn to be fully characterized. 

Here are some relationships given by the similarity hypothesis: 

(9) (y = a'. 1 y=y'; a + 2 P + y = 2 ;  

where d is the space dimensionality. One can judge how a theoretical model fits the real 
situation by comparison between the theoretical and experimental values of the critical 
indices. 

1.5.5. Critical index calculation by the van der Waals equation 

1971). It is reasonable to rewrite Equation 1.2-67, introducing new variables 
Let us apply the van der Waals equation 1.2-34 to calculate the critical indices (Stanley, 

P - P, 
p -  P - l =  - 

pc 
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and 

[(I + p )  + 3(1 + v)-'] [3(1 + v )  - I] = 8(1 + E ) .  (14) 

Multiplying both the sides by (1 + v)' and reducing the similar terms yield 

2 3 ,  (15) 
7 

2p 1 + -v + 4v2 + -v3 = -3w3 + 8€(1 + 2v + v'). 
( 2  

Consider the behaviour of the temperature dependence of isothermal compressibility 
xT (Equation 1.1.2-41) while the configurative point approaches T, from the side of lower 
temperatures T + T,- along the critical isochore (v = 0). 

By Equations 1.1.2-41, 11, and 12, 

with the right-hand derivative to be determined using Equation 15 at v = 0. Then 

i.e. xT N ( - - ~ ) - 7 ' ,  where y' = 1 (for E < 0,  see Table 1.2). 
What is the value of /3 (Table 1.2) (Rumer and Ryvkin, 1980)? 
Let us restrict ourselves by following the approximation of Equation 15: 

(18) 
3 
2 

p = 4~ - 6.s~ - -v3, 

which is valid for both the gas (9)  and liquid ( 1 )  phases when T < T,: 

(19) 
3 3  p = 4~ - 6&vg - -vg, 2 

3 3  p = 4~ - 6 ~ ~ 1 -  -VI. 
2 

The equality between the A B 0  and OCD areas (Equation 1.2-43 and Figure 1.4) can 
be written as 

7 P'QV = P ( c  - G ) ,  

VI 7 

(21) 
r/; 

where P' is the current pressure on the isotherm, and P is the constant pressure of liquid 
and gas in equilibrium (eg. PI at  T = TI or P2 at 7' = Tz in Figure 1.4). This equation is 
satisfied for the reduced variables as well: 

p' dv = p(vg  - Vi). (22) 
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Now we should substitute p' from Equation 18 into Equation 22, integrate, and reduce 
both the sides by (vg - v,). All this yields 

Combination of Equations 24 and 25 yields 

(vg + vt)(vg - = 0 

and 

vg = -VI. 

The latter equation is useful after subtracting Equation 19 from Equation 20: 

vg = -211 N a&. 

PI - pg - vg - VI = 4&, 

Thus, 

].e. 

1 p =  5' 
The next point is the temperature dependence of cv (Equation 1.1.2-20) on the critical 

Letting T and V be independent variables (see Equation 1.1.1-27), we can write 
isochore v = 0 near the critical point. 

Using Equations 1.1.1-27, 28 (cf. Equation 1.1.1 5) 

( $ ) T =  (E)v 
and definition 1.1.2--20, we get 

(32) 

(33 )  
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In order to calculate the derivative (dP/dT)p,  P has to be deduced from the van der Wa- 
als equation 1.2-34 

RT Q p = - - -  
V - b  V 2  

and 
d S =  z d T +  (-) R dV. 

T V - b  

(34) 

(35 )  

The two expressions obtained are substituted into Equation 1.1.1-1 

(36) 
a 

VZ 
dU = T d S  - P d V  = cvdT + -dV 

and 
u = / c V d T - - = I / i d - r  a a 

V V '  

From the first law dU = dQ - PdV and Equation 1.1.2-20, it follows that 

e.=(%) V . 

In the case of T > T,, Equations 37 and 38 give 

CV = CV,id. 

In the twephase region (T < T,), in view of Equation 37, 

(1 - x), 
r / ; '  
P 

where x is the volume fraction of the gas phase. For the total volume, 

v, =x% + (1 - x ) G  

and 
G-V, 
6 - q '  

z v0-q 
1-x v,-vo' 

x=- 

whence 

-- -- 

If we take as E, then (cf. Equations 12 and 27) 

(37) 

(44) 

(45) 

and 
1 

x c  = 2' 
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Substituting x, = 1/2 into Equation 40, we have 

For heat capacity, in view of Equation 13, we get 

Taking Equation 28 into consideration (as well as V,  and T, from Equations 1.243,-64), 
we finally obtain 

Thus, the heat capacity cy  undergoes a finite step at the critical region 

and the corresponding critical index is 

ff’ = 0 (50) 

(see Table 1.2). 

set of critical indices (7’ = 1, /3 = 1/2, and a’ = 0) satisfies Equation 9. 

1.5.6. Magnetic behaviour near the critical point 

into a homogeneous magnetic field of strength H (Rumer and Ryvkin, 1977). 

potential energy of a molecule is 

We conclude that if a one-component substance obeys the van der Waals equation, its 

Let us consider a gas of molecules with a constant magnetic moment p, which is placed 

The first approximation implies that there is no interaction between the molecules. The 

U ( 0 )  = -pa, (51) 

where 0 is the angle between the directions of the magnetic moment I; and of the field a. 
Assuming the space distribution of the molecules to be continuous (the classic system), 
we apply the Boltzman formula for the relative fraction of molecules with a given energy 

with dL! = sin 8 d8 dcp to denote the element of solid angle. Its integration, with respect 
to c p ,  gives us the 8 distribution 
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The denominator can be calculated analytically: 

p H cos 0 2sinh (g) 
Z ( T )  = j e x p  (7) s h e d 8  = 

0 

The mean projection of the magnetic moment onto the field direction is 

n 

Introducing the Langevin function L ( z )  = cothx - 1/x, we get the magnetization 

- 
M = N ~ C O S ~  = N p L  (g) = MOL (g) 7 

(54) 

( 5 5 )  

Ma = N p  being the maximal value of magnetization that is reached at H -+ 00 or T + 0. 
The ratio of the magnetic energy to the mean heat motion energy x = p H / k T  has the 

meaning of the orientation (reorder) parameter. 
The magnetization of ferromagnetics reaches its saturation in relatively weak fields, 

and there is spontaneous magnetization even without external field. This indicates that 
the orientation of magnetic moments is basically caused by the internal orienting field 
(related to the interactions among magnetic moments) rather than by the external field. 

Under the Weiss hypothesis, the internal field is proportional to the existing magneti- 
zation 

Hint = YM, (57) 

y being the Weiss dimensionless factor. Hypothesis 57 provides that the internal (molec- 
ular) field appears only in a previously magnetized medium with a certain preferable 
direction for magnetic momenta. 

In view of Equation 57, the external field H in Equation 56 has to be replaced by an 
effective one 

Hef = H + H,,t = H + 7 M .  (58) 

Then 

where 

H + T M  x=v- kT ' 
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Resolving Equation 60 with respect to M and dividing both the sides by Mo, we get 
H 

X - -  
M kT 
Mo ?MOP YMO’ 
_ -  - 

which, together with Equation 59, forms an equation set with a clear graphic interpreta- 
tion (Figure 1.22). 

Figure 1.22. Graphical solution of the set of equations 1.5-59,-61. The Langevin curve 
y = L ( x )  and line 1: y = x k T / y M o p  - H/?Mo (61); line 2: y = x k T / y M o p ,  and line 3: 
y = x / 3  

One can see that in the external field (H # 0), the Langevin curve (Equation 59) and 
straight line 1 (Equation 61) always intersect, and a certain magnetization M # 0 exists 
at any temperature. 

With no field, H = 0, the straight line 2 

goes through the origin of coordinates and, for the intersection point C to exist, it is 
necessary that the slope of line 2 should be less than that of the tangent line to the 
Langevin curve at x = 0. 

At small 5 d u e s ,  the Langevin function is represented as 
x 2 3  L ( x ) = - - - + * * .  , 
3 45 

whence L’(0) = 1/3. Hence, spontaneous magnetization is possible if only 

bT 1 
yM0p ‘ 3’ 



1.5.7. Magnetic on Ising’s lattice, Bragg- Williams’ approximation 69 

from which the existence of 
?MOP 
3k 

T, - 

follows. Any substance behaves as a ferromagnetic below this point (denoted by the term 
Curie temperature) and as a paramagnetic above it (see Figure 1.14). 

1.5.7. Problem of the magnetic on the Ising lattice within the Bragg-Williams 

In order to determine the critical parameters of a magnetic, the functional dependence 
of any thermodynamic potential should be deduced. Let us take advantage of the Ising 
lattice model which has turned out to be universal for many systems (see Figure 1.23). 
The Euclidean dimensionality of the lattice can be any-from 1 to 00. Its sites are assigned 

approximat ion 

c 

b d 

Figure 1.23. Ising’s lattice for modelling of different systems. The system parameter can 
take one of two possible values at every site: the particle spin is directed up or down 
in a magnetic ( a ) ,  there is a particle or there is no particle in a liquid-vapour system 
( b ) ,  a particle of component 1 or 2 is present in a binary system (c), site-to-site walk of 
connected particles in the model of a macromolecule (d) 

with one of two alternative properties. 
The Bragg-Williams approximation is often used together with the Ising lattice (An- 

selm, 1973; Rumer and Ryvkin, 1980). Let, some particles with two possible opposite 
spins s = *1/2 and the magnetic moment p be placed at the lattice sites (Figure 1.23a), 
the coordination number being equal to v. Let N+ and N- denote the number of particles 
with the magnetic moment along and opposite the field: N+ + N- = N .  We introduce a 
long-range order parameter Q according to 

so thal 
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These relationships hold true in case of one spin being independent of its neighbours 
(the absence of short-range spin correlations). In fact, if a site contains a particle with 
a spin with a given direction, it will be more probable for any of its neighbours to have 
a spin with the same direction. This provides a lower interaction energy. The situation 
with an antiferromagnetic is the converse of the above. 

In this case, correlation, or near  order, is spoken of. The Bragg-Williams approx- 
imation allows for long range only, that is why Q in Equation 65 is called a long-range 
parameter. 

Further, only the nearest neighbouring particles are assumed to interact. Let --E be 
the interaction energy for the same spin-directed neighbouring particles, and E be that 
for spin-antidirected ones with E being positive. Thus, the orientation part of the internal 
energy, including the energy of moments p in the rnagietic field, is expressed as 

U = (N+- - N++ - Ne-)€ - (N+ - N - ) / i H ,  (67) 

N++, N-- ,  N+- being the numbers of neighbouring pairs with spins directed along the 
field, opposite it, and to different sides, respectively. 

To calculate N++, we have to exhaust all N+ particles bearing in mind that the average 
number of the samedirected moments is vN+/N, ignoring correlation. Every pair being 
allowed for twice, the result must be divided by 2. Calculation of N-- and N+- is similar. 

In view of Equation 66, 

and, on substituting Equation 60 into Equation 67, 

(69) 
U N E  

2 
U ( Q )  = --Q2 - N p H Q .  

The Boltzmann formula gives us the entropy for a system of N particles, the N+ and 
N- of which are indistinguishable from each other: 

N !  
N+! N-!  

S=kln-  

and, with due account of the Stirling formula In N !  N N In N - N ,  

S =  k(N1nN-N+lnN+ -N-lnN-). (71) 
Expressing N+ and N- in terms of Q from Equation 66, we find 

and the Helmholtz potential 

F = U - T S  = --Q2 NVE - N p H Q  + - kTN [(l + Q )  In 9 + (1 - Q) in 1 1  1-Q . (73) 
2 2 

In equilibrium 

( % ) = = O  and - N  (74) 
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This equation can be written as (Lyusternik et al., 1963; Bronstein and Semendyaev, 
1979) 

p H  + VEQ 
k7‘ 

arctanh Q = 

or 

Q = tanh = tanhz. (75) 

As ‘tanh’ behaves like the Langevin function, Equations 75 and 59 are equivalent. 
Comparison of Equations 59, 60, and 75 allows us to express the Weiss phenomenological 

factor in terms of molecular parameters: 

The equation set 75 and 

Q = -  kT p H  
x - -  

V E  V E  
(77) 

should be solved numerically or graphically (Figure 1.22) like the version with the Lange- 
vin function. 

In contrast to L,  ‘tanh’ has a unit initial slope, since, at small argument values, 

(78) 
1 
3 

t a n h x e x - - x 3 + . . .  . 

Hence, thc critical temperature T, is determined using the equality between the tangent 
line (Equation 78) at x = 0 and the slope (Equation 77), ;.e. 

(79) 

In the case of T -+ T, - 0, the order parameter Q = M/Mo is small in comparison with 
unity that enables us to expand tanhx (Equation 78) and to get an expression for the 
order parameter (Equation 75) without field ( H  = 0) (see also Equation 79): 

7; 1 T, 
Q = .Q - ( T ~ )  t 

or 

whence (1: GZ 7’) 
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There is another form for Equation 75 if we use the formula for tanh(z + y) (Bronstein 
and Semendyaev, 1979) 

tanhz+tanhy 
td(z+y)  = 1 + (tanhz)(tanhy)' 

(::> 1 - Q tanh(TcQ/T)' 
Q - tanh(ZQ/T) tanh - = 

The arguments of all the tanh's are small near the critical point ( H  + 0, A4 + 0, 
T + T,), and the approximation (Equation 78) can be accepted. Having two polynomials 
in Equation 84 divided by each other, and the terms with Q3 kept, we obtain 

h z t a n h  - = Q  1--  +Q - + - - 1  +O(Q5). (:;) ( 3[z3 Tc T 1 
Differentiating both the sides with respect to h at T M T, yields 

and we are able to substitute them into the expression for magnetizability (by definition) 

3 -1 
- !!!!!! [(1- ?k) + Q 2  (:) ] 

kT XT,H+O - 

a t T + T c + O  Q=Oand  

and y = 1. 
With T + T, - 0 Equation 82 can be accepted for Q and, in view of T, M T ,  

MOP MOP -1 xT,H+o = -(€ - 3s)-' = --€ k T  2kT 

(89) 

and y' = 1 as well. 

( E  < 0) is twice as high as that in the paramagnetic one given I E ~  is the same. 
One can see that y = 7' = 1, but the magnetizability in the ferromagnetic region 

Without the field ( H  = 0), the expression for internal energy (Equation 69) reduces to 

Q2. 
U N E  NkT,  

2 2 
U ( Q )  = --Q2 = -- 



1.5.7. Magnetic on Ising’s lattice, Bragg-Williams’ approximation 73 

Hence, 

It follows from Equation 93 that, when T 2 T, (where Q = 0 ) ,  

cH+O = 0, 

and when T < T, (see Equation 82), 

(94) 

(95) 
3 
2 

C H + ~  = - k N .  

Comparison of Equations 94 and 95 shows the heat capacity C H + O  to undergo a sudden 
change at the critical point T = Y’, (see Figure 1.24, cf. Figure 1.16h) 

Figure 1.24. Temperature dependence of the heat capacity of a magnetic in the Weiss- 
Rragg-Williams approximation 

and a = a‘ = 0. Therefore, this phase transition at T = T, is continuous. 

Q = 0, since, for small Q, Equation 72 implies that 
Such a character of this phase transition also follows from the continuity of entropy at 

S ( Q )  = - k N ( Q 2  - ln2) 
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1.5.8. Mean field approximation 
We conclude that the critical indices of a one-component substance, satisfying the 

van der Waals equation and those of a magnetic within the Weiss-Bragg-Williams ap- 
proximation are identical. This is associated with the similarity in the premises, the main 
of which consists in the replacement of the mutual interactions between all the particles by 
that one of a given particle with the mean (molecular, self-consistent ) field generated 
by the other particles, the latter being assumed not to interact. 

Indeed, while solving the problem of a magnetic, we substituted the corrected (self- 
consistent) field (Equation 59) into Equation 56 for non-interacting particles. When we 
were deducing the van der Waals equation heuristically (section 1.2), we recalculated the 
values (pressure and volume) “corrected” for the overall interactions to and x d  and 
substituted them into the equation for the ideal gas 

(97) 

The self-consistency of the field resides in the fact that the field caused by such %on- 
interacting” particles matches the mean field of the interacting ones. The mean field 
approximation is equivalent to the action range being infinite for every particle in the 
system (Stanley, 1971; Wilson, 1979). Indeed, the rigorous solution of the problem for 
the one-component substance “liquid-gas” using statistical methods for the model of in- 
teracting hard spheres with the potential 

u = ure, + Uatt, 

where the repulsion potential U,, + M when r = ro (TO is the sphere radius) and the 
attraction one U,, = -eonst - -1/N when T > ro (i.e. with an infinite range of action) 
leads to the van der Waals equation (Stanley, 1971). 

1.6. Landau’s phenomenological theory 
1.6.1. State equations. Phase transitions 

Landau (1935, 1937ab; Landau and Lifshitz, 1964) postulated that any thermodynamic 
potential per unit volume can be expanded into a series with respect to the order param- 
eter Q in the vicinity of the critical point (Tc): 

where a,  b, c are functions of pressure and temperature. 
In most cases of structural phase transitions, there exists a more symmetrical (high- 

temperature) phase when T > T,. The appearance of the order parameter Q when T < T, 
is associated with the appearance of a less symmetrical phase. The high-temperature 
phase is often identified with the disordered one, and the low-temperature phase with the 
ordered one. 

Let Q be a scalar quantity. More generally, it is a tensor (a for liquid crystals). 
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The conditions of phase stability with respect to  the order parameter are 

and 

- a2G > 0 aQZ ( 3 )  

(the former condition causes the absence of the linear term in Equation 1). 
First, let us discuss a simpler case when G is an even function of Q with a minimum 

at T = T, (see Figure 1.14), which is provided by the odd-power coefficients being equal 
to zero ( c  = 0,. . . ). Condition 3 then reduces to 

a + 3bQ2 > 0. (4) 

With T > T,, Q = 0;  therefore 

a > 0. ( 5 )  

Assuming b > 0, for a non-zero Q to appear when T < T, it is necessary that a < 0. 
It follows that at T = T, a = 0 and the temperature dependence of a is linear 

a = cr(T - T,) 

Thus, 

(7) 
G(P,T ,&)  = C o ( P , T ) + ~ ( T - T c ) Q 2 + ~ Q 4 .  b 

Further, we neglect the temperature dependence of b, as it is much weaker than that 
of Q, and, what is more, b is multiplied by Q to the 4th power. Condition 2 gives us the 
equilibrium value Qo: 

and the following critical index value emerges: 

(9) 
1 
2 

p =  -. 

Substitution of Equation 3 into Equation 8 yields 

a 2  .={ GO 26 
Go - -(Tc - T ) 2  when T < T,, 

when T > T,, 

and the heat capacity can also be deduced 
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Hence, the heat capacity at T = T, undergoes an abrupt change Acp = cp - ~p = 

Let us compute the magnetizability xT. As G ‘v F for condensed systems (Prigogine 
Ta2/b and the critical indices are a = a’ = 0. 

and Defay, 1954), on the basis of Equations 1.1.1-28 and 1.5-6 we can write 

a F  
= H .  

From xT = (aM/aH)T ,H+o  we extract xi’ = d 2 F / d M 2 ,  or, more generally, 

a2F d2G x,’ = aQ2 = aQ2‘ 
The second derivative of G with respect to Q should be taken using Equation 7 and 

the Q value from Equation 8. All this yields 

1 
X T  = 2 4  T, - T )  

for T < T,. 
At Q = 0 and when T > T,, 

1 
a(TC - T)’  x, = 

i.e. y = y’ = 1 and the factor before ( - ~ ) r ‘  in the ferromagnetic area is twice as large as 
that in the paramagnetic area provided that a magnetic is involved. 

The agreement between the critical indices in both Landau’s theory and the mean field 
approximation attests to the equivalence of the two approaches. 

We continue analyzing Equation 1 with the cubic term (c # 0) (Izyumov and Syromyut- 
nikov, 1984) 

b 
G(P, T ,  Q) = Go(P, T )  + :Q2 + iQ3 + 4Q4. (16) 

Condition 2 leads to the state equation 

3 
Qo ( a  + ~ C Q O  + bQi) = 0 

which has a zero solution (Q0 = 0) and two non-zero ones 

Qoi=- ,*/($)  3c 2 a  - -  

b ’  

The roots of Equation 18 are real numbers if the discriminant is positive, i.e. 

9 2  
a 5 -. 

16b 
The dependences AG = G - Go plotted against the order parameter Q are shown in 

Figure 1.25. 
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AG = 
G - Go 

3 c  3 c  c 
4 b  b 2b 

_--  _ _ _  -- 0 

Q 
Figure 1.25. Increment of the thermodynamic potential AG = G - Go as a function of 
the order parameter (Equation 1.6-16) 

For definiteness, assume b > 0, c < 0. The values Qo- and Qo+ correspond to the AG 
minimum and maximum, respectively. 

When a > 9c2/16b and T > T** (Figure 1.25), there are no real roots of Equation 18, 
AG has a minimum at &o = 0, i.e. it is the disordered (high-temperature) phase that 
is the only stable one. At T = Ttl, the system possesses two similar minima AG = 0 
which implies a first order transition. The temperature Tti and the corresponding order 
parameter Qtl can be found from Equation 17 and the condition of the thermodynamic 
potential (Equation 16) being equal in both phases, i.e. AG = G - Go = 0: 

Subtracted from each other, they give 

2a 
Q t i  = -- 

which can be substituted into Equation 21: 

2a 1 
c2 6 ‘  
_ - -  - 
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Equations 22 and 23 yield 
C 

Qtl --. 
b (24) 

Assume the linear dependence for a of the Equation 6 type 

a = a(T - T') (25) 

which, in view of Equation 23, leads to 

When Ttl < T < T" (see Figure 1.25)' AG has two minima, namely, a deeper one at 
&a = 0 (the disordered phase) and a more shallow one at Qo # 0 (the ordered phase). It 
follows that the ordered phase may be in the metastable state. The boundary value of a 
(Equation 19) enables us to calculate T**: 

9 2  
16ba 

T** = T' + - 

and, together with Equation 18, leads to 

3c 
a 4b' 

Q** = _- 

(27) 

At T = T* a = 0 and Equation 20 has two roots: &a = 0 (an inflection point of AG) 
and Q: = -3c/2b (a minimum of AG), see Figure 1.25. 

Within T' < T < Til, the minimum of AG, corresponding to Qo = 0, is more shallow 
than when Qo # 0, i.e. the disordered (symmetrical) phase is in the metastable state and 
the ordered (asymmetric) one is in the stable state. When T 5 T*,  the former phase is 
absolutely instable. 

Phase transition hysteresis takes place within T' < T < T" (see Figures 1.25 and 26), 
this range depends on the G expansion coefficients (Equation 27) 

In view of Equations 18,29, and 25, the temperature dependence of Qo can be expressed 
as 

or (with due account of Equations 29 and 26), 

Qo=-E{l+[i- 4b 9(Ttl - T') 

Thus, the presence of the cubic term in the G expansion accounts for the presence of a 
first-order phase transition in the system. 
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Qo 

Figure 1.26. Temperature dependence of the order parameter (Equation 1.6-30) for a 
system with the potential G (Equation 1.6-16) 

Q 1 T TC 

U 

Q 

1 

T 
C 

Figure 1.27. Temperature dependence of the order parameter for continuous ( a ) ,  first- 
order continuous-like ( b ) ,  and first-order phase transitions (c) 

At small c values (with the cubic term of the G expansion), the temperature range of 
hysteresis is narrow, and the order parameter value Qtl is small, in accordance with Equa- 
tions 29 and 24. Such transitions are referred to as first-order continuous-like transitions 
(Figure 1.27). 

Let us consider a variant of the G expansion (Equation 1) with even powers of Q up to 
Q6 (Landau, 1937a; Strukov and Levanyuk, 1983) 

For definiteness, assume cy > 0, d > 0, and b < 0. 
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Equation 2 gives 

QO [a(T - T') + bQ: + dQi] = 0 

and, in the low temperature (asymmetric) phase, 

(33) 

(34) 

2d b2 

All the five roots of Equation 33 are real in a certain temperature range (Figure 1.28). 
This range is bounded above by the temperature T" that is defined using the condition 

AG 

-&ti Qo &ti 

Q 
Figure 1.28. Dependence of the thermodynamic potential increment AG = G - Go on 
the order parameter (Equation 1.6-32) 

of the radicand in Equation 34 being equal to zero: 

If the system is in the symmetrical phase, the dependence G(Q),  when T > T**, 
has the only minimum at Qo = 0. At T = T'*, there appear points of inflection on the 
dependence AG = f(Q), and on further cooling (T < T**), extrema appear (Figure 1.28). 
The AG minima at Q03 and Q o ~  correspond to the metastable asymmetric phase. The 
system is capable to keep its initial (more symmetrical) phase until the minimum at 
Qo = 0 disappears (this will happen when T = T*).  Then, the symmetrical phase will 
prove to be absolutely unstable, and the system will abruptly change to a state with 
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G 
Qo 

I I I 

------- 

Figure 1.29. Temperature dependence of the order parameter Qo (the positive branch of 
Equation 1.6-34) for systems with the potential G (Equation 1.6-32) 

Qi(T*) = - b / d  (Figure 1.29). 
the its asymmetric phase up to T"', at which QE = -b/2d. 

teresis of first-order phase transition (Figures 1.28 and 29). 

1.6.2. Tricritical point 
In a general way, the coefficients of the Landau equation are functions of pressure. 

When pressure is varying, b may decrease in magnitude, and the temperature hysteresis 
diminishes according to Equation 35 and disappears at b = 0. 

On the state diagram P us T, the line corresponding to a = 0 may intersect the line 
b = 0. The point of intersection defined by 

On the other hand, on heating the system can remain in 

The difference T'" - T* (Equation 35) defines the maximum possible temperature hys- 

a(P, T )  = 0, 
b(P, T) = 0, 

is a special one, the so-called tricritical point (Figure 1.30) (Landau, 1935; Griffiths, 
1970). On the line a = 0 when 6 < 0 a first-order phase transition takes place (the last 
discussed version of the Landau equation) and approaches the continuous transition as 
pressure increases, reaching it when a = 0 and b > 0. 

Consequently, the lines of first-order and continuous phase transitions abut on with 
each other at the tricritical point (P,,, T,,), which, therefore, defines it. 

The tricritical point and its vicinity have their own peculiarities in comparison with 
the common-type critical point. If the configurative point approaches the tricritical point 
along the line b = 0, Equation 33 gives 

a ( T - T * ) + d Q i = O  (37) 
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p ptc 

a = O  

b > O  \ 
t c  

Figure 1.30. State diagram of systems with G from Equation 1.6-32, d > 0. Line I of 
first-order transition with a = 0, b < 0 turns to line II of continuous transition with 
a = 0, b > 0 at  the tricritical point ( t c )  

and 

&o = f [-cr(T - T*)/4'I4, 

i.e. pi = 1/11. 
Substituting Equation 38 into Equation 32 allows us to obtain 

d2G a3I2T 
dT2 

c p  = -T ( - ) p  = { COP + -(T - T*)-'I2 when T < T*, 
COP when T > T', 

(39) 

and a{ = 112. 
Thus, the critical indices in the tricritical region do significantly differ from those in 

the common critical one. 
Using a ferroelectric as an example, let us discuss some properties of the tricritical 

point (in particular, the etymology of the term) (Izyumov and Syromyatnikov, 1984). 
Figures 1.31 and 1.32 show that the first-order phase transition is accompanied by 
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Figure 1.31. Isotherms: electric field ( E )  against ferroelec- 
tric polarization Ps for T = T,, T2 < T < T, (Strukov and 
Levanyuk, 1983) 

- 
-P, 

-E  

Figure 1.32. State diagram of a ferroelectric in the coordi- 
nates E-Ps-T under constant pressure (Strukov and Lev- 
anyuk, 1983) 

+” 

T 

-E 

the spontaneous reversing of the polarization sign Ps in the absence of the electric field 
( E  = 0) and when T < T,. As temperature increases, the step of Ps decreases and 
at T = T, the transition becomes continuous. Figure 1.32 illustrates the ferroelectric 
behaviour under constant pressure P = const .  T, varies with P ,  and this dependence is 
shown in Figure 1.33. 

Figure 1.33. State diagram of a ferroelectric in the co- 
ordinates P-E-T with a line of continuous phase tran- 
sitions (Strukov and Levanyuk, 1983) 

- E  

Provided a first-order phase transition occurs at a certain temperature Ttl in the absence 
of the field in a ferroelectric (see Figure 1.34), then setting up the field (say, E2) causes 
the transition temperature Tt,,z to rise and the order parameter change Ps to decrease, so 
that at a certain field intensity E3 = E,, the phase transition turns continuous with the 
corresponding T, (Figure 1.34). Figure 1.35 comprises the lines of continuous transitions 
for two field directions (T,, + E,) and (Tc, - E,) together with those in the absence of 
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/ G I  

- E  

-% 

T = T, 
E3 = E, 

T 
E3 = -Ec 
T = T, 

Ptc 

Figure 1.34. Temperature dependence of spontaneous 
polarization in the absence of the field (El = 0) and of 
polarization in the electric field E2 < E3 = E, (Strukov 
and Levanyuk, 1983) 

Figure 1.35. Phase dia- 
with gram of a ferroelectric 

the tricritical point Ptc, Ttc 
as the point of intersection 
of three lines of continu- 
ous phase transition (Tc, Pc), 
(Tc, + Ec), and (Tc, - 
E,). First-order phase tran- 
sitions proceed in the dashed 
area (Strukov and Levanyuk, 
1983) 

the field (Tc, Pc) (Figure 1.33). 
These three lines of continuous transitions intersect at a point which Griffiths (1970) 

has called the tricritical point. The dashed area in Figure 1.35 corresponds to first-order 
transitions, i.e. they abut on with continuous transitions at the tricritical point. 

Mixtures reveal their interesting features in connection with the tricritical point (Lan- 
dau, 1935, 1937a). 

It was shown above that a system with its potential like 

G(P, T,  Q ,  x )  = GO( P, T,  x )  + AQ2 + BQ4 (40) 

has a tricritical point on the state diagram, but in case of mixtures, the coefficients A and 
B depend not only on P and T but on the mixture composition x as well. 

Owing to the homogeneity of G ,  we can write for a two-component mixture 

G = nzf(ni/nz). (41) 

Then, the chemical potentials are 

where x = nl/nz. Given that 2 and xo are the concentrations and G and Go are the 
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potentials of the two coexisting phases, the equilibrium conditions have the form 

aG0 aG 
azo a x i  -- - - (43) 

with the potential being equal to Go in a more symmetrical phase (where Q = 0) and 
taking the form 40 in a less symmetrical one. 

The tricritical point must satisfy the condition z = 20. 
Let us consider the vicinity of the tricritical point with z x zo. Substituting G from 

Equation 40 into Equation 43 and restricting ourselves to the terms with their powers not 
larger than 2, we have 

aGo aG0 aA 2 -- - - + - Q ,  azo az az 
Expand aGo/ax by its Taylor series expansion (two terms only) 

It follows from Equations 45 and 46 that 

aA 
(Z - Q) = -Qz. d2Go 

ax; ax _- 

Assuming 

13Go dGo -x- ax azo 
in Equation 44 with a similar accuracy, we get 

and, with due account of Equation 40, 

The three-term Taylor series expansion for Go(z) will be 

and, on substituting into Equation 50, we obtain 

( x  -20)’ @Go .- ax; . A Q 2 + B Q 4 = -  

(45) 

(47) 
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Equations 47 and 52 yield 

X - X O  aA 
2 a x  AQ2 + BQ4 = -. -Q2 

or 

(53) 

We now derive the equilibrium value of the order parameter from Equation 40 with due 
account of Equation 2 

si=-- A 
2B’ 

and another form of Equation 54 emerges: 

dA 
A = (X - XO)-. ax 

(55) 

On substituting QX from Equation 55 and (x - 20) from Equation 56 into Equation 47, 
the following result emerges: 

If a two-component solution is stable in the vicinity of its tricritical point (Equation 1.3- 
53), then 

and 

B > O  (59) 
(not equal to zero) at the tricritical point. 

Neglecting the Q4 term and in view of Equation 55, we transform Equation 40 into 

and obtain the heat capacity 

While analyzing the Landau equation of the form (1) or (40), its coefficients are pre- 
sumed to have no analytical singularities; therefore, the heat capacity has a finite value 
at the tricritical point (according to Equation 61) rather than diverges as for the common 
critical point. 
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Ttc 

T 

I 

I I  

2 3 

X 

Figure 1.36. State diagram of a mixture with the tricritical point 0: T and x denote the 
temperature and concentration of component 1, respectively (Landau, 1937a) 

According to Equation 56, 

in the vicinity of the tricritical point, i.e. the line of the first-order phase transitions 
of a more symmetrical phase satisfies the same equation that the line of its continuous 
transitions, and the state diagram can be represented in Figure 1.36, where 0 denotes 
the tricritical point. 

The line 1-0 corresponds to the continuous transitions between the more symmet- 
rical (I) and the less symmetrical (11) phases, and line 3-0-2 characterizes first-order 
transitions and hounds the phases 1-11 separation area. 

The mixture 3He +4 He has been found to have its state diagram like that shown in 
Figure 1.36 with Ttc = 0.87K and ztc = 0.67 (the mole fractions of 3He) (Alvesalo et 
al., 1969; Griffiths, 1970). In particular, the characteristic kink on the coexisting curve 
(Figure 1.37) has been confirmed. However, some disparities do exist, namely, the tangent 
line to the continuous phase transition curve does not coincide with that of first-order ones 
at the tricritical point. Landau’s theory predicts an abrupt change for the heat capacity 
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... x 

I 
xtc 

X 

Figure 1.37. State diagram (a pattern) of the mixture 3He+ 4He near its tricritical point: 
D is the curve of two liquid phase coexistence, X is the line of continuous phase transitions 
(Griffiths, 1970) [Reprinted with permission from: R.B.Griffiths. Phys. RRv. Lett. 24 (1970) 713-717. 
Copyright @ 1970 by the American Physical Society] 

of the mixture cp  (as a function of T )  at the tricritical point 2 = xte (Equation 61), but 
experiment has revealed this change to be very small (Alvesalo et al., 1969). 

Griffiths (1970) has proposed a scaling form for the free energy near the tricritical 
point, which eliminates the disagreement between theory and experiment. First, he built 
a state diagram of the given mixture in the coordinates T-g-C, where g = p 3  - p4 is 
the intensive parameter conjugate to the concentration x (x = -aF/ag) ,  p3 and j i 4  are 
the chemical potentials of 3He and 4He, respectively. The quantity 6 is conjugate to the 
order parameter which, in this case, is the wavefunction amplitude of the hyperfluid phase + = - a F / a ( .  

Note that C is a measure of a certain field inaccessible for experiment. 
On this state diagram (Figure 1.38), the line of continuous A-type transitions (T > Ttc) 

bounds the region A on the plane C = 0. In case of T < T,,, this area is bounded by 
the line of first-order phase transitions D. The order parameter $J, being unambiguous 
by magnitude in the configurative points in this region, may be positive or negative, 
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Figure 1.38. State diagram (pattern) of the mixture 
3 H e  + 4He in the space T-g-C. Only the plane C = 0 
is available for experiment (Griffiths, 1970) mprinted 
with permission from: Copyright @ 1970 by the American 
Physical Society] 

9 

according to whether the plane C + 0 is approached from one side, or from the other one. 
The surfaces B and B’, located symmetrically in the region C > 0 and 6 < 0, char- 

acterize the regions of first-order phase transitions, bounded by the lines of the critical 
points (the dashed curves in Figure 1.38). Thus, two curves of critical points and their 
continuous phase transitions curve counterpart intersect at the tricritical point (Griffiths, 
1970, 1973). 

The X curve is proposed to be the continuation of the curve D on the T-g (not T-x  !) 
plane (see Figure 1.37), both the curves represented by the dependence 

gi(T) = gtc - A(T - Ttc ) .  (63) 

Further, assume the free energy per mole to have the form 

f (T  9)  = f O P ,  9) + f$? SI, ( 6 4  

with f,(T, g )  to include all the singularity of f ( T ,  9). The function f (T ,  g) must satisfy 

and 

s being the entropy per mixture mole. 

line (not on D) are equal to zero. Introduce new variables 
fc should be chosen so that f, = 0 along g , (T)  and its first partial derivatives on the  X 

T = T - Tt, (67) 

and 
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for 'p > 0, where h(z)  is a properly chosen function with -m < z < 00. For 9 < 0, f, 
has a similar form (Equation 69), with 'p replaced by 191 and, in the general case, h(z )  
and p chosen differently (but the index p must fall within the range 0 . .  , 1 ,  cg. 1/2 as a 
first approximation). 

Provided that h ( z )  is chosen properly, Equations 69 and 64 give a coexistence curve on 
the plane T ws 2 that resembles the experimental one (Figure 1.37). Analysis (Griffiths, 
1970) has shown further agreement between theory and experiment near the tricritical 
point. 

1.6.3. Crossover 
Ftiedel (1972) has investigated the thermodynamic properties in the tricritical point 

vicinity for the general case of multicomponent systems in terms of pairwise conjugate 
thermodynamic parameters S and T ;  the ordered density of the order parameter Q and 
the ordering field C; the disordered density n and the corresponding field g:  

In the case of the mixture 3 H e  +4He, Q corresponds to the wavefunction amplitude of 
the hyperfluid component $J, n to the concentration of 3 H e ( x ) ,  and g = p3 - p4 with c 
being beyond experiment in this case. 

A hypothesis has been put forward: the asymptotic behaviour of the thermodynamic 
functions in the tricritical region is defined by competitive influence of the continuous 
transition region, on the one hand, and of the first-order transition region, on the other 
hand. This competition appears as the existence of the tricritical region bounded by a 
crossover (Figure 1.39). 

Figure 1.39. State diagram (a 
pattern) near the tricritical point 
in the plane ( = 0. The 

are the curves of continuous 
and first-order transitions, respec- 
tively. The Roman digits mark 
the area of first-order transitions 
( I ) ,  the area of continuous tran- 
sitions (14, and the tricritical 
area (114 separated by the dashed 
lines of the crossover (Riedel, 
1972) [Reprinted with permission from: 
E.K.Riede1. Phys. Rev. Lett. 28 (1972) 
675-678. Copyright @ 1972 by the 
American Physical Society] 

cllrves TC(S)PtC and TI(S)/Ttc 
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In the literature, different ways are proposed for introducing auxiliary coordinate axes 
in order to build power functions with critical and, correspondingly, tricritical indices 
(Riedel, 1972; Griffiths, 1973) and to take advantage of scaling constructions. 

As an example, Figure 1.39 presents “scaling axes of fields” p1 and p2 built along both 
the tangent and normal lines to the transition lines at the tricritical point. As the system 
31fe + 4He possesses the continuous transition lines in the tricritical point neighbourhood 
with a quite sharp slope for scaling fields one assume 

PI = 6g = (g - stc)/gtc and PZ = ST = (T - Ttc)/i”tc. (71) 

With a scale-invariant metrics of scaling fields pz is measured in units of &’”, yt being 

On the scaling field coordinates the tricritical point is defined by = pz,t = 0 and 
a new (tri)critical index. 

the continuous transition curve by 
l l v t  (72) P1,c = T C P 2 , C  

with a certain constant P,. A similar relationship satisfies for the first-order transition 
ciirve as well. The geometrical distance from the configurative point (p1, pz )  to the 
continuous transition curve dc(p l ,  pz) and to the tricritical point dt(pl, pz) are uniform 
functions of their arguments. Competition between scaling with respect to the continuous 
transition curve and to the tricritical point leads to a crossover condition 

dc M dt (73) 

(74) 

or 

l l v t  
P l , c r  P2,er 7 

that is why p t  is called the crossover index. 
The crossover curves are shown on Figure 1.39 by the dashed ones to separate the 

tricritical region (111), the continuous transition region (11), and the first-order transition 
one (I). 

Below are scaling constructions with some thermodynamic functions (e ,  Q, aQ/a[, etc.) 
as R and the corresponding tricritical indices (at, pt, ~ t ,  etc.) as at: 

B(P1k  p P )  = l-RrqPl,P2),  (75) 

B(p1,pz) = CL;at/vtW(P1/@:/vt). (76) 

given p1, pi1’’ << 1.  For the scaling parameter 1 = P;”‘~ we get 

This relationship holds for any configurative point trajectories near the tricritical point 

Comparison with the results of model calculations (Blume et al., 1971) yields the 
Just this value is used to describe 

(W is an adjusted function). 

crossover index at the tricritical point pt M 1/2. 
the properties of polymer systems (section 4.3). 

Much attention is paid to the mean field theories in the two last subsections. It should 
be emphasized that the mean field approximation describes many characteristic features 
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of phase transitions, but serious disagreements with experimental data (in particular, in 
the critical indices values) exist. 

The mean field theories are restricted by their irrealistic premises assuming the range of 
intermolecular forces to be infinite and neglecting the correlations among thermodynamic 
function (in particular, the order parameter’s) fluctuations in the vicinity of T,. 

According to the thermodynamic function (Equation 1.4-33), fluctuations of the con- 
centration of one component in solution ((Ax,)*) + 00 when T + T,. However, as 
experiment and more rigorous theories prove, the increase of both the scale and ampli- 
tude of new phase region fluctuations in the matrix of the initial phase leads to their 
correlations that essentially affect the behaviour of thermodynamic quantities. 

With some approximation the correlations of the order parameter’s fluctuations can 
be accounted for not leaving the mean field approach, by an additional expansion of the 
thermodynamic potential G (Equation 1) with new terms of a special form (section 2.5), 
however, methods of statistics are able to describe correlations more rigorously and con- 
sistently. 

The correlation functions for thermodynamic quantities’ fluctuations will be specially 
analyzed at the end of Chapter 2, after a detailed discussion of the special forms of the 
correlation functions of density and concentration fluctuations in solutions near the critical 
point, or rather, near the spinodal curve. 

1.7. Elements of statistical physics and phase transi- 
t ions 

As there will be many references to the relationships of statistical physics, it seems 
relevant to present a brief summary of the most important formulae. 

If a system with a discrete set of its possible states {s} has a total energy X ( s )  in one 
of them, then the probability of the system being in the state 3 is expressed by the Gibbs 
canonical distribution 

where the denominator 

Z = C e x p [ - ~ ( s ) / k ~ ] n ( s )  
S 

is referred to as a partition function (or statistical sum) and involves all the possible 
states, n(3) is the degeneracy order, i.e. the number of states with t k  energy 3-1(s) 
(including the state s itself). The Hamiltonian 3-1 is the sum of the kinetic and potential 
energies and, for a system consisting of N particles, has the form 

where 6, m,, $ are the momentum, mass, and coordinates of the ith particle, @ N  denotes 
the interparticle interaction potential. 
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For systems whose energy varies quasicontinuously (Le. the distances between energy 
levels are small in comparison with kT) the probability of the system being in the state 
with the energy between 'H and 3t+ d'H is expressed as 

dR being the number of states corresponding to the energy range [3t, 3t + d'fl], which i s  
defined by 

dI' 
hP 

d R =  -, ( 5 )  

where d r  = dp, dp, dp, do dy dz = d { p }  d{q }  i s  a phase space element, h' is the volume 
of one cell of this space, T- is the number of degrees of freedom, h is Planck's constant 
(for quantum systems). Integration in Equation 4 is taken over all the phase space. The 
statistical integral from Equation 4 (to replace the statistical sum) for a system of N 
identical (indiscernible) particles with three degrees of freedom each has the form 

Due to the structure of the Hamiltonian (3), it can be presented as 

2 = ZkZU, 

where 2, is called a configurative integral 

and Z k  is usually calculated exactly. Eg. for a one-atomic gas, 

and, with due account of Equation 3, 

Thus, the calculation of statistical integral 6 reduces to the computation of the configu- 
rative integral, the latter being a very difficult problem, for the solution of which different 
approximate methods have been developed. 

In view of Equation 1, any thermodynamic quantity, which characterizes the state of a 
system, is expressed in the standard way 

( X )  = z-1 C X ( s ) e x p  [4 - W S )  Q ( S )  

S 

(cf. with Equation 1.4-18). 
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Eg. the internal energy is 

[ -:$)] n(s)  = kT2- a In 2. 

S aT 
U = ( E )  = Z-' ~ ( s )  exp - 

On the other hand, the Gibbs-Helmholtz equation gives 

(cf. Equations 1.1.1-31,-32,-33), which leads to 

F = -kThZ,  (13) 

the most important relationship of statistical physics. 

dynamic description. 
Hence, the statistical sum (or integral) for the specific system provides its full thermo- 

In particular, in accordance with Equations 1.1.1-28 and 1.1.1-27, 

To describe open systems (the grand canonical ensemble), a grand statistical 
sum, a partition function 

(N being the number of particles, p the chemical potential per particle) and a generalized 
thermodynamic potential 

J = F - G ,  (17) 

J = -kTlnE (18) 

are introduced. 
On the other hand, the definitions of F and G (cf.-Equations 1.1.1-19,-25) yield 

J = -PV. (19) 

For a v-component system we have (cf. Equations 1.1.1-27,-28,-59) 

(E) =-s, 

(a,v,Pj$, 
V.Pl ,...,PI, 

= N, ( a  = 1 , 2, . . . , v), 
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Thus, the calculation of the statistical sum (or integral) (Equations 2, 6, 16) is the basic 
method of statistical physics. But their direct estimation is an extremely difficult (not to 
say impracticable) problem. To solve it roughly, either an approximation or replacement 
of the system by a simpler model are used. 

Many models of phase transitions are based on the lsing lattice (Figure 1.23). E.g. 
in case of a magnetic, every lattice site (the ith) contains a molecule with two possible 
directions of its spin (0, = +-1,-1) (Figure 1.23a). Assume the lattice to consist of N 
sites. Denote the set of all the N spins as u = (01,. . . ,ON}. Combinatorial analysis 
indicates that there are 2N different sets of Q and each of them describes a certain state 
of the system. The system Hamiltonian 

3c = R(l(01, 0 2 , .  . . , u ~ )  or R = R(Q) (23) 

%(a) = %O(Q) + %(a), 
comprises two summands 

(24) 

where 3co reflects the contribution of intermolecular forces, and 3cl(~) is the contribution 
of the interactions of every spin with an external magnetic field, which is often assumed 
to be proportional to the magnetic field H: 

t 

with the sum taken over all the lattice sites. The corresponding statistical sum equals 

It follows from section 1.5 that the thermodynamic potential (and the statistical sum, 
of course) must have a singularity at the phase transition point, eg. a first- or second-order 
break of continuity of the first derivatives with respect to the corresponding variables. 

For the models describing finite size systems, the statistical sums (Equations 2, 6, 
16, 26) are polynomials in their arguments, i.e. analytical functions without singularities 
(Landau and Lifshitz, 1964; Fisher, 1965; Rumer and Ryvkin, 1977), and no phase 
transition is possible. The singularity of thermodynamic functions per particle can be 
expected in the so-called thermodynamic limit N + 00 (Landau and Lifshitz, 1964; 
Fisher, 1965; Rumer and Ryvkin, 1977), which is consistent with experimental conditions. 

Then, we can write the free energy per lattice site 

f ( H ,  7') = -kT N - t m  lim N-' In Z ( H ,  T ) ,  (27) 

the internal energy per site 
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the heat capacity 

(29) 
a 

aT C H ( H ,  T )  = - 4 H ,  T ) ,  

and calculate the critical indices a and a'. 
The magnetization per lattice site in this model is calculated using Equations 10 and 26 

M (  H ,  T )  = N-' (01 + . . . + UN) (30) 

= N-' 2-' C(al + . . . + a ~ )  exp { - k 0 ( o )  - H CT] / k T }  
U z 

and 

(31) 
a M  
a H  

x H  = - = (NkT)- '  { ( M ' )  - ( M ) 2 } ,  

where M = E, a,. The last expression can be rewritten as 

x, = (NkT)- '  ( ( M  - ( M ) ) ' )  . (32) 

(33) 

Correlation between spins i and j is described by a correlation function 

g*j = (gig,) - (ai) (03). 

Then 

The Hamiltonian '&(a) in Equation 24 is a simplest one, and it takes account of the 
interaction between the nearest neighbours only (Baxter, 1982) 

the sum taken over all the pairs of the neighbouring sites, J is the coupling constant. When 
J > 0, the system of similar-directed spins (a ferromagnet) shows the lowest energy. 

The statistical sum takes the form 

where 

K = J / k T  

and 

h = H / k T ,  

(37) 
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and, for magnetization per site in the thermodynamic limit, 

d a .  
(39) M ( H , T )  = ---f(H,T) = - lim N-’lnZ(h,K).  

d H  d H  N+m 

Systems with the Hamiltonian 36 are well studied and analyzed. In case of a t w e  
dimensional lattice in the absence of the field ( H  = 0) the problem has been solved exactly 
by Onsager and it serves as a “tuning fork” to check the results of different approximate 
methods that are only possible for three dimensions and two dimensions with H # 0. 

The statistical sum of the form 36 is also valid for other systems described by the Ising 
lattice (Figure 1.23), e.g. for the system gas-liquid (Figure 1.23b). In this case, two alter- 
native situations are predefined by either the presence or absence of a molecule at every 
site. The interaction between molecules is described by a pair potential p(r) involving 
the potentials of repulsion and attraction, the former being more distant-dependent than 
the latter. 

Intermolecular interactions are a superposition of the forces of dipole, inductive, and 
disperse interactions. Such a composition is often approximated with the Lennard-Johns 
(12,s) potential 

q ( r )  = 4 E  [ (:)I2 - ( 3 6 1  

(Figure 1.40a). 

Figure 1.40. Lennard-Johns’ pair potential ( u )  
and a rectangular pit ( b )  

As when r -+ 0 repulsion gets infinitely strong, two molecules can never be located at 
one site. Hence, we can introduce a new variable s,: s, = 0 for a free site and s; = 1 for 
an occupied one. 

Any space distribution of molecules in a lattice with N sites is defined with a set of 
numbers s = { s i , .  . . , SN}. The number of molecules in the system is 

n = si + s2 + . . .  + SN (41) 
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and the total potential energy is 

the sum taken over all the site pairs, and ‘pv = (p(ri3) is the interaction energy for the 
molecules at the ith and j t h  sites. 

The grand canonical sum is written as 

and 
P = k T ( _ )  d l n Z  . 

T,!J 
(44) 

It appears that the main features of the liquid-gas phase transition do not depend 
significantly on the details of (p(ri3), and it can be given the simplest form, namely, a 
potential pit with the depth E (Figure 1.40b), i.e. 

00 when i # j ,  
-E (pi3 = if i and j are the nearest neighbours, { 0 otherwise. 

The Hamiltonian of the system takes the form 

(45) 

where the sum is taken over the pairs of the nearest neighbours. 

and s, should be related by 
To reduce the gas-liquid problem to the previous one of ferromagnet (Baxter, 1982), a; 

a, = 29, - 1. (47) 

If every site has v neighbours, there are nv/2 pairs of the nearest neighbours. With 
due account of this fact after elimination of n, 31, SI,. . . s, (Equations 50, 43, 46, 47) we 

get 

With the exception of a negligible factor, this sum is the same as the statistical sum of 
a magnetic (Equations 36-38) with the conversion glossary 

Using the corresponding expressions for thermodynamic quantities, one obtains equiv- 
alent formulae (Baxter, 1982) 

E = 45, (50) 
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/J. = 2H - ~ u J ,  (51) 

1 p = -- 
2 VJ + H - f ,  (52) 

( 5 3 )  
1 
2 @ = - (1+  M ) ,  

The discussion on the universal description of phase transitions in different systems is 
continued in Chapter 2, section 2.5. 

1.8. State equation of real gas 
The theory of real gas plays a significant role in creating the theory of macromolecules. 

The secalled long-range interactions between segments in a macromolecule have, as a 
matter of fact, the same nature that the intermolecular interactions in real gas but are 
complicated with segments being linked in a chain and the presence of solvent molecules.’ 

In this connection it seems to be expedient to present the main points of deducing the 
state equation of real gas (Croxton, 1974). 

First, assume the intermolecular interaction potential @ N  from Equation 1.7-8 to be a 
pair additive function: 

N N  

i<j 

@N(&r &> ...) &) = ~ ~ ‘ P ( 1 ~  - dl),  

where ‘p( Isf - 6 I )  is the interaction potential for the z-j pair of particles. Hence, 

Second, introduce a Mayer function 

f ( r v )  = exp -- - 1, [ vr;)l (3) 

which turns out to be a short-range one, being nonzero in the range of pair potential 
and practically vanishing until two or more molecules approach each other quite closely. 
Besides, the function fi, is bounded and tends to -1 when r,, + 0, since cp(rv) gets very 
large (> 0) due to repulsion forces. 

Using Equation 3, we rewrite the statistical sum (Equations 1.7-7,-9,-8) 

‘See Eskin’s papers which are, however, questionable. Editor’s note 
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where J .  - - J H1 .. . d N  denotes integration over all the positions of molecules 1,. , . ,N. 
Taylor series expansion gives 

with the common term being the sum over all the connected products of the same order 
n. 

The terms of the series can be rearranged and represented through irreducible diagrams 
of the following form: 

2-particle diagrams { related to i, j ;  

3-particle diagrams {A} { related to i, j ,  IC; 

4-particle diagrams {a a E} { related to i, j ,  IC, 6; 
and so on. 

Each irreducible diagram is defined by a graph where each point (molecule) is connected 
with, at least, two other points by an f bond. An exceptional case of two interacting 
molecules is introduced to make the pattern complete as the smallest irreducible diagram. 
To clarify the last term, we present two diagrams 

which are not irreducible, for the former can be decomposed into two two-particle ones 
and the latter into a threeparticle and a tw-particle one with a break in each initial 
diagram. 

The number of topologically different diagrams for every n-particle subset increases with 
n sharply. Eg. there exist 3 four-particle, 10 five-particle, and 56 six-particle irreducible 
diagrams. 

Each diagram in a given subset has its weight depending on the frequency of its ap- 
pearance in the series (Equation 5). 

Combinatorial algebra required to build up the general expression of Equation 5 is very 
sophisticated. 

In order to allow for topologically indiscernible permutations of n molecules, the n- 
particle subset has to be divided by n!. Indeed, any cyclic permutation of the corners in 
the threeparticle subset 

A- A 
produces no topologically discernible diagrams. 

Thus, the system’s statistical sum can be written in the form of cluster (group) 
expansion 

N !  N !  
-+ 3! ( N  - 3)!A (7) 
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+ 4! ( N  N! - 4)! [3KH+ 6a+ E] . - - }di- . . d z .  

The coefficients for different subsets 
N! N !  N !  

( N  - 2)!’ ( N  - 3)!’ ( N  - 4)! 

mean the number of ways to build up every n-particle diagram in a N-molecule system. 
Integration of Equation 7 yields 

z= 

+ 3 ( N - 1 ) ( N - 2 ) ~ N - 2 A + . . . } ,  N 

where the cluster integrals are defined as follows: 

Then 

3N xmkT + -1n 2 (k). 
The state equation is defined as usual (see Equation 1.7-14) 

d l n Z  

T 

As N is a big number, N2 can be written instead of N ( N  - 1). Besides, ln(1 + 2) x 2 

From Equations 12 and 13, it follows that 
when x << 1. 
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which is a virial (force, from the Latin uires=forces) expansion: 

where 
1 
2! 

1 
3! 

&(T) = ---, 

B ~ ( T )  = --A 
are virial coefficients. 

By comparing Equations 14 and 15, we get the cluster (group) expansion for P:  

where p = N / V  and 

J . . . J (c n Lj), dZ.  . . dl: 
1 

Dl = - (1 - l)! 

the sum of the products fi, is taken over the irreducible diagrams, and 

1 - 1  
PI Bl = -- 

I 
The second and next terms in the virial expansion have a clear physical meaning, 

pointing to a simultaneous interaction of 2, 3,. . . molecules. This, however, is not to say 
that the groups are stable. In fact, they constantly appear and disappear as a result of 
collisions. The virial expansion describes the situation on the average, for a long period 
of time. 

The probability of n-particle collisions increases with gas density, and the gas properties 
diverge from those of ideal gas more and more. 

It is the second virial coefficient &(T)  that is most significant in studying the properties 
of molecules. Different considerations of interactions between the molecules lead to the 
expression 

and it follows that the exponential function is close to 1 at high temperatures and &(T) + 
pLx (the molecule excluded volume). 

At low temperatures, conversely, &(T)  + --cy) since q ( r )  < 0 while the molecules 
collide. 

One can conclude from the above that some temperature must exist at which &(T)  = 0 
(a Boyle temperature), and the gas behaves as an ideal one due to compensation of the 
repulsion and attraction components in the interaction potential. 
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".* 
0 1 lg(kT/&) 

Figure 1.41. Tem- 
perature dependence 
of the second, third, 
fourth, and fifth virial 
coefficients for the 
Lennard-Johns' (12,s) 
potential (Rowlinson, 
1971) [Reprinted from: 
J.S.Rowlinson Physics of 
Simple Liquids. Copy- 
right @ 1971, with kind 
permission from Elsevier 
Science - NL, Sara 
Burgerhartstraat 25, 1055 
KV Amsterdam, The 
Netherlands] 

The temperature dependence of several first virial coefficients is calculated for the 
Lennard-Johns (12,s) model potential (Equation 1.740) .  Figure 1.41 contains re- 
duced virial coefficients B3/bJ-' (where b is the excluded volume of hard spheres, see 
Equation 1.2-38) as functions of the reduced energy Ig(kT/&) ( E  is the minimum on the 
potential curve, Figure 1.40a). 

These theoretical dependences are in good agreement with the experimental data for 
simple molecules (Croxton, 1974). 

Chapter summary 

1. The definitions of the main thermodynamic values are given, as well as the stability 
criteria for o n e  and multiphase states of a multicomponent system. 

2. The thermodynamic potentials, being a system's state functions of the correspond- 
ing (natural) parameters, are of special importance in the system state description, their 
partial derivatives being the parameters of the system as well. The equalities between 
the second mixed derivatives are a property of the state functions and lead to relation- 
ships between the system parameters (the Gibbs-Helmholtz equations). Hence, once any 
thermodynamic potential (usually, the Gibbs or the Helmholtz one) has been evaluated, 
by means of either simulation or experiment, this means the complete characterization of 
the thermodynamic properties of the system. 
3. The topological properties of both the binodal and spinodal as second-order curves in 

the plane {T,  Q} ( P  = const ) for a twecomponent system, and of both the binodal and 
spinodal surfaces in the v-dimensional space {T,  2 1 ,  . . . zv - l }  X, = 
1) for the v-component system are discussed. The common point of the binodal and 
spinodal at their joint maximum (or minimum) is the critical point of a binary system. 

( P  = const, 
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The common line of the binodal and spinodal surfaces defines the critical state for a 
v-component system. 

4. The structural (morphological) state of a solution is characterized by fluctuations of 
the concentration of each component. With the two-component system, it is convenient 
to use the mole fraction of the second component 22. 

A spontaneous change in concentration by the value Ax2 = x2 - 3 2  occurs as a result 
of chmtical thermal motion of molecules within a local space of the extent AI for each 
direction. The level of concentration fluctuations is characterized by the mean scale 
AZ and the mean square amplitude (G)'. If the spontaneously arisen concentration 
fluctuations of any scale and amplitude inevitably tend to disappear, this means the 
solution is absolutely stable . It shows such a property if its configurative point is 
anywhere except the binodal dome. 

In the case of two-phase equilibrium, any configurative point inside the binodal curve 
corresponds to two phases (two solutions) in equilibrium, their concentrations 2 2 1  and 
x211 determined by the abscissae of the intersection points of the isotherm T = const 
(the line parallel with the x-axis) and the binodal curve. With the configurative point 
moving from the one-phase region under the binodal dome, the way for approaching the 
equilibrium state essentially depends on whether the configurative point is inside the 
spinodal or between it and the binodal. 

In the first case, the solution will loose its stability practically at once: the existing 
concentration fluctuations of any (even of the smallest) scale and amplitude grow in 
amplitude and further turn to the fragments (elements) of a new phase. The fragments 
of a new phase then coalesce or grow, the bigger ones at the expense of the smaller ones 
(according to Ostwald), depending on the mechanism of secondary growth. The initial 
period of such evolution mechanism is referred to as the spinodal separation. This 
process culminates in establishing the phase equilibrium. 

In the second case, the solution is stable with respect to relatively small concentration 
fluctuations (by scale and amplitude, according to the model considered in this chapter), 
but unstable with respect to large ones. 

Since large fluctuations arise much more rarely than small ones, before they have arisen, 
the system corresponds to the initial state of solution which is called the metastable 
state (originates from the Greek ~ T C Y ,  i.e. near, by). The time the system has been in this 
state is defined by the induction period 7 ,  its value depending on the relative position 
of the configurative point with respect to the binodal and spinodal, as well as on the 
properties of the specific system. 

As the concentration of a certain component in a local region increases, it must decrease 
in the nearest neighbourhood. A gradient of concentration arises between this layer, 
depleted of the component, and the matrix of the system, which causes the process of 
diffusional transport of the component from the matrix to the nearest neighbourhood 
of the particle being formed. Thus, the conveyance of substance takes place for further 
growth of the particle. Such a mechanism for growth of new phase particles is called 
nucleation, or diffusion controlled growth. 

At the second stage of the proms, either the particles are being united (coalesced, 
coagulated) or big particles are growing at the expense of the small ones (Ostwald's 
ripening) until the two-phase equilibrium is established. 

- 
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Phase transitions through the metastable state are characteristic of first-order phase 
transitions. 

Phase transitions in the absence of the metastable state of the original phase are clas- 
sified as continuous transitions. 

In these cases, the development of high-level (by scale and amplitude) fluctuations of 
the order parameter (the latter being related to the new phase structure) during the 
configurative point approach to the transition temperature (the critical temperature 
T,, in a particular case) is the "preparation" of the system to the transition. That is why 
in the twecomponent system the configurative point, approaching the critical point, is 
accompanied by the enhancement of the concentration fluctuations. 

In section 1.5 are given the traditional definitions for the kinds of phase transitions 
through the special points (the continuity breaks) of the thermodynamic potential deriva- 
tives with respect to the variables, which are characteristic for them. 

The functional dependence of the thermodynamic potentials of the order parameter is 
specific for each type of phase transitions, which is widely used for the identification of 
the type of the phase transition. 

The phase transitions, resulting in an increase in the number of phases in a system, 
should also be classified as the phase separations. 

5 .  Near the temperature of the phase transition of the continuous type T, (the critical 
temperature), the thermodynamic functions characterizing the system properties (in the 
first place, the functions of the system's response to changes in the external conditions, 
such as heat capacity, susceptibility, correlation length of the order parameter fluctua- 
tions t, phase separation region amplitude (2211 - 221)) can be approximated with power 
functions cv N E - = ,  x - E-"', N E+, (2211 - 221) N E-@, where E = (T - T,)/T,, and a, 
y, Y, p are the critical indices. 

In the following chapters (especially in Chapter 5 ) ,  it will be noted that the possibility of 
approximating the thermodynamic functions as power ones is connected with the scaling 
invariance of systems. 

The corresponding theoretical approaches lead to analytical expressions for the critical 
indices and to explicit relationships between them. 

The closeness of the experimental values of the critical indices and the theoretical ones 
shows the quality of a certain version of the theory. 

6. In Landau's phenomenological theory of the mean field the thermodynamic poten- 
tial G (or F )  is considered as a series in terms of the order parameter &. The series 
coefficients, generally, depend on temperature and pressure. Depending on the presence 
of the series term with a certain power n (Qn), on the Coefficients values, and on the rela- 
tionships between them, the thermodynamic potential assumes a functional dependence 
being characteristic for the first-order transitions, transitions of the continuous type or 
for the first-order ones of the near-continuous type. 

The given approach has a universal meaning, and any researcher is to find the expression 
of the series coefficients via the molecular parameters of a certain system. It depends on 
the coefficient values and on the relationships between them, the lines of the first-order 
transitions or of the continuous-type ones can be observed in the coordinates P us T .  

At the configurative point where the first-order transition line turns to the continuous- 
type transition line, the system has special properties. This point is referred to as the 
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tricritical one. There may be another version, where three lines of the continuous-type 
transitions are converged in the tricritical point. 

There is a tricritical region on the state diagram T us g (g is an intensive value (field), 
see Equation 1.6-70) near the tricritical point, it has boundary lines of crossover with 
the region of the first order transitions, on the one hand, and with the region of the 
continuous-type transitions, on the other hand. 

In the tricritical region, the power functions approximating the thermodynamic func- 
tions have characteristic tricritical indices differing from the critical ones. 

The restrictions of the given version of the mean field theory are due to neglecting 
the correlation between fluctuations of the thermodynamic functions, especially of the 
order parameter, these fluctuations contributing essentially to the system properties in 
the critical region. 

In terms of microspace, the restrictions of the mean field theories are due to an isrealistic 
premise of the intermolecular interactions range being infinite. 
7. The main formulae of statistical physics are given: the expressions of the thermody- 

namic functions via the partition function having been taken over all the possible states 
of the system with Hamiltonian R(s) representing the sum of the kinetic energy of the 
system and the potential one. 

Hence, having written the partition function for a certain system, one achieves its 
complete thermodynamic description. 

The models of many physical systems are based on a lattice (see Figure 1.23). With the 
models of finite-size systems the partition function is expressed in terms of polynomials 
in its arguments, i.e. in terms of non-singularity functions. 

That is why no phase transition can occur in a finite system. The singularity of the 
thermodynamic functions per particle, which is the condition of phase transitions, should 
be expected in the so-called thermodynamic limit N + 00, corresponding to the experi- 
mental conditions. 

Applying the universal lattice model enables one to describe the thermodynamic prop- 
erties of different physical systems, using the same mathematical expressions and the 
glossary of variables (eg. Equations 1.7-49.. .53). 

8. The forces of intermolecular interactions are the superposition of the dipole, in- 
duction, and disperse interaction forces. They can be expressed as a united function of 
interactions, such as the sum of two power functions Equation 1.7-39 (the Lennard-Johns 
potential), the potential pit, etc. 

The state equation of real gas in its virial expansion is a series in terms of the gas 
density powers ( N / V )  with the virial coefficients proportional to the cluster integrals 
(Equations 1.8-9.. .12). 



Chapter 2 

Fluctuations, Light Scattering and 
Diffusion 

2.1. Light scattering in matter. Main concepts and 
definitions 

An ideally homogeneous medium does not scatter light on the average. Every local 
space element in such a medium has another one in any direction, which provides the ray 
path length difference of both the scattered waves to be equal to a halfwave length X/2. 
So, interference extinguishes both the scattered waves. 

Hence, light scattering, in principle, can be observed in an inhomogeneous medium only. 
The causes and character of heterogeneities may be various: an ensemble of particles of one 
phase in another phase (colloidal, disperse, heterogeneous systems), density fluctuations 
in gases (vapours) and liquids, concentration fluctuations in multicomponent one-phase 
systems (solutions). 

2.1.1. Rayleigh scattering 
Dielectric particles, whose size is much less than the wavelength X, are the simplest 

kind of heterogeneities concerning their interaction with light. 
Let us consider a case when homogeneous isotropic particles with the dielectric con- 

s tant  c2 (or with the refractive index, or the index of refraction, p2 = 6) are 
dispersed in a medium with €1 = p;.  

Assume that every particle scatters light irrespective of others and that an incident 
wave has the samc effect on all the particles in the system. Due to its smallness, all the 
electrons of a particle are in the incident wave's field of equal strength at any moment, 
and all the set-of charges can be regarded as an induced dipole p' proportional to the 
field strength E of the incident wave: 

p" ffpYpE, 

where crp is called particle polarizability. This oscillating dipole, with the frequency 
matching that of the incident wave w, is an elementary dipole, i.e. a source of secondary 
(scattered) waves. 
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Place the particle to the origin of the coordinate system zyz. We will observe scattered 
light in the plane yOx (plane of scattering). The angle between the incident wave 
direction and the scattered wave direction will be referred to as a scattering angle 29 
(Figures 2.1-2.5). 

Figure 2.1. On the definition of a scat- 
tering space V ;  R is a receiver of scat- 
tered light; do is a solid angle element; 

is a luminous space; K is a ves- 
sel with scattered medium, D are di- 
aphragms 

Ey = Eo, cos(wt - kz) Figure 2.2. Schematic illus- 
tration of scattering of hor- 
izontally polarized light 

py = pOy cos wt 

Figure 2.3. Radiation diagram in 
the c u e  of horizontally polarized in- 

Ioy = AE;, 11 

1 p ,  = po,coswt 
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Figure 2.4. Schematic 
illustration of scatter- 

/ 

ing of vertically polar- 

p ,  = pol cos wt t 
ized incident light 

Y 
I 

Figure 2.5. Radiation diagram in the case of vertically polarized incident light 

Let the particle be illuminated by linearly polarized light from negative z values with 
its plane of polarization matching the plane of scattering (horizontally polarized light) 
with the electric field strength vector 

Ey = Eo,, COS 6, E Eoy C O S ( W ~  - b ~ ) ,  (2) 

where Eoy and 6, are the amplitude and phase of the incident wave, ko = 27rJXo is 
its wave number, A0 is the wavelength in vacuum, w = 27ru = 2nfT (u and T are the 
frequency and period of oscillations). 

This expression is often written as a complex quantity 

Ey = Eo,exp(i6,) ,  (3) 

E% being a complex number in the general case. 
The electric field strength vector of the scattered light at long distances from the oscillat- 

ing dipole (in the wave zone) is given by (Rayleigh, 1881; Volkenshtein, 1951; Fabelinski, 
1965; Kerker, 1969; Sivukhin, 1980) 

where Tis the radius vector from the particle to the point of observation. The subscript 
points to the fact that the values of p' and its derivatives with respect to time are taken 
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at an earlier instant of time t' = t - b/v since any scattered wave propagates with the 
velocity v ;  c is the velocity of light in vacuum. 

In the case of a sinusoidal incident wave (Equation 2 or 3), the dipole oscillates as 

p" &exp(iwt) (x = 0), 

with the electric field strength vector of the scattered wave 

which, in the case of horizontally polarized incident light, leads to 

E,ll = -~Eoycyp G cos 19 cos(wt - kb) = -E,,oll cos(wt - k l )  

or 

where k = 27r/X, X is the wavelength in the medium: X = Xo/p1 = A,/&. In the chosen 
coorGnate system, the angle 29 is complementary to the angle /? between the dipole y?& 
and I ,  so sinp = cos 29. 

Experiment measures the intensity of light, i.e. the radiation energy per unit area per 
unit time. According to the expression for the Poynting vector, the intensity is propor- 
tional to the squared amplitude of the electric field strength vector. As the proportionality 
coefficient is the same for both the incident and scattered beam, then 

or, in the complex form (see Equation 3), 

with E* to denote the quantity complex conjugate to E*. 

particle and horizontally polarized incident light with the intensity Ioy: 
@. Equations 6 and 7 allow us to write the scattered light intensity for one scattering 

The receiver measures the intensity 41 of light scattered on all thc particles inside a 
scattering space V ,  which is cut by the receiver's solid angle from the luminous space 
Kum (Garrabos et al., 1978), see Figure 2.1 

N2 being the number of particles per unit volume. 
Define a radiation diagram, or polar diagram of the scattered light intensity, as 

the locus of the vector ends, where the vectors originate from the scattering space centre 
and have their lengths equal to the scattered light intensity in this direction. In the 
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c a e  of horizontally polarized incident light, the radiation diagram is shown in Figure 2.3 
(Equation 9). 

In the case of vertically polarized incident light with its plane of polarization 
perpendicular to the plane of scattering (Figure 2.4), Equation 5 takes the form 

with 

and, further, by analogy with Equation 9, 

Figure 2.5 presents the radiation diagram. The angle between the dipole 6 and i i s  
p = 90" at any scattering angle. 

A beam of unpolarized (natural) light with the intensity Io can be represented as a 
superposition of two linearly polarized beams, namely, a horizontally polarized one with 
Ioy = Io/2 and a vertically polarized one with Ioz = Io/2. Then, the scattered light 
intensity I# will be the sum of Equations 9 and 12 

87r4 

At12  
(13) z8 = I ,  + = I ~ - - ~ ; N ~ V ( ~  + cos2 8 )  

with its radiation diagram shown in Figure 2.6. 

Figure 2.6. Radiation diagram in the case of unpolarized incident light 

Electrostatics gives us the polarizability of spherical particles (Sivukhin, 1980, 1983) 

~ ( E Z  - C I ) C I  
C Y p  = 

47r(€z + 2Cl) '" 
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where vp is the particle volume. Then, 

Since Equation 14 determines the power of light energy per unit area, a solid angle unit 
receives 

light energy light energy 1’ 
for s from Au 

= I d 2 .  - - 
for s from AR 

The distinctive features of Rayleigh scattering are: I d  - the radiation diagram 
being symmetrical with respect to 8 = 90” (the asymmetry ratio z = 1450/11350 = 1); 
scattered light being vertically polarized at 29 = 90” and partially polarized in the range 
0 < 8 < 180” with a depolarization coefficient 

The scattered light techniques determine either Rayleigh’s ratio I& (with nephelome- 
ters) (Fabelinski, 1965; Eskin, 1973) or turbidity r (with colorimeters and spectrophe 
tometers). The former quantity 

means the intensity of light scattered at angle 8 from a unit scattering space at a unit 
distance from the scattering space centre per unit intensity of the incident beam. 

According to Equations 15 and 17, the Rayleigh ratio means the light energy power 
scattered at an angle 19 by a unit space of the scattering medium into a unit solid angle 
per unit intensity of the incident beam. 

It follows from Equation 13 for Rayleigh’s particles that 

In spectrophotometers, a parallel light beam (with the cross-section S )  traverses a 
rectangular cell of length 60. At a certain distance x from the cell’s face, the intensity I, 
in an elementary layer dx decreases owing to scattering (or absorption) by dI. Then, for 
optically non-interacting particles and in the absence of multiple scattering, 

= rdx. dI dx, i.e. - _  $I 
I, Ix 

-- N 
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The factor r is called turbidity, or scattering index. For absorption, 

d l  
I X  

-- = Ed$, 

ze is an absorption index. And, in the case of both scattering and absorption, 

(24) 
d I  
I X  

-_ - - ( ~ $ z e ) d x = C d x ,  

C is an attenuation index, or extinction coefficient (van de Hulst, 1957). 

(from 0 to lo) results in Buger's equations 
Integration of Equations 22-23 with respect to I, (from ZO to I) and with respect to 2 

I = loexp(-dO), (25) 

I = Zoexp(-aelo), (26) 

I = Ioexp(-Clo), (27) 

and 

where I is the outlet light intensity, whereas IO is the inlet one. It follows that 

D In 10 
1" 

7 (or =,or C) = -, 

where D = lg(Zo/I) is called optical density, which is measured immediately with 
spectrophotometers and colorimeters. 

On multiplying both the nominator and denominator by S, Equation 22 gives the 
physical meaning of turbidity T :  

and 

r = - S d I  at I ,  = 1 - erg and dV = lcm3. (30) s .  c m 2  

You see that T characterizes the decrement of light energy for 1 s from the passing beam 
due to all-directions scattering on particles in a lcm3 volume. Thus, the turbidity T 

means the energy of light scattered by a unit space for a unit time per unit intensity of 
the incident beam. 

The definitions of & and T provide their relationship: 

r =  / /  RodR, 
over the whole 

solid angle 

where dR is a solid angle element. For Rayleigh's particles, 
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In view of Equation 19, 

and of Equation 21, 
2 

T = -up2 247r3 (2) P i  - P l  NZ 
x4 p; +2P1 

or 
247r3 m 2 -  1 2 

= -v; A4 (-) m2+2 N2, 

(34) 

(35) 

where m = p2/p1 is the relative refractive index. 

perimeter to the wavelength 
Introduce a relative particle size a. For spherical particles, a is the ratio of the particle 

27rr 27rrp1 
x A0 

a=-=-. 

The ratio 

- = ~ ( a ,  m) ,  cm2 
N2 

T 
(37) 

defines an optical cross-section of a particle, i.e. the area, which contains as much 
energy of the incident beam per unit time as scattered by a particle: 

IoR(a, m) = R(a, m),  erg/s at Io = 1 erg/s . cm2, (38)  
i.e. R(a,m) is numerically equal to the light energy (per unit time) scattered by the 
particle on a unit incident beam intensity basis. 

A scattering coefficient, or efficiency factor is defined as the ratio of the optical 
and geometrical cross-sections 

It indicates how effectively the optical cross-section (the optical screen) withdraws (and 
scatters) the energy of light beam (and scatters it) in comparison with a geometrical 
screen 

Equations 36 and 39 yield 

T = N ~ K ( ~ ,  m)nr2. (41) 
In view of Equation 37, 7 is referred to as a full optical cross-section (in the atmo- 

sphere optics literature), and Rayleigh's ratio & is a differential optical cross-section 

(see Equation 31). 
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2.1.2. Rayleigh-De bye scattering 
For many particles of polymer and biological origin 

1 7 7 -  11 << 1 (42) 

and 

2krlrn - 1 )  = p << 1 (43) 

hold, where r is the characteristic size of a particle (the radius for spheres), p is a phase 
shift after the wave has traversed along the diameter of a particle. Inequality 42 is often 
called a condition of optically “soft” particles. Both the inequalities serve as the premise 
of Rayleigh-Debye’s approximation, whose importance is in its applicability to particles of 
any shape with sizes commensurable with the wavelength (Rayleigh, 1914; Kerker, 1969). 
The particle is divided into space elements dv, to satisfy Rayleigh’s condition. Due to 
Inequality 43, the field inside every particle differs from that one outside neither by phase 
nor by amplitude, and every space element dv, is an elementary emitter with the dipole 
moment 

+ 

dp’= d a ,  E .  (44) 

It is known from electrostatics that the polarization vector P’ is related to l? by 
means of - t - l E .  p=-  

47r 

Then, the polarization vector difference in a particle and in the dispersion medium is 
expressed as 

- At  - 
A P  = -E, 4ir 

where A t  = t 2  - € 1 .  

As the polarization vector reflects 

dp’ A€ - 
- -E. _ -  

dv, 47r 

Substitution of dp’ from Equation 

A €  € 2  - €1 da, = -dv, = - dv, . 
47r 47r 

With allowance for Inequality 42, 

the polarization of a unit space of the dielectric, then 

(45) 

44 gives 

it can be rewritten as 

The field of the light scattered by a particle at the point of observation is the sum 
of the fields of all the elementary scatters with due account of their phase shift (see 
Equation 3). 
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Figure 2.7. Schematic illustration of interference of light scattered by two space elements 
(0 and A )  of a particle, Z0 and iiS are unit vectors at the directions of incident and 
scattered beams 

Fix a point 0 inside the particle, which belongs to  a certain space element (Figure 2.7). 

The phase shift of the beams scattered by this space element and by any other one ( A )  
is expressed as 

S = k($ii, - p'n'o) = kP'(n', - Go) = {j', (48) 

$being the radius vector connecting the space elements, i;O and n', unit vectors at the 
directions of incident and scattered beams; 

cj'= k ( Z ,  - n'") (49) 

is a scattering wavevector. 
Figure 2.7 shows that In', - i t01 = 2sin(d/2), where d is the scattering angle. 
Hence, 

4n d 141 = sin 5. 
If a particle is in the field of vertically polarized incident light, then, according to 

Equation 11, 

" r ) d v p .  (51) 
. - _ _  

UP over the 
whole panicle 

From Equation 46, 

aff, - €2 - e1 

av, 47T 
- -  - 

and 

(52) 

(53) 
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For a homogeneous particle 

aa, E2 - tl 

av, up 47r ’ 
-- - -  (54) 

( 5 5 )  

or 

where (see Equation 48) 

‘ I  1 F(Q,  D/X) = - J exp(i6) dv ,  = - exp(i(@)) dv,, 
up up up 

(57) 

D is the characteristic size of the particle, D/X is its relative size. 
Comparison of Equations 56 and 11 allows one to conclude that interference of the 

beams scattered on a large homogeneous particle results in multiplying the scattered 
light intensity by an interference function F(6, D / X )  (van de Hulst, 1957). 

In the case of unpolarized incident light, the scattered light intensity is (see Equation 13) 

For homogeneous particles, Equations 46, 47, and 54 give 

€2 - El 
47r 

cyp  z - 

and 

Then, 

and 

The function 
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Figure 2.8. 
Rayleigh's (1) and Rayleigh-Debye's particles ( 2 )  

Radiation pattern in the case of vertically polarized incident light for 

is called a form factor, or Debye's function. 
At the angle 29 = 0, there is no phase shift among any space elements of the particle 

do, (see Figure 2.7), and such a particle scatters light in this direction as Rayleigh's. It 
follows from Equation 61 that 

1 + cos229 Iir Re 
P(29, D / X )  = - = - 51, 2 Ie=o Rs=o 

which is a basis for the experimental measurement of the Debye function (Figure 2.8). 
Calculations of the Debye function P(29, DIX) are well presented in the literature for 

particles of various shapes: spheres (van de Hulst, 1957), chmtically arranged pivots (Doty 
and Steiner, 1950; van de Hulst, 1957), thin disks (Debye, 1947; Debye and Anacker, 1951; 
Becher, 1959), ellipsoids of revolution (Guinier and Fournet, 1955; Beattie and Tisinger, 
1969), three-axis ellipsoids (Finnigan and Jacobs, 1971), finite size cylinders (van de Hulst, 
1957). 

Calculations and calibrations of the asymmetry ratio 
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are widely used to determine macromolecule sizes of various conformations (coils, pivots, 
spheres) and the correction factor 

P-'(90°, D/X) = f(D/X) (66) 

to determine the polymer molecular mass by Debye's method (Debye, 1947; Doty and 
Steiner, 1950; Flory, 1953; Tompa, 1956; van de Hulst, 1957; Tsvetkov et al., 1964; Bresler 
and Yerusalimski, 1965; Morawetz, 1965; Kerker, 1969; Lipatov et al., 1971; Eskin, 1973; 
Rafikov et al., 1978), where D is the diameter of spheres, or the length of pivots, or the 
mean square end-bend  distance of coils. Eg. for spheres 

(67) 
9 8 
U6 2 

P ( 8 ,  D/X)  = -(sinu - u cos u ) ~ ,  u = k D  sin -, 

and for coils 

Integration of Equation 31 in view of Equations 63, 67, 17, 37, and 39 leads to the 
efficiency factor (van de Hulst, 1957) (Figure 2.9) 

a 

Figure 2.9. Efficiency factor K ( a ,  rn) in Rayleigh-Debye's approximation (the upper 
curves of each couple) and from Mie's rigorous theory (the lower curves) (Mie, 1908; 
Klenin et al., 1977a) 

5 sin4a 7 
2 4a 16az 

p ( a )  = - + 2 2  - __ - -(1- cos4a) + ( - 2i2 - 2) {y + ln4a  - Ci(4cy)}, 
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y FZ 0.577 is Euler’s constant, Ci denotes the integral cosine 
m 

For inhomogeneous particles, the scattered field is expressed as 

where 
aa 
av, ap3(d ,  DIA) = 1 2 exp(i6) dv,. 

UP 

If the particles possess a spherically symmetrical distribution of optical properties with 
aap/avp = aa(r) ,  then the interference function takes the form 

Eg., for the Gaussian distribution of polarizability (van de Hulst, 1957) 

dcu 
dr 

a’ = 2 = cuoexp ( - ( r / a ) 2 ) ,  

where a0 and a are constants, ap = 7r3I2a3ao and 

3 ( g ,  a )  = exp [ - (ka  sin i) ’1 , 
and the intensity of unpolarized light scattering is 

k4a2 
12 

I d  = Io*VNzexp 

Light scattering on chaotical structure heterogeneities is of great importance, these 
features are described by a correlation function (Debye et al., 1949, 1957; Kerker, 
1969). 

Let us consider a body, whose structure is characterized by fluctuations of the dielectric 
constant (permittivity) c. Assume it to be represented as (c + A€) at every point, where 
c is the average (macroscopic) value of the dielectric constant (Figure 2.10). 

= c + Ae(3  and tg = 
+ Ac(7). Pay attention to Ac(3  A€(?), where averaging is performed while moving the 
Eg., at points A and B with the coordinates r‘ and ?‘: 
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1 -*-- 
B A 
I I 

2 

I I T 

r' T 

- - 
I P '  

Figure 2.10. Instantaneous local fluctuations of &he dielectric constant for a longer (1) 
and a shorter (2) correlation length 

fixed straight line segment A B  = r'- ?' = p'ovcr the whole body. It is clear that at p" 0 
A t ( q A ~ ( 2 )  = At(?Ac(fl = m. When F i s  large, At(fl add At(T) do not correlate 
and Ac(F') A€(?) = 0. 

The correlation between A€(?') and At(?) is described with the help of a correlation 
function h(p3 defined as 

A~(i.3 At(?) = h(p3(aC)2 (73)  

(Figure 2.11). 
By analogy with Equation 51 and in view of Equation 46 one can write 

= / dE,,ol = / da ,  exp(i6) = -2.- Ic2 /At(? ' )exp(ia  dr',(74) 1 1 47r 
over all the 

acattsnng *pace 
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u 

P 

Figure 2.11. Correlation function corresponding to averaged structure 1 (Figure 2.10, 
curve 1) and structure 2 (Figure 2.10, curve 2) 

where dr' = dvp. With allowance for Equation 8, for the intensity of vertically polarized 
light we have 

(75) I~ = k: / ~ c ( i ; ?  e x p ( i a  d ~ /  A€(?) exp( iT)  d? 

= io*- k: J d;/ A C ( ~  A€(?) exp (iq(;- 2)) d? 

161r2Z2 

16x2l2 

= Ioz- "' / dp'h($(aL)2exp(ag 
16.rr2Z2 z) 

where integration is performed over the inhomogeneous (correlation) area for h ( p )  = 0 
outside it (see Figure 2.11). 

For statistical heterogeneities, h ( p )  can be assumed spherically symmetrical, then 

with the integral called a correlation volume 

Then (see Equation 17), 
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or 

and (cf. Equations 12 and 13) 
- 

~ ~ ( A t ) ~ w ,  1 + cos2$ R~ = 
A: 2 

- 
The intensity of scattering on chaotical heterogeneities is defined by the product (Ac)2wo,, 

i.e. small-amplitude fluctuations, related by a large correlation region, scatter as inten- 
sively as the large-amplitude ones related by a small correlation region. Besides, thc 
correlation volume w, (Equation 77) depends on the scattering angle, diminishing as the 
angle increases. If the correlation region 0 < h(p) < 1 is commensurable with A, there 
occurs deformation of the radiation diagram (see Figure 2.8). 

Analysis of light scattering by means of the correlation function is fully equivalent to 
the case of scattering on spheres provided that the correlation function is approximated 
by 

where r is the radius of the sphere. 
The condition Irn-11 M 0 is always valid for X-rays, and their scattering obeys Rayleigh- 

Debye’s approximation. In particular, for a spherically symmetrical body (eg. an atom) 
the function 

M 

(82)  
sin qp 

F(q) = /- C ( P ) 4 P 4 V 2  dP 

~ ( q  = J ( ( ~ 3  exp ( 2 ~ ~ ( s ’ ~ 3 )  d~ 

0 

characterizes the atom’s ability to scatter, and is referred to as an atomic amplitude 
(van de Hulst, 1957; Skryshevski, 1980) (cf. Equation 71), ( ( p )  is the electronic density. 

In a more general case (Vainshtein,l963), the atomic amplitude has the form 

(83) 

(cf. Equations 70 and 75), where 

27rs’= 4’ (84) 

(cf. Equation 57). 
In its mathematical form, Equation 83 is a Fourier integral. The function F ( 4  is defined 

in the space of the vector Z, the secalled inverse space with the dimension [SI = cm-’, 
whereas the function ((8 describes the object’s structure in real space. The Fourier 
integral has the property of inversibility, i.e. once F(4 is given, ((3 can be reconstructed 
by means of the inverse Fourier transform (Madelung, 1957; Korn and Korn, 1968): 
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The functions [(a and F(Z) form a reciprocal pair of Fourier transforms, and Equa- 
tions 83 and 85 are considered as the main expressions in solving the chief task of diffrac- 
tion techniques: to determine the object's structure C(p3 from the observed (measured) 
diffraction pattern F(3. In the operational notation 

F(s3 = F[C(aI (86) 

C(p3 = F-'[F(31 (87) 

is the direct scattering problem, and 

is the inverse scattering problem. 
The Fourier transform method determines the correlation function (Equations 73 and 76) 

from the scattering data (Stein, 1978). The function F ( 4  is called a Fourier transform 
of the structure of scattering elements (particles). 

Note that the Fourier transform has a few equivalent forms (Ditkin and Prudnikov, 
1961; Korn and Korn, 1968). 

The Fourier transform F(Z) is a function of the structure of the scattering elements if 
and only if Rayleigh-Debye's conditions (see Equations 57, 64, 71, 76, 77, 83) hold, i.e. 
the structure characteristic elements are commensurable with the wavelength. For X-rays, 
this corresponds to the size of atoms and the crystal lattice parameters, the short-range 
coordinates order in liquids. In this connection, X-ray analysis has gained acceptance for 
exploring the atomic and atom-crystal structure of substances. The sizes of structural 
formations during phase separation correspond to the wavelength of visible light, and the 
light scattering technique is informative for studying phase separation processes. 

As the scattering intensity depends on the phase shift S of the beams scattered on 
structural elements (see Equations 70 and 75) and 6, in turn, is defined by the wavelength 
and the scattering angle (see Equations 48-50), then, varying these two experimental 
factors, one can probe the structural elements of different scales in the ob'ect. 

Eskin, 1973), where the subscript and superscript denote the polarization of the incident 
beam and the receiver's orientation. If distribution is chmtical, Pi = qf, and only three 
Debye functions are independent. 

Four Debye functions exist for anisotropic particles: Pi, P i ,  Fit, and pII Ir' (Kerker, 1969; 

In Ftayleigh-Debye's approximation, light scattering has been studied on 

0 anisotropic spheres (spherolites) (Stein and Rhodes, 1960; Stein et a].., 1966; Kotov 
and Novikov, 1967); 

0 ellipsoides (Finkelstein and Savko, 1972; Kotov et al., 1976; Lopatin and Sidko, 
1988); 

0 disordered or oriented thin pivots (van de Hulst, 1957; Rhodes and Stein, 1969; 
Masaniko et al., 1971); 

0 anisotropic cylinders (Horn and Benoit, 1953; van Aartsen, 1970; Hayashi and 
Kawai, 1972); 

0 anisotropic disks (van de Hulst, 1957; Picot et al., 1968; Samuels, 1971). 
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Stein (1966), Volkov and Baranov (1968) provide reviews of light scattering on anisotropic 
particles. 

In the general case, light scattering in matter is caused not only by density fluctuations 
but also by anisotropy fluctuations and fluctuations of the optical axis orientation of 
anisotropic areas. Such fluctuations arise as a result of mutual orientation of anisotropic 
molecules, or of their aggregates, or owing to the internal stresses in solid matter. In this 
case, the polarizability of scattering elements is represented by a polarizability tensor and 
two corrclation functions (density correlation and orientation correlation) are introduced 
(Goldstein and Michalik, 1955; van Aartsen, 1972). 

2.1.3. Van de Hulst approximation 
Having taken 

and 

van de Hulst (1957) has applied Huygens and Babine’s classical principles to the problem 
of light scattering and derived a most important and rather simple expression for the 
efficiency factor: 

sinp 1 - cosp 
K(p)  = 2 - 4-  + 4- 

P P2 

(Figure 2.12) where 

p = 2 4 m  - 1) = 47rr(m - l ) p l / X  (91) 

is the phase shift (see Equation 43). 
Van de Hulst’s approximation is applicable to quite big particles and, what is more, 

to nonspherical and heterogeneous particles (Tvorogov, 1965; Khlebtsov, 1980) and to 
absorbing particles (van de Hulst, 1957; Tvorogov, 1965; Bryant and Latimer, 1969; 
Sukhachyova and Tvorogov, 1973). 

Equation 90 has turned out to be valid not only for small Im- 11 (which was its premise) 
but for m significantly deviated from 1 (van de Hulst, 1957; Kerker, 1969; Shifrin, 1971) 
(see Figure 2.12). This confirms the similarity criterion (Shifrin, 1951), which states that 
the features of light scattering are determined mainly by the value of phase shift p. 

By some estimates (Shifrin, 1951; van de Hulst, 1957; Heller, 1963; Kerker and Farone, 
1963; Moore et al., 1968; Kerker, 1969), the results of the soft particle approximation 
are qualitatively true within, at least, 0.8 5 m 5 1.5 if CY >> 1; when m 5 1.15 they 
are valid quantitatively with a slight error. Hence, Rayleigh-Debye and van de Hulst’s 
approximations are very fruitful in studying the heterogeneous structures of polymer and 
biological origin. 
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Figure 2.12. Efficiency factors K ( p )  and K ( a ,  m) as functions of p = 2a(m - 1) according 
to van de Hulst’s formula (Equation 2.1-90) (curve 1)  and to Mie’s theory for m = 1.05 
(2), 1.07 (3), 1.10 ( 4 ) ,  1.15 (5), 1.20 (6) (Mie, 1908) 

2.1.4. Rigorous theory of scattering on spherical particles (Mie theory) 
Love (1899), Mie (1908), and Debye (1909) obtained a solution of the problem of elec- 

tromagnetic radiation scattering on a homogeneous particle of any size with any relative 
refractive index rn (including complex refractive index in the case of absorbing particles) 
in terms of Maxwell’s equations. By tradition, it is referred to as Mie’s theory which is 
expounded and discussed in a number of monographs (Shifrin, 1951, 1971; van de Hulst, 
1957; Born and Wolf, 1968; Deirmendjan, 1969; Ivanov, 1969; Kerker, 1969; Zuyev, 1970; 
Bohren and Huffman, 1983). 

Tables of computed characteristic functions of scattering on dielectric, absorbing, and 
polydisperse particles have been compiled (van de Hulst, 1957; Shifrin and Zelmanovich, 
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1966, 1968; Zelmanovich and Shifrin, 1968, 1971; Deirmendjan, 1969; Ivanov, 1969; 
Kerker, 1969; Prishivalko and Naumenko, 1972; Prishivalko, 1973ab; Shifrin and Salganik, 
1973; Klenin et al., 1977a; Bohren and Huffman, 1983; Shifrin, 1983). See 
2.12, and 2.13 for examples. 

Figures 2.9, 

Figure 2.13. Efficiency factor K ( a ,  m) against a by Mie's theory for m = 1.1 (I), 1.2 (e ) ,  
and 1.3 (3)  (Mie, 1908) 

Kosenberg (1972) has extended the theory to heterogeneous (including nonconcentric) 
particles. Lopatin and Sid'ko (1988) have computed the efficiency factor for two- and 
three-layer spheres. 

2.1.5. Turbidity spectrum method for the characterization of ill-defined 
disperse systems 

The turbidity spectrum method is used for a wide range of problems in the physical 
chemistry of polymers and colloids, biophysics, and biochemistry, including the study of 
phase separation in polymer systems. 

The main premises of this technique are given in the monograph (Klenin et al., 1977a) 
with calibrations of all the characteristic functions for monodisperse, spherical particles 
within wide ranges of a and m computed with the use of Mie's theory. Since then, 
new results have been obtained concerning the problem of phase separation in polymer 
systems. 

Within a restricted wavelength range AX, the spectral dependence of turbidity is ex- 
pressed by Angstrom's (1929) equation (van de Hulst, 1957; Heller et al., 1962; Kerker, 
1969) 

T = AX-", (92) 

where the wavelength exponent n is a function of a and m (or p). 
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In the log-log scale, 

I n r  = 1nA - nInX, (93) 

l n r  us 1nX (94) 

whence the exponent can be extracted from a turbidity spectrum .(A) as the slope of 

or, as the derivative, 

d l n r  n = -- 
dlnX’  (95) 

Neglecting the dispersion of the refractive index of both the dispersed phase and disperse 
medium (see Equations 41, 38, 91) (Slutsker and Marikhin, 1961), 

(96) 
(2 d K ( a , m )  P 8%) 

dInX K(cr,m) dcr K(P) dp . 
- ~. - - din K(a ,  m)  n = -  

Heller et al. (1962), Klenin et al. (1977a) have tabulated n from Mie’s theory in wide 

According to Equations 68 and 96, in Raylcigh-Debye’s approximation (Khlebtsov and 
ranges of a and m (Figure 2.14). 

Shchyogolev, 1977a; Khlebtsov et al., 1977) 

.(a) = {22 /4 -2+cosz -6s inz / z+22(1  -cos2)/z2 (97) 

+ 16 [Ci(z) - In z - 71 /z2})Ip(a), 

where z = 4a, and the other notation is the same as in Equation 68 and in Figure 2.21 
(curve 1). 

One can see that the exponent varies from 2 to 4 and does not depend on m (cf. the 
results of Mie’s theory within this range of n in Figure 2.14). 

Considering the fact that there is no concentration dependence of n, the turbidity 
spectrum method provides the most correct determination of particle sizes within 2 5 
n 5 4, which corresponds to the radius of particles 0.02 - 0.03.. .0.2 - 0.3pm (often 
encountered in real systems). 

In van de Hulst’s approximation, Equations 90 and 96 are followed by (Shchyogolev 
and Klenin, 1971b; Klenin et al., 1977a) 

4s inp/p-2cosp+4(cosp-  l) /p2 4(1 -cosp) 
- 2  (98) - - n ( p )  = 1 - 2 sin p / p  + 2(1- cos p)/p2 K (  P )  

(Figure 2.19, curve 3 which is compared with .(p) for polydisperse systems (see further)). 
When n < 2, this gives p and, involving Equation 91, either p at a known m, or m at 

a known (determined independently) r can be calculated (Klenin et al., 1976b). 
From known a and m, the numerical concentration of particles can be estimated by 

(Heller and Pangonis, 1957; Klenin and Uglanova, 1969; Klenin and Shchyogolev, 1971a; 
Klenin et al., 1977a) (see Equation 41) 

4nr  
N2 = cmd3, 

(X’)2K(a, m)a2’ (99) 
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Figure 2.14. n against a for monodisperse spherical particles from Mie’s theory: m = 1.03 
( I ) ,  1.06 ( 2 ) ,  1.08 (3) ,  1.12 ( d ) ,  1.18 ( 5 ) ,  and 1.24 (6) (Heller et al., 1962; Klenin et al., 
1977a) 

where A’ = A,/p, (here A’ is expressed in cm), A, = (X1A2)’/’ (A ,  and A2 are the bound- 
aries of the straight line plot 94) or thc wavelength at which the dcrivative (Equation 95) 
is taken, r is the turbidity at A,. 

Plots are used to estimate the efficiency factor K(cy, m) (eg. Figures 2.9, 2.12, 2.13), its 
accurate tabulation is made in (Klenin et al., 1977a) for wide ranges of cy and m. 

With p and K ( p )  (Equation 90), the number of particles per 1 cm3 is expressed as 

The mass-volume concentration of the dispersed phase M (g/dl) is equal to the product 
N2 . 100 by the mass of a particle which, in the general case, contains the low-molecular 
component (the dispersion medium) 

m - 1  4 
M = lOOez- . -7rr3N2 

m k - 1  3 
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or (see Equation 41) 

where 

e 2  is the polymer density (g/cm3), m k  = p Z k / , u l ,  p2k is the polymer refractive index in 
the condensed state, r is the turbidity at A’. 

A structural factor e, is defined (Klenin and Shchyogolev, 1971a) as 

2a(m - 1) - 2n(m - 1) 
K ( a ,  m) aK(a ,  m) /da  

v =  - 

or 

(see also Equation 96). 
Klenin et al. (1977a) report some analogues of the characteristic functions I?, i i, and v 

for polydisperse systems. 
The characteristic functions of a monodisperse particle system are of complex oscillating 

nature. However, real systems are always polydisperse, and intuition prompts to adapt 
the characteristic functions of monodisperse systems to polydisperse ones by smoothing 
the oscillations. This has been done using simple symmetry. 

Comparison of such a technique of smoothing with the results of direct computation of 
the characteristic functions for some model polydisperse systems is made (Klenin et al., 
1977a; Ramazanov et al., 1983a) with the gamma size distribution 

as an example, where p and p 

and 

Ar and rm are the halfwidth and mode of distribution, respectively. Other uniformal 
distributions, for which AT and rm can be estimated, can be approximated with the 
gamma distribution. 

Figures 2.15-2.18 show a small difference between the results of analytical (Ramazanov 
et al., 1983a) and simple geometrical smoothing and the results of direct computation 
of the functions for the model distribution in a wide range of polydispersity. The sub- 
script p denotes the gamma distribution: p + 00 and p = 0 are the limiting cases of a 
monodisperse system and an utmost polydisperse system (see Equations 106 and 107). 



2.1.5. Turbidity spectrum method 

n, 

2.6 - 

2.5 - 

2.4- 

2.3 - 

2.2 - 

2.1 - 

2.0 

131 

5, 

I I I I I I I I I I I i I I I I , ,  

Figure 2.15. n and fi, against a and ti, at m = 1.01 for monodisperse particles (dashed 
line) (Klenin et al., 1977a) using the approximate formulae from (Ramazanov et al., 
1983a) ( I ) ,  for polydisperse gamma-distributed particles with p = 10 (2)  and p = 35 ( 3 )  
in Rayleigh-Debye’s approximation 

Klenin et al. (1977a), Ramazanov et al. (1983a) have established that the characteristic 
functions of polydisperse systems fit the smoothed functions of monodisperse systems in 
the best way if the X average value of particle size is used (Shchyogolev and Klenin, 1971a; 
Klenin et al., 1977a) 

1/(6-1)  

The radius F A  corresponds to the relative size 

ffx = 27rFAp1/Xm 

and 

This is illustrated in Figure 2.19, which shows that the dependence iz, us is close to 
n = n ( p )  for a monodisperse system in contrast to the dependence n, us pz ,  where 
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Figure 2.16. n and f ip  against a and a, at m = 1.33 for monodisperse particles (dashed 
line) (Klenin et al., 1977a), using the approximate formulae from (Ramazanov et al., 
1983a) ( I ) ,  for polydisperse gamma-distributed particles with p = 10 ( 2 )  

and 

We consider the approximation of the characteristic functions by smooth analytical 
functions as a necessary prerequisite for computing the system parameters. 

The chief task of the turbidity spectrum method is to characterize ill-defined dispersoids. 
This makes it necessary to reveal how robust different versions of the reverse problem are. 

Any physical method of exploring the structure of a substance implies the object under 
investigation is probed by some exposure C (eg. a ray of light). 
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Figure 2.17. v and 6, against TI and 2, by the approximate formulae (Ramazanov et al., 
1983a) ( 1 ,  1 9 ,  for polydisperse gamma-distributed particles with p = 10 (2 ,  2’) and for 
monodisperse particles (Klenin et al., 1977a) with m = 1.01 ( 1  ’-5’’) and m = 1.33 (1-3) 

Suppose the structure of our object is defined by a set of parameters {S,}. The receiver 

Then, obtaining the functional dependence { M , }  with respect to {S,} 
measures a response function { M , } .  

{M,}  = f{$} at a known C (113) 

with a known C is called a direct problem whereas establishing the dependence 

{ S t }  = f ( A 4 , )  at a known L (114) 

with a known L as well is called a reverse problem (cf. Equations 86 and 87). 
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Figure 2.18. Dependence of the structural factor v on n for monodisperse particles (Klenin 
et al., 1977a) (dashed lines) and using the approximate formulae (Ramazanov et al., 1983a) 
(solid lines) for rn = 1.05 ( I ) ,  1.15 (2), and 1.30 (3) 

The reverse problem may prove to be incorrect when calculation of {Si} in accordance 
with Equation 114 is rather sensitive to Mj variations due to the natural errors in mea- 
surements or post-measurement calculations. Incorrectness may often arise from a rather 
wide problem statement, which involves physically meaningless solutions; moreover, the 
functions in Equation 114 may be ambiguous owing to the Mj sensitivity to different 
parameters from {Si}. 

Making the solution unambiguous by means of additional conditions and restrictions 
is referred to as regularization of the reverse problem and, so, of the investigative 
method on the whole. 

Smoothing of the oscillating functions (geometrical or analytical, in comparison with 
the results of the direct problem for model systems with polydisperse, anisodiametric, 
structurally heterogeneous particles, etc.) serves as the aim of regularization of the re- 
verse problem of the turbidity spectrum method. We refuse a priori to characterize the 
system fully (to determine the full distribution curve, particle shape, details of the particle 
internal structure, etc.) in order to get information on the averaged (integral) properties, 
such as the mean size of particles,the numerical and mass-volume concentration of the 
dispersed phase, etc. which, as experiment suggests, is quite sufficient to solve a number 
of problems: scientific, technological, and those of maintenance. If one takes account of 
the great simplicity of the experimental technique, abundance of the required equipment 
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Figure 2.19. n and n, against p and for gamma-distributed particles: p = 0 ( I ) ,  5 (2 ) ,  
- and 00 (monodisperse particles) (3). Dependence n, on & = 47rP(nz - l)pl/Am, where 
r2 is the mean square radius (dashed line). Van de Hulst’s approximation (Klenin et al., 
1977a; Shchyogolev, 1983) 

(colorimeters and spectrophotometers of any kind), there being no alternative methods in 
many applications, the outlook for application and further development of the turbidity 
spectrum method can be estimated as rather high. 

Stability-of-solution analysis has been performed, in particular, with respect to the 
possible deviation of particles from the spherical form. 

The direct and reverse problems of the turbidity spectrum method for systems of aniso- 
diametric particles were solved by simulation in Rayleigh-Debye’s (2 < n, < 4) and 
van de Hulst’s (fip < 2) approximations (Khlebtsov and Shchyogolev, 1977ab; Khlebtsov 
et al., 1977, 1978abc; Shchyogolev et al., 1977; Khlebtsov, 1980; Shchyogolev, 1983). 

The shapes of an elongated ellipsoid of revolution (the axes ratio p > 1) and of an oblate 
one ( p  < 1) with wide ranges of size and anisodiametry degree were chosen as model. 

The efficiency factor of anisodiametric particles is defined as (Khlebtsov and Shchyc- 
golev, 1977a) 

(cf. Equation 39), where R(a,rn,p) is the optical section averaged over all the possible 
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Figure 2.20. Schematic of exploring the structure of substance with the action L: {SI} is 
a set of parameters to characterize the structure of substance; {M,}  is a set of parameters 
of the object’s response to the action L, i.e. the measured quantities in the physical 
experiment 

particle orientations, p is the axes ratio (the anisodiametric factor), r is the radius of an 
equivalent sphere, whose volume is equal to that of an anisodiametric particle, i.e. 

r =  (2) 
and 

2irr 
(y = - p = 2a(m - 1). 

A‘ ’ 
The other characteristic functions of anisodiametric particles are calculated through 

In Rayleigh-Debye’s approximation, it is worthwhile representing the structural factor 
the efficiency factor (Equation 115) similarly to Equations 99-105. 

as 

and writing the results of the direct problem as the dependence v1 = f(a) with the 
parameter p. 

Figures 2.21-2.25 report some of the obtained results showing that random arrangement 
of the anisodiametric particles smooths oscillations of the characteristic functions as well. 

A more rigorous stability-of-solution analysis with respect to anisodiametry has been 
carried out by Shchyogolev et al. (1977a) as follows. 

A specific model of a system with anisodiametric particles with the parameters {SI} 
was taken, the response functions {M,} (turbidity 7 ,  exponent n, structural factor v,, 
etc.) were computed from the general solution of the direct problem (Equation 113). The 
algorithm of solving the reverse problem was constructed in two ways: 

e using adequate response functions (this operation is, of course, conventional, since 
the “outlet” parameters are predetermined {Si}), 

0 using smoothed universal functions of those for spherical particles (the obtained 
parameters {S:} will differ from those given {Si}). 
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Figure 2.21. a against n 
for spherical particles (I)  and 
against r i p  for elongated ellip- 

2.3 soids of revolution (averaging 
over all the orientations) with 
the axes ratio p = 2 (2 ) ,  4 (3), 
6 (4, and 10 (5). a = 27rr/A‘, 
r is the equivalent sphere radius 
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Shchyogolev, 1977a) 
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Figure 2.23. Dependence of n for spherical par- 
ticles ( 1 )  and fi, for elongated ellipsoids of rev- 
olution (averaging over all the orientations) with 
the axes ratio p = 2 (3, 4 ( 3 ) ,  6 (4,  and 10 
(5) on the equivalent parameter p (see caption 

0 to Figure 2.21). Van de Hulst’s approximation 
(Khlebtsov and Shchyogolev, 197713) 
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Figure 2.24. Dependence of the structural fac- 
tor 2, for spherical particles ( 1 )  and GjP for elon- 
gated ellipsoids of revolution (averaging over all 
the orientations) with the axes ratio p = 2 (2)’ 
4 (3)’ 6 (4)’ and 10 (5) on the exponent 6. 
Van de Hulst’s approximation (Khlebtsov and 
Shchyogolev, 197713) 
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Figure 2.25. The a- and pdependence of 
n for spherical particles (1, 1 ’) and iiP for 
oblate ellipsoids of revolution (averaging 
over all the orientations) with the axes ra- 

and 1/10 (4,5’). Rayleigh-Debye’s (2 -4 )  
and van de Hulst’s approximations (I  ’-5’) 
(Khlebtsov and Shchyogolev, 1978) 

tio P = 1/2 (2 ,  g’), 1/4 (3,  39, 1/6 ( 4 7 ,  

was accepted as a measure of deviation to judge the stability of the solution, i.e. the 
structural parameters are compared, that are calculated by two branches of the algorithm 
with the same response function Mj. 

To give an example, Figure 2.26 (above) presents the results of determining the particle 
size through the exponent 

where p‘ is the root of 

4 P ’ )  = i i , (P ) ,  (121) 
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Figure 2.26. The ?&-dependence of 6rn, S M ,  
and 6Nz (%) for elongated ellipsoids of revo- 
lution with the axes ratio p = 2 (I), 3 (2) ,  4 
(9) ,  6 (d), 10 (59, and 15 (6). Van de Hulst's 
approximations (Shchyogolev et al., 1977a) 

and n(p') and fi ,(p) are the wavelength exponent of spherical particles and that of elon- 
gated ellipsoids of revolution with the given parameters (see Figure 2.23). 

Figure 2.26 with the obtained results allows one to conclude that neglecting the aniso- 
diametry of particles of any shape factor within p 5 3 will lead to errors with different 
signs but not exceeding 30 o/c in magnitude (at least, within 0.5 5 fi  5 2). 

The results of calculating ah? (Figure 2.26) show that for -0.2 5 ii 5 1.6 the neglect 
of non-spherical shape leads to a systematic underestimation of h?i but not more than hy 
10. . .20 % for particles with no restrictions to form factor. When f i  > 1.7 and p 5 4. . . 5 ,  
the mentioned error does not exceed 30 %. Thus, the determination of the mass-volume 
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concentration from turbidity spectrum has quite a high stability-of-solution of the inverse 
problem with respect to anisodiametry of particles when n < 2. 

Neglect of the anisodiametry of particles (for systems with 0 5 E 5 2) at any form 
factors ( p  5 3) leads to errors in Nz of different signs but not exceeding 30.  . .40 % in 
magnitude. 

When the form factor is known from a side experiment, dr, dn;i, and SN, can serve as 
correction factors for experimental results. 

This technique has been applied to estimate stability-of-solution of the inverse problem 
in the case of oblate ellipsoids of revolution (Khlebtsov et al., 1978ab), to the influence 
of particle and medium substance dispersion ( h a z a n o v  and Shchyogolev, 1979), to the 
experimental error of T (Khlebtsov et al., 1978b). 

Previously (Klenin et al., 1977a) the stability-of-solution of the inverse problem with 
respect to polydispersity was shown. 

SedliEek and Jokl (1979) state the stability-of-solution of the inverse problem with 
respect to dispersion of m in the near-infrared region. 

The exponent n exhibits sufficient stability to secondary light scattering (Klenin et al., 
1973g) as well as to the stfuctural non-uniformity of particles (Kutuzov and Klenin, 1983). 
The latter authors have simulated structural non-uniformity using particles consisting of 
a core and a coating (coated sphcrcs). Solutions of the dircct problem of the turbidity 
spectrum method within wide ranges of the core and coating size have been obtained. 
The results are applicable for characterizing systems that emerge during microcapsuling 
(Solodovnik, 1980) and are used in industry, medicine, and pharmacology. We note in 
passing that in many cases microcapsuling is based on phase separation in polymer- 
containing systems. 

Within 2 < n < 4 the exponent is stable to the aperture angle of a spectrophotometer 
(Dolinnyi, 1978). 

A turbidity spectrum in a wide wavelength range (- 0.2. .  .0.25 pm) enables one to 
reconstruct the full distribution curve f(r) (Shifrin and Raskin, 1961; Shifrin and Perel- 
man, 1963abcd, 1964, 1966; Shifrin et al., 1966, 1979; Biryukov, 1970; Shifrin, 1971; 
Khayrullina and Shumilina, 1973). 

Sereda and Shtarkman (1974) has determined f ( r )  from spectroturbidimetry, involving 
statistical regularization (“urchin et al., 1970). 

As opposed to the turbidity spectrum method, determination of the scattered light 
intensity at one or two angles does not provide correct information for the ill-defined 
systems due to the high sensitivity of the radiation diagram to the shape of particles, 
their polydispersity, and other fine structural features, not to mention multiple scattering. 
Such sensitivity makes it difficult to regularize the reverse problem. 

If a full radiation diagram is measured, statistical regularization reconstructs the size 
distribution function of spherical particles (Shifrin et al., 1972; Shifrin and Gashko, 1974; 
Gashko and Shifrin, 1976). 

The characteristic functions in the turbidity spectrum method show rather different 
stability to different parameters in two ranges: 2 < n < 4 and n < 2. Analysis of these 
dependences allows us to give some recommendations on determining different system 
parameters of the ill-defined systems. A certain parameter should be determined in a 
range where the function exhibits the maximal sensitivity to it. 



2.1.5. Turbidity spectrum method 141 

T h e r a n g e Z < n < 4  
Here, n is practically insensitive to m, so a measured spectrum .(A) does immediately 

give the average particle radius by the smoothed calibrations n(a,m) vs a (Heller et 
al., 1962; Klenin et al., 1977a; Ramazanov et al., 1983a) or through n = .(a) in Rayleigh- 
Debye’s approximalion (Equation 97) (Khlebtsov and Shchyogolev, 1977a) (Figure 2.27, 
version 1). 

If the relative refractive index rn is known from the tabulated data or a side experiment, 
a and m allow one to find the corresponding K ( a ,  rn) through the tables or figures (Heller 
and Pangonis, 1957; Klenin et al., 1977a) (see Figure 2.13) and to calculate N2 (Heller et 
al., 1962) from Equation 99. 

When rn is known, the particle size can be determined not only within 2 < n < 4, but 
over all the range of n(a ,m)  (Figure 2.27, version 2). 

In the case of ill-defined systems with a quite rough estimation of m, the lower n, the 
larger the error in F A ;  but antibathy of n us is kept over all the range of n, which 
is sufficient for qualitative (semiquantitative) evaluation of the average particle size as a 
function of the parameter of any external action. 

The described technique has been applied to many objects of different nature. Let me 
provide a brief summary of these papers. Studied were: 

liquid-liquid phase separation in the system polymer+low-molecular-weight liquid 
(P+LMWL) (see subsection 3.6.2.5) (Vainerman et al., 1973; Klenin et al., 1974f, 
1979b; Prozorov et al., 1976; Uskov et al., 1976; Klenin, 1977, 1982; Timofeyeva 
et al., 1977); liquid-crystal phase separation (see sections 6.2 and 6.4) (Klenin et 
al., 1966, 1973bc, 1974b; Klenina et al., 1970, 1972; Kolnibolotchuk et ai., 1974a; 
Peppas, 1975; Yefimtseva et al., 1975a; Blinas et al., 1976; Uskov et al., 1976; Klenin, 
1977a, 1982; Klimanova ct al., 1977; Pavlova et al., 1977); and liquid-liquid crystal 
phase separation (Prozorov et al., 1979; Smirnova et al., 1980); 

structural-physical conversions of particles of insoluble fractions (supramolecular 
and microgel particles-SMP and MGP) in solutions of cellulose derivatives under 
different physicochemical effects (variations of temperature, solvent nature, polymer 
and third-component concentrations) (Klenin, 1965a, 1966, 1977; Klenin and Klen- 
ina. 1966bc, 1977; Klenin and Kolnibolotchuk, 1966a; Klenin et al., 1971, 1973d; 
Klenin and Denisova, 1975, 1977; Gadzhiev et al., 1981; Smirnova and Iovleva, 
1986), including some technological processes (Klenin et al., 1973e; Smirnova and 
Iovleva, 1986) ; 

0 dependences of the physicochemical characteristics and performance of polymer ar- 
ticles on the parameters of MGP (Klenin et al., 1972a, 1973d; Usmanov et al., 1973; 
Kharitonov et al., 1977) and phase particles (Alekseyeva et al., 1970; Klenin et al., 
1975a, 1976a; Smirnova and Iovleva, 1986) in technological solutions; 

0 phase separation and conversion in systems polymer l+polymer 2+low-molecular- 
weight liquid (Wajnerman et al., 1972; Yefimova et al., 1975ab; Klykova et al., 
1980), including the secalled coacervate systems (Gladilin et al., 1972), polymer 
complexes (Nurgasheva et al., 1976; Samsonov et al., 1978; Klenina and Fein, 1981; 
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Figure 2.27. Flow-chart of characterization of the ill-defined disperse systems by the 
turbidity spectrum method within 2 < n < 4. The circle and oval enclose the source 
(measured) quantities, the box contains the derived quantities 
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Izumrudov et al., 1983) and their parameters' influence on the flocculating proper- 
ties (Tarasenko et al., 1980) and the ability to reduce hydrodynamic resistance in 
turbulent streams (Uskov and Uskova, 1983); 

0 phase separation and conversion in systems polymer l+polymer 2 (Vershinin et 
al., 1982; Volkov et al., 1982; Roginskaya et al., 1983; Trostyanskaya et al., 1984), 
including interpenetrating polymer networks (Klenin et al., 1977b) and in systems 
with modifying additives of low-molecular-weight, oligomeric, and high-molecular- 
weight substances (Gavrilov et al., 1982ab; Vershinin et al., 1982); 

e phase separation and conversion in the course of polymerization (Nesterov et al., 
1970; Myshko et al., 1973; Roshchupkin et al., 1977; Sova and Pelzbauer, 1978; 
Korshunova et al., 1979; Brestkin et al., 1980; Koton et al., 1981); 

e emulsion polymerization (Zhukov et al., 1977) and latices (Klenin et al., 1972b; 
Sokoletski et al., 1983); 

e microheterogeneous structure of technical rubbers and its influence on product per- 
formance (Vorobiov et al., 1977; Afanasiev et al., 1979); 

0 microstructure of polymer gels (Sedlktek, 1967ab); 

0 structure formation in polymer solutions of different nature (Lipatov et al., 1974; 
Mayorova et al., 1976; Veselovski ct al., 1977) and its influence on polymer adsorp- 
tion from solution onto a solid substrate (Lipatov and Sergeyeva, 1972; Lipatov et 
al., 1972, 1974; Lipatov, 1980); 

0 dispersions of surfactants (Mustah et al., 1980), proteins (Izmaylova and Rebinder, 
1974; Pankratova et al., 1974; Dolinnyi, 1978), DNA (Akhrem et al., 1979; Blagoy 
et al., 1981), synaptosomes amd mitochondria (Korolyov et al., 1981), liposomes 
(Bezrukova and Rozenberg, 1981), viruses (Bezrukova et al., 1983; Yefimov et 
al., 1987)' bacteria (Koga and Fujita, 1961; Klenin, 196513, 1974; Fikhman, 1967; 
Fikhman and Petukhov, 1967; Petukhov and Fikhman, 1967; Klenin et al., 1970; 
Dmitrieva et al., 1973, 1974ab; Panasenko et al., 1973) and particles of artificial 
blood plasma (Kuznetsova and Bezrukova, 1982). 

Independent determination of the relative refractive index of particles rn may cause 
difficulties; hence, other ways of determination are of interest, including those based on 
light scattering. 

One of such methods is a variation of the immersion method, whereby turbidity is 
measured as a function of the refractive index of the dispersion medium. When the 
refractive indices of particles and the medium match, T = 0. If particles are heterogeneous, 
only a minimum of T is observed. 

Sometimes, it is sufficient to measure r at varying pl in a restricted range: extrapolation 
of the straight line &" us p1 to 7'1'' + 0 leads to pz  (Koga and Fujita, 1961; Fikhman, 
1967; Fikhman and Petukhov, 1967; Dmitrieva et al., 1973) (see Figure 2.27, version 3). 

If the volume concentration of particles of the dispersed phase is known, a turbidity 
spectrum provides simultaneous estimation of a and m (Shchyogolev and Klenin, 1971a) 
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(see Figure 2.27, version 4). At a known 3, Equation 101 gives v ,  which strongly de- 
pends on m within 2 < n < 4 (see Figure 2.18). The tables from (Klenin et al., 1977a) 
or smoothed curves from (Ramazanov et al., 1983a) are used to plot v us m at an exper- 
imentally determined n, and this plot gives m for the experimentally estimated u,  and, 
further, K(a ,  rn) and N2 are calculated (see Figure 2.27, version 5). 

For strongly anisodiametric particles, the exponent n and A? enable one to determine 
the form factor p (Khlebtsov et al., 1978c) (see Figure 2.27, version 6). 

The range n < 2 

Here it is the structural factor v (and, hence, the mass-volume concentration of particles 
3) that shows high stability to m, polydispersity, and anisodiametry (see Figures 2.18, 
2.19, 2.23, 2.24, 2.26). Thus, for systems with particles with ?A 2 0.3.. .0.5pm the degree 
of phase transformation 2 = a / c  can be estimated most reliably (Figure 2.28, version 1). 
Moreover, at a known m, FA, and N2 are calculated as follows: the universal calibration 
n = n ( p )  (Equation 98) (Shchyogolev and Klenin, 1971b) (Figure 2.19, curve 3) gives p, 
Equation 91 gives ?A, Equation 90 gives K(p)  (see Figure 2.12), and, finally, Equation 100 
yields N2 (see Figure 2.28, version 2). 

Such technique is employed for characterization of phase separation in STT of polymer 
solutions (see subsection 3.2.3) (Klenin and Uglanova, 1969; Klenin and Shchyogolev, 
1971a, 1973, 1979; Klenin et al., 1974d, 1975b, 1983a; Shchyogolev and Klenin, 1974, 
1980; Ramazanov et al., 1982, 1983b; Vyakhirev et al., 1983). 

Determination of the parameters of particles allows one to judge the mechanism of 
new phase particle formation in the course of STT of polymer solutions (Klenin and 
Shchyogolev, 1972; Klenin et al., 1973f, 1974d; Shchyogolev and Klenin, 1973; Shchyogolev 
et al., 1977b). In particular, Shchyogolev et al. (1977b) showed that polymer particles are 
formed which contain no low-molecular-weight component. 

This technique is also applicable to characterization of the colloid-disperse phase of 
insoluble polymer complexes (Klenina and Fein, 1981) and of antigen-antibody complexes 
(Klenin et al., 1974g, 1979a), and the process of phase conversion in liquid crystals (Klenin 
and Kolchanov, 1975), formation of turbulent curls in liquid crystals in electric fields 
(Sidorov and Nedranets, 1978). 

During complex formation among miscellaneous macromolecules, separate groups of 
molecular chains interact, which may lead to appearance of loops and hookings, and 
a particle of the insoluble complex may contain an immobilized low-molecular-weight 
component. 

If an independent method is employed to determine the mean particle size FA (eg. using 
light microscopy or dynamic light scattering), n gives p, and Equation 91 gives the relative 
refractive index m of "soft" particles; further, Nz is calculated as in the previous readings 
(Klenin et al., 1976b) (Figure 2.28, version 3). 

If the numerical concentration Nz is estimated in a side experiment (eg. in Gorjaev's 
chamber or in a flow ultramicroscope), version 4 (see Figure 2.28) shows the order of the 
full characterization of the disperse system. 

Dolinnyi (1983) presents nomograms for determination of a and m from the exponent 
n at two aperture angles of the receiver, 0" and 4" (see Figure 2.28, version 5). 
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Figure 2.28. 
turbidity spectrum method within n < 2 

Flow-chart of characterization of the ill-defined disperse systems by the 
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A method of scattering spectra is proposed to characterize very dilute disperse systems 
(Klenin et al., 1978; Khlebtsov et al., 1990) (Figure 2.29). 

Figure 2.29. Flow-chart of characterization of the ill-defined disperse systems using a 
scattering spectrum in Rayleigh-Debye’s approximation (Klenin et al., 1978) 

Khlebtsov et al. (1991) have theoretically and experimentally studied the dispersion 
effect of the refractive indices of particles and dispersion medium in the turbidity spec- 
trum method. A new approach is put forward to estimate the optical dispersion of the 
components of a colloidal system and to consider it when the system’s parameters are 
determined from the wavelength exponent. The method has been verified on PS lattices 
with the particle diameter from 80 to 800 nm. The elaborated version of the turbidity 
spectrum method can be used as a metrological test for particle sizes, not inferior to 
electron microscopy in accuracy. 

Numerical calculations by Mie’s theory for model gamma distribution of particles and 
experiments with bimodal latex suspensions have shown (Khlebtsov and Mel’nikov, 1992) 
the mean particle size determined by the turbidity spectrum method from n(r) calibrations 
for monodisperse particles to correspond to the relationship 

= [(*) / (’n+2)]1’* 
with the minimal error. 

The combination of electreoptical, spectrophotometric, and spectroturbidimetric mea- 
surements (Khlebtsov et al., 1991, 1992) enables one to build the adsorption isotherm of 
a polymer on the particles of a dilute suspension and to find a correlation of its charac- 
teristic fragments with the parameters of the electreoptical effect. A relation between 
the adsorption and electro-optical properties of polymeric cellulose suspensions, and their 
kinetic stability has been estimated. 

In (Shchyogolev and Khlebtsov, 1992; Shchyogolev et al., 1993) are reported reviews 
of the modern applications of the turbidity spectrum method to study biological disperse 
systems. The effects of polydispersity in some specific versions of reverse problems are 
analyzed, and the optimal types of averaged particle sizes are pointed to. New kinds of 
reverse problems related to the analysis of particle aggregation are considered. Examples 
of experimental determination of complexing biopolymeric systems are given. 

The direct and reverse problems of the spectroturbidimetry of ordered disperse systems 
are discussed by Khlebtsov et al. (1994)’ Shchyogolev et al. (1994). Recording the at- 
tenuation spectra of disordered, oriented, and relaxing disperse systems, one can obtain 
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information on the mean values of such parameters as volume, shape, and refractive index 
of particles, their concentration and specific surface, the electrical surface polarizability 
in one experiment. 

Khlebtsov (1993ab), Khlebtsov and Mel’nikov (1993ab) have started a new research 
direction, namely, the spectroturbidimetry of fractal clusters. The integral functions 
defining the spectral properties of nonabsorbing fractal clusters have been studied. 

In summary, the up-to-date development of the turbidity spectrum method provides 
rather full characterization of the ill-defined disperse systems. 

2.2. Light scattering in gases and vapours 

Fluctuations in density (or those in the number of molecules) cause light scattering 
in gases and liquids. Space elements v should be regarded as scattering centres. Every 
element must be rather small for the condition of Rayleigh’s particles to be satisfied 
( d I 3  << A) because light scattering in gases and liquids shows all the features of Rayleigh’s 
scattering (119 - k4, z = 1). 

On the other hand, this element must contain a sufficiently large number of molecules 
to behave as a subsystem, with all the laws of thermodynamics to be applicable to it. 

Due to Brownian motion, the space element v contains different numbers of molecules 
at different instants of time. 

So, we conditionally divide the whole scattering space V into N* equal elements of a 
volume v each. 

As a homogeneous medium does not scatter light, the scattering is due to the difference 
between the actual number of molecules N in the space v and its mean value: A N  = 
N - N. Then, the amplitude of a wave scattered by the space v in the case of horizontally 
polarized incident beam is (see Equation 2.1-6) 

where a is the polarizability of molecules. The intensity of light scattered on the space 
element (on the average) is expressed as (see Equation 2.1-9) 

ill. = AAE:,oll = Ioy$a2 cos2 19 . ( A N ) l .  1 
For an ideal gas (see Equation 1.4-29) 

( A N I 2  = N = NUv,  (3) 
Nu being the number of molecules per unit volume. Considering fluctuations in the 
number of molecules in different elements of space v independent, we get for the intensity 
of scattering on all the scattered space V 

111 = i(lUN*, (4) 
where N’ = V/v is the number of space elements. And, according to Equations 2-4, 
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This formula agrees with Equation 2.1-9. 
Naturally, the formulae for the intensity in the cases of vertically polarized and unpo- 

larized incident light also agree. Hence, 

87r4 I@ = I0-a2N,V(l + cos2 8). 
X i 1 2  

This formula is valid for isotropic molecules with the scalar polarizability a. For a 
system of anisotropic molecules, the scattered light intensity comprises two summands, 
an isotropic one and an anisotropic ones (Vuks, 1977), 

I@ = L9,W + 4 , m  (7) 

cos2 l? 

where a is the mean polarizability 

a1 + f fz  + a3 
3 

a =  7 

y is the optical anisotropy 

, (9) 2 (a1 - az)2 + (a1 - a3)2 + ( 0 2  - a3y 
2 7 =  

a1, az, a3 are the polarizability values along the coordinate axes where the molecule is 
placed, i.e. the main values of the polarizability tensor. If we introduce a depolarization 
factor for  vertically polarized incident light (Vuks, 1977) 

then 

and the depolarization factor takes the form 

6 -  

according to Equation 2.1-16. 
Equations 11 and 12 give 
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and 

Substitution of Equation 13 into Equation 7 at 29 = 90" leads to 

8 ~ ~ N , , v a ~  6 t 6A90 z, = l o  
At12 6 - 7A90' 
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6+6A90 .  
6 - 7A90 

It follows from Equation 7 that 

The quantity 

and exceeds 1 for anisotropic molecules. 

IS called Cabanncs' factor: it is equal to 1 for isotropic molecules 

with 

(cf. Equation 2.1-29) and 

In view of Eqiiation 15, 

and, according to Equation 17, 

Integration of Equation 7 over all the solid angle (Equation 2.1-31) gives 

1287r' 2 2  
3x; 

= -Nv(a2 + 57 ) 

with 

128x5 
r,9 = - NVd 

3x: 

(cf. Equation 2.1-33) and 

NVy2. 
1287r5 2 25th' 

27x6 
Nv-r2 = - ran = - 3x4 9 
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If one substitutes y2 from Equation 13 into Equation 21, then 

1287r5 N,a2 6 + 3Aw 
r =  

3x2 6 - 7 A w '  

Together with Equation 19, it yields for the general case 

1 6 ~  1 + 0 . 5 A ~  
7 = ---& 

3 1 + A w  

Relationships 22-25 hold true for one component liquids and solutions as well. Mea- 
suring A w  and A,, is the experimental basis of determining such important molecular 
parameters as the polarizability (Y and anisotropy y using Equations 13 and 14 (Volken- 
stein, 1951; Fabelinski, 1965; Kerker, 1969; Vuks, 1977). 

2.3. Light scattering in one-component liquids 
2.3.1. Light scattering in liquids with isotropic molecules 

Density fluctuations in liquids are accompanied by fluctuations in the polarizability cy 
(the dielectric constant E, the refractive index p )  in the space element v. Due to these 
fluctuations, space elements of v seem to be quasiparticles with the dielectric constant e' 
(the polarizability a' and the refractive index p'), which differ from the average macre 
scopic values: AE = e' - c, Acr = CY' - a, Ap = p' - p- These quasiparticles are chaotically 
distributed in a matrix with the dielectric constant L = 5(= p 2 )  and their numerical 
concentration is N,, = l / v .  On the basis of Equation 2.1-33 (Kerker, 1969), we can write 

and (see Equations 2.1-19,-20) 

87r4 ( A Q ) ~  &)=-.- 
A: 21 ' 

8x4 @p 
A; v 

& = -  . -(1 + cos219). 

According to Equation 2.1-46, 
V Aa E -A€ 
47r 

and 

In view of 

(3) 
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If the state equation of the liquid is known (Equation 12-33), then only two quantities 
remain as independent thermodynamic parameters. It follows that A€ can be expressed 
through fluctuations in two quantities, namely, V (or e )  and T or P and T (the former 
pair is used more often): 

A t =  ( g ) T A e t  (g) AT. 
Q 

Detailed analysis (Fabelinski, 1965; Kerker, 1969; Vuks, 1977) shows the second sum- 
mand to be negligible in comparison with the first one, and 

2 - 
r =  3x;f (FJT (9) 

- 
AS ( A V ) ~  = -kT(av/aP)T (Equation 1.4-23) and e = m/v, then A@ = -eAv/v and 

.e2 m = - k T ( * )  VdP - @2 = kTXTU7 

where 

is the isothermal compressibility (Equation 1.1.244). In view of Equation 10, 

and 

These three expressions are referred to as Einstein’s equations (Einstein, 1910; Fabelin- 
ski, 1965; Kerker, 1969; Vuks, 1977). Their comparison with experiment has turned out 
to be difEicult owing to  the complexity of representation of [e(&/&)]~ as experimental 
quantities. This question still raises debate (Shakhparonov, 1963, 1970; Fabelinski, 1965; 
Kerker, 1969; Vuks, 1970, 1977; Ioffe, 1983). 
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2.3.2. Light scattering in liquids with anisotropic molecules 
When considering the anisotropic component of scattered light in gases (Equation 2.2- 

7), molecules are presumed to be oriented every which way with an equal probability. As 
there exists a short-range order in liquids, the situation is much more complicated. 

However, as the evidence suggests, Equations 2.2-19,-24,-25 are applicable to liquids 
with a sufficient accuracy. So, the anisotropic component &,, can be calculated from 
the measured 7 or & and the depolarization factor Am. 

Assuming the random distribution of molecules in liquids (Vuks, 1977), 

81r413 p 2 + 2  
Rsoon = x g p v  (3) yi- 

It differs from &,, for gases (Equation 2.2-18) by the internal field factor [(p' + 2)/312 
only. 

Analysis of the experimental results suggests that &,, appears close to its calcu- 
lated value (Equation 14) for many liquids. The deviations observed can reasonably be 
explained by the existence of the short-range order. 

If an integral correlation parameter of molecular orientation 3 (Anselm, 1947) 
is introduced within the first coordination sphere 

J = 2 (cos21p - A), 3 (15) 

where cos2 t9 is the mean statistical value of cos' 19 for molecular orientations, z is the num- 
ber of molecules in the first coordination sphere, 29 is the angle between the predominant 
direction and the molecular axis, then 

where 

- 
In the absence of an orientational order, cos2t9 = 1/3 and J = 0. Generally, 0 < a < 1 when a < 1/3, J < 0 and vice versa. In the former case, the anisotropic 

component of scattering (and, hence, T$) is less, and in the latter case it is more than 
that in the absence of an orientational interaction (7'). 

Vuks (1977) reports 7$ and 7' for 27 liquids. The values of the optical anisotropy of 
isolated molecules 7' have been determined from Am in vapours or solutions and, rarely, 
using K e d s  effect. 

With rare exception, the deviations of 7zf from 7' fall within 30 %, i.e. they are not too 
high. Many liquids show deviations not exceeding 6 % (the accuracy of measurement). 
As one can expect, the maximal deviations take place for high-symmetrical molecules of 
flat (benzene, pyridine, mesitylene) or elongated (pxylene, chlorobenzene, bromobenzene) 
shape. The orientational order in such liquids is similar to the crystal structure (Frenkel, 
1955). Eg. for benzene y$/y2 > 1 and for pdichlorobenzene y$/,r)' < 1. X-ray analysis 
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of these two crystals reveals that the planes of molecules - in a benzene crystal are arranged 
at an angle close to 90” (whereas in liquid benzene cos2 29 < 113, J’ < 0) and the long axes 
- of pdichlorobenzene molecules are mainly parallel (whereas in liquid pdichlorobenzene 
cos229 > 1/3 and J’ > 0). 

*xylene, toluene and other liquids do not exhibit any order in the distribution of the near- 
est molecular orientations. 

These data on the short-range order in liquids are in excellent agreement with the 
views of the structure of liquids developed by Bernal and his followers (Bernal, 1961, 
1965; Bernal and King, 1971; Skripov and Koverda, 1984). 

2.3.3. Dynamics of density fluctuations. Inelastic light scattering 
The study of inelastic light scattering (the spectral dependence of scattered light) has 

led to a concept of two kinds of density fluctuations, namely, an adiabatic one and an 
isobaric one (Landau and Placzek, 1934; Gross, 1940, 1946; Fabelinski, 1965; Kerker, 
1969; Vuks, 1977). 

Adiabatic fluctuations are related to pressure fluctuations, which can be thought of 
as Debye’s thermoelastic waves (from the theory of heat capacity), propagating in liq- 
uid along different directions with the velocity of sound. Brillouin (1922) has proposed 
considering a beam scattered at angle 29 as reflected from the front of elastic fluctuation 
waves of a certain orientation with the reflection angle cp = d / 2  (Figure 2.30) (Brillouin, 

As teniperature rises, the short-range order is destroyed and r$ approaches 7’. Propanol, 

thermoelastic waves Api\ 
\ 
\ \ \ 

\ 

\,go - &jg,/p 

concentration waves Ac, 

Figure 2.30. Schematicof light scattering on Debye’s thermoelastic waves or on fluctuation 
waves of concentration 

1922; Mandelshtam, 1926; Fabelinski, 1965; Kerker, 1969; Vuks, 1977). Then, Bragg’s 
relation for the first diffraction maximum (the second one is negligible due to the blurred 
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character of the elastic wave front) is 

(17) 
8 
2 2hsin cp = 2hsin - = A. 

With allowance for Equation 2.1 50, 

where A is the elastic wavelength, X is the wavelength in the liquid. As any fluctuation 
profile can be represented as a 3 0  (spatial) Fourier serics, condition 17 corresponds to 
the s (or q) component of the Fourier transform. 

An clastic wave propagates with the velocity V, and Doppler’s shift in frequency must 
occur. Of all possible directions of elastic waves, only two meet condition 17; those which 
propagate along two opposite directions with the velocities +Y and -V, so the spectrum 
of scattered light is split into Mandelshtam-Brillouin’s doublet (Fabelinski, 1965; Kerker, 
1969; Vuks, 1977) 

w = w, - wo = f V q ,  (19) 

where ~0 and w, are the frequencies of the incident and scattered wave, respectively. 
Isobaric density fluctuations are due to the entropy fluctuations, i.e. fluctuations in 

Frenkel’s “holes” in the structure of a liquid (Frenkel, 1955). They lead to the density 
fluctuations which do not depend on pressure fluctuations. Their evolution proceeds 
quite slowly and causes a much lower frequency shift on scattering. These fluctuations 
are related to the central component of scattered light called Rayleigh’s component. 

To consider the spectral dependence of scattered light in liquids more rigorously, we 

Suppose a certain quantity A ( T )  to fluctuate with time (Figure 2.31a) near its mean 
require introducing an idea of a time correlation function (Berne and Pecora, 1976). 

value 
m 

At two different instants, 7 and T+t ,  A has, in general, different values A(7+t )  # A(T) ,  
but if t is small in comparison with the characteristic period of fluctuations of A,  A(T + t) 
will be close to A(7) .  As t increases, one can expect more difference between A( .  + t) and 
A ( T ) .  This, therefore, attests to the correlation between A ( r  + t) and A ( T )  at small t as 
well as of the absence of any correlation at large t. An autocorrelation function of A 
(a time correlation function) serves as the measure of this correlation. It is defined as 

(A(O)A(t))  = lim 
T-+m T 

It follows that (A(O)A(t))  = ( A 2 )  is the maximal value of this function. As when 
t -+ 00, A(7)  and A(‘ + t) become fully uncorrelated, then 

t-03 lim (A(O)A(t)) = (A(0 ) )  ( A ( t ) )  = (A)’ .  (22) 
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b 
t 

Figure 2.31. Time dependence of a fluctuating quantity A ( a )  and the time correlation 
functions (A(O)A(r ) )  ( b ) .  t = rr,,.l is the time of correlation of A,  or the relaxation time 
of A 

So, the time correlation function of a nonperiodic quantity A diminishes with time from 
(A’) to (A)’ (Figure 2.31b). In many applications, the autocorrelation function decays 
exponentially and 

where rr,A is the relaxation time, or the time of correlation of A. 

fluctuation of A 
If a deviation of an instantaneous value A(r) from the mean one is thought of as a 

~ A ( T )  E A ( T )  - ( A ) ,  (24) 

then 

(bA(0) 6A( t ) )  = (&A2) exp (-“) . ( 2 5 )  
Tr,A 

Consider the time correlation function (A’(O)A(t)), where A* is the complex conjugate 
to A. Define a spectral density (or an energy spectrum) IA(w) of (A*(O)A(t)) as 
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Thus, the time correlation function is the Fourier transform of the spectral density 
m 

( A * ( o ) A ( ~ ) )  = J e+cwtra(w) dw. (27) 
-m 

If A is chosen as E, (the electric field of the scattered wave), then 

JE(w,) = 7 (E:(O)E,(t)) dt. 
-m 

27r 

Consider light scattering in liquid with due account of the time dependence of the 

In the general case, the scattered wave field, allowing for possible phase shift, has the 
fluctuations in dielectric constants e(?,:) = 

form (see Equations 2.1-5,-51) 

+ 6t (F , t ) .  

where wo denotes the incident wave frequency. 

tions 2.1-44,-45) and 
Here 6 is replaced by the dipole momentum increment of a space element (see Equa- 

For simplicity, assume incident light vertically polarized. Then, the scattered wave field 
is expressed as (cf. Equations 2.1-51,-53) 

with integration over all the scattering space V .  

stants, i.e. (cf. Equation 2.1-83) 
The integral is the space Fourier transform for the fluctuations of the dielectric con- 

he({ ,  t )  = 1 &(F, t)e"dv 
V 

and 

Es , l (q ,  t )  = -- exp i(wot - kl) 6e(g t ) .  
47rl 

Now, write the time correlation function of E, , l (q ,  t ) :  

(30) 
IC4 

( K , L ( %  O)ES,I(% t ) )  = 0 (&e*(<, 0) & e ( ~  t ) )  exp iwot. 

On substituting Equation 30 into Equation 28, we get in an expression for the spectral 
density 

I&J) = - Eizk' . - 7 (be*({, 0) &(f, t ) )  exp i(w0 - ws) t  dt, 
167r212 27r 

-m 
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which up to the constant matches the scattered light intensity I l ( w )  measured experi- 
mentally (cf. Equation 2.1-75).. 

This formula shows a frequency change w = w, -wo as a result of scattering, which is due 
to the time dependence &e(& t )  whereas scattering on stationary ("frozen") fluctuations 
leads to no frequency change (see subsection 2.3.1). 

If the characteristic time of &({,it) change is less than or equal to lO-''s, the cor- 
responding frequency change is measured by means of a filter technique (prism spec- 
trophotometers, diffraction lattices). If changes of &(z t )  last lo-'' . . . lO-'s, then Fabry- 
Perot's interferometers are used. For the fluctuation fall time within . 1 s ,  a method 
of optical mixing has been developed (Forrester, 1961; Cummins et al., 1964; Ford and 
Renedek, 1965; Cummins and Swinney, 1970; Cummins and Pike, 1974; Dubnishev and 
Rinkevichyus, 1982). 

In the heterodyne method (Forrester et al., 1947; Gorelik, 1947; Cummins et al., 1964; 
Berne and Pecora, 1976) the time correlation function 

I l ( 4  (E:(O)E,(t)), (32) 

which is also called a heterodyne correlation function is measured. 

Pecora, 1976) a homodyne correlation function 
In the homodyne method (Forrester et al., 1955; Ford and Benedek, 1965; Berne and 

I2(t) = ( lEs(0)l~lE&)l~) = ( I ( O ) I ( t ) )  (33) 

is measured, which is obtained at the output of the block called an autocorrelator (a 
photon correlator). 

In the case of heterodyning, scattered light of the frequency w, is mixed with a part of 
incident light of the frequency wo in the detector. This provides strong amplification of 
signals as it happens in a heterodyne receiver of radio signals. Subsequent transformation 
of this low-frequency signal results in the heterodyne correlation function (Equation 32). 

In the case of homodyning, only light scattered by the system reaches the receiver. 
Let A, denote the number of scattered light photons that have reached the photocathode 
during the time interval AT (see Figure 2.31a). The correlator provides measuring pho- 
tocurrent during two fixed time intervals AT separated by i AT (i = 1,2, . . . , n). The two 
values of the photocurrent, proportional to the scattered light intensity, are multiplied, 
and this signal goes to the corresponding ith channel of the correlator's microprocessor 
memory. This procedure is repeated many times (eg. N N lo5) for every time interval, the 
signal is cumulated and averaged in each channel. AY a result, a value (Z(O)I ( t ) )  = &(t) 
appears on the correlator's output as a function of the ith memory channel or of the time 
interval t = i AT according to Equations 21 and 33 (see Figure 2.31b). In this connection, 
this method is often referred to as a photon correlation spectroscopy of scattered 
light (or an self-beat method). 

A special block called a spectrum analyzer converts Equations 32 and 33 to their 
Fourier transforms, the spectral density (Equation 28) and a spectral power 
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In most cases, when 
tionary random process 
of both the techniques 
relationship 

the spectral dependence of scattered light reflects Gaussian sta- 
of the object structure changing, information obtained by means 
is the same and Equations 32 and 33 are related by Siegert's 

Light scattering brings detailed information on the dielectric constant's fluctuations if 
and only if their scale and the wavelength of light are of the same order of magnitude (i.e. - 1000 A or more). 

Fluctuations of such extent involve collective motion of a great number of molecules 
and therefore can be described by the laws of macroscopic physics, namely, thermody- 
namics and hydrodynamics. Thus, small parts of the system where fluctuations of the 
macroscopic values manifest themselves in the properties of scattered light (the Fourier 
transform) contain rather many molecules that enables one to speak of local values of 
such macroscopic terms as entropy, enthalpy, and pressure. Every point r' corresponding 
to a small space element in liquid at an instant t can be ascribed some values of entropy 
density s(F,t), of molecule number density p(r' , t ) ,  of energy e(.',,), of pressure P(r', t) ,  
and of the dielectric constant c(?',t). 
Local equilibrium is spoken of when the local values of thermodynamic and optical 

properties relate to each other as if the substance were in the state of general thermody- 
namic equilibrium. This principle of local equilibrium underlies hydrodynamics (Landau 
and Lifshitz, 1988) and unequilibrium thermodynamics (Glansdorff and Prigogine, 1971). 

The dielectric constant L of a onecomponent liquid in the state of complete equilibrium 
is a function of density p and temperature T: t = +,T) (see Equation 8) (a dielec- 
tric state equation). It is clear that there occur small fluctuations of local density and 
temperature at the local level, so 

p(r',t) =p+Sp( r ' , t )  and T(F,t)=T+6T(F,t). 

According to the principle of local equilibrium, 

e(?,,) = ~ ( p + 6 p ( F , t ) ; T + S T ( ~ , t ) ) .  (36) 

As these fluctuations are expected to be rather small, they can be represented as two 
terms of the Taylor series. If 

then 

As (&/dT),  << ( & / d p ) ~ ,  the second term can be neglected in many cases. Then in 
view of Equations 29-31 and 37, we get 
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where 

S,,(q',u) = -!- /m exp(-i(wo - w.)t) (dp*(i',O)Sp(q',t)) dt 
--oo 

2T 

is called a dynamic form factor (cf. Equation 2.141),  

(39) 

Hence, S p p ( ~ , w )  is the spectral  density of t h e  autocorrelation function of density 
fluctuations Sp(q', t), w = w, - wo. The integral intensity over all the frequency range is 
expressed as 

where 

is a s t ructural  factor (6. Equation 2.1-64) which is the mean square value of the $h 
Fourier component of density fluctuations d p ( 4 .  

In Equation 40 

-L 7 exp(-iwt) ciu = s( t )  
-03 

2lr 

on the basis of the integral representation of the 6 function (Berne and Pecora, 1976; 
Vladimirov, 1979). 

The scale of the scattered light sensitivity to structure is of the order q-' - 1000 A of 
magnitude and turns to be sufficiently larger than the range of molecular interactions in 
liquid (far from the spinodal), and there is no q-dependence in Equation 41 

lim ~ p ( 3  = lim J e t f ~ d p ( ~ )  d~ = J d p ( ~ )  c i ~  = &N, (42) 
P+O P+O 

V V 

where dN is a fluctuation of the number of molecules in the scattering space. 
In view of Equation 1.4-26, 

that matches Einstein's formula (Equation 13). As the liquid density enters into both the 
nominator and denominator of Equation 43, its form does not depend on density units. 
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To derive an explicit form of the spectral dependence I ( <  w )  (Equation 38), information 
on the correlation of density fluctuations in two different points at different instants of 
time is required. If the distance between these points and the wavelength is of the same 
order of magnitude, fluctuations must correlate in time, i.e. the density fluctuation at 
the first point at t = 0 may propagate or spread to the second point for time t .  In this 
connection, the time correlation function can be derived in terms of the hydrodynamic 
equations and Onsager's principle. 

Having taken advantage of thermodynamics of irreversible processes, Onsager (1931ab) 
proposed a principle (Crossignani et al., 1975; Berne and Pecora, 1976), which claims spon- 
taneous fluctuations of A(?, t )  to disappear with time according to the same relaxational 
equations describing macroscopic relaxation processes (Onsager's regression hypothesis). 
The relaxational equations are valid only for time periods during which a great number of 
molecular collisions happen and only for distances much longer than the intramolecular 
ones. Experiments on inelastic light scattering provide the validity of this condition. 

For the density A of a quantity A (eg. mass, energy), the conservation equations in the 
differential form hold 

where f, is the flux density of A .  Onsager states the applicability of this equation to 
equilibrium systems with spontaneous thermal fluctuations, as well as to the systems 
disturbed from the equilibrium condition. In the former case 

A(? , , )=  ( A )  +6A(? , t ) ;  , f ~ ( F , t )  = ( f ~ )  +hfA(F, t ) ,  (45) 

where ( A )  and (.?a) are the equilibrium values, SA, S ~ A  are fluctuations. At equilibrium 

( f ~ )  = 0 and ( A )  does not depend on (?,t) ,  so Equations 44 and 45 yield 

Its 

The time correlation function (see Equation 25) written for this solution has the form 
(Pike, 1974; Berne and Pecora, 1976) 

SA,(< t )  = (SA*(< O)SA(Q', t ) )  = ( ~ S A ( ~ I ~ )  e - r ( * ) t C O S w ( q )  t ,  (48) 

where SA(& t )  is the qth Fourier component of the fluctuation SA(F, t ) .  
The correlation function (Equation 48) corresponds to the spectral density (see Equa- 

tion 26), which represents a superposition of Lorentzians, i.e. of curves like y = Q / T ( Z ~  + 
C2): 
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- 
\ 

# - = \  /'- w, = -vq w, = vq 

/ q  b 

Figure 2.32. Spectral density SAA({,W) (a) and its dependence on the wave vector q ( b )  

where S A A ( ~ ~  E (16A($)12) is the mean square value of the fluctuation dA(q',t), r(q) is 
the halfwidth (at the halfheight S~~(cw) , , / 2 ) ,  w(q) is the shift of the spectral band 
(Figure 2.32). 

In most applications 

= YQ2,  (50) 

4 9 )  = v9, (51) 
where y is an attenuation coefficient and V is the rate of fluctuation propagation. Usually, 
y is the sum of the transport coefficients (in particular, the diffusion coefficient D) .  

Measurement of the width and shift of the bands as functions of q allows one to deter- 
mine y and V and, therefore, to obtain important information of the collective modes of 
the molecular motion and other transport properties of molecules in the system. 
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F 1 ( q )  can be regarded as the lifetime of fluctuations 7,(q) (see Equations 23 and 48). 
It follows from Equation 47 that when q + 0, the rate of changes of &A($ t) approaches 

zero. This means that the density fluctuations of the conservative variable proves to live 
infinitely long when q -+ 0 (8 + 0 or 

Fluctuations responding to the above properties are called a hydrodynamic mode, 
and the way of their description is called a hydrodynamic approximation. The in- 
equality 

+ do), Le. Tr(Q) + do. 

([ being the radius of interactions among the molecules or, in a more general case, the 
correlation radius of density fluctuations in liquid) serves as the condition of applicability 
of the hydrodynamic approximation. 

Near the critical point (near the spinodal), where t + oc) (t-’ 0), the condition of 
the hydrodynamic approximation (Equation 52) fails to satisfy. 

With due account of the q us X,8 dependence and according to Equation 2.1-50, the 
range of applicability of the hydrodynamic approximation can be varied through X and 
29. 

The density autocorrelation function (dp*({, 0 ) 6 p ( f ,  t ) )  for simple liquids is calculated 
by hydrodynamic methods (Mountain, 1966; Stanley, 1971; Cummins and Pike, 1974; 
Lallemand, 1974; Crossignani et al., 1975; Berne and Pecora, 1976; Flygare, 1978). The 
properties of suzh liquids are described by the following set of the dynamic variables 

Of these five variables, only three do influen? light scattering along a given direction a 
(say, z )  since the two transversal components V (Vz and V,) do not comply with Bragg’s 
relation (Equation 17) (see Figure 2.30). 

Detailed analysis of the problem of light scattering in a one-atomic liquid (Mountain, 
1966; Stanley, 1971; Crossignani et al., 1975; Berne and Pecora, 1976; Flygare, 1978) 
leads to the dynamic form factor 

A?, t ) ,  qc t ) ,  V(?, t ) .  

where 7 E c p / ~  = xT/xs;  cp and w are the specific heat capacities under constant 
pressure and volume, respectively, DT E X/rnpcp is the thermal diffusion coefficient (or 
“temperature conductivity”), m is the mass of a molecule, p is the number of molecules 
per unit volume, X is the thermal conductivity from Fourier’s law 

= -XVT, (54) 
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0 being the diffusive part of the energy flux, 

is the longitudinal kinetic viscosity, qs and 
viscosity, respectively, 

1 
2 

are the coefficients of shear and bulk 

(56) r = - [(Y - i ) o T  + ~~1 
is the attenuation coefficient of hypersound waves. With the exception of the two last 
terms in Equation 53, which can hardly be observed, the scattered spectrum (Equation 53) 
is the sum of three Lorentzians (see Figure 2.32). The first term defines the central 
Rayleigh band with the incident light frequency wo and the halfwidth 

The next two terms define Mandelshtam-Brillouin’s doublet with the frequency shift 
f w ( 9 )  = f V 9  and the halfwidth 

AwB(q)  = rq2 (58) 

(see Figure 2.32). The last two terms in Equation 53 give a non-Lorentzian correction, 
which shifts slightly Mandelshtam-Brillouin’s peaks toward the centre and makes them 
asymmetric (however, the full spectrum remains symmetrical about wo). They are usually 
very small. 

Mandelshtam-Brilbuin’s spectrum of molecular liquids is more complex. The internal 
molecular degrees of freedom, in general, are related to translational motion of molecules, 
which leads to additional relaxational mechanisms of density fluctuations. 

Experiment (Lastovka and Benedek, 1966; Stanley, 1971; Flygare, 1978) has shown 
good agreement with the hydrodynamic approximation predictions far from the critical 
region. In particular? for toluene, plotting Aw(q) us q2 leads to a straight line originating 
from the zero point according to Equation 57. 

Besides the triplet, a wider spectrum (due to the anisotropy fluctuations) is observed 
in liquids (Pike, 1974; Berne and Pecora, 1976; Vuks, 1977). Its halfwidth gives the 
anisotropy relaxation time r,.,,, which is of lO-”s order of magnitude. This time is 
sensitive to molecular associations, eg. to H-bond formation (Vuks, 1977). 

2.3.4. Density fluctuations and molecular association 
Molecular association in liquids restrains the development of density fluctuations and, 

therefore, lowers the scattered light intensity (Vuks, 1968; Eisenberg and Kauzmann, 
1969; Shakhparonov, 1976). Water is a glowing example, showing the least effect of light 
scattering among all liquids (1/15 to benzene). Alcohols slightly scatter light as well, 
though 2-3 times as heavily as does water. 

The study of the liquid structure by means of light scattering reveals water to be a very 
homogeneous liquid. It approaches a crystal by its structural homogeneity that, by the 
way, contradicts the secalled bistructural models of water (Vuks, 1968, 1977). 
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2.3.5. Critical opalescence 
As the configurative point approaches the spinodal (see Figure 1.4), ( ~ V / B P ) T  + 00 

and x, + 00 whence, by Einstein’s equations 11-13, I8 + 00 or 7 + 00, which has no 
physical meaning. 

Such an unreal result is due to the assumed independence of fluctuations in space 
elements v while deriving Equations 11-13. However, on approaching the spinodal, density 
fluctuations interact (correlate). As a result, the increment of the scattered light intensity 
turns out to be lower than that predicted by Einstein’s formula; moreover, Rayleigh’s 
scattering law (7 N A-4 and z = 1) breaks down. This suggests that the heterogeneous 
areas have sizes commensurable to the wavelength A. 

Indeed, the increase in the scattering intensity, when the configurative point approaches 
the spinodal, is accompanied by a deformation of the polar diagram of the scattered 
intensity ( z  > 1) and a decrease in the wavelength exponent (Equation 2.1-92) to n x 2. 

These phenomena occurring near the spinodal are called critical opalescence. The 
spinodal can be approached most closely in the region of the critical point (see Figure 1.4). 

The correlation among density fluctuations is described by special functions of struc- 
tural element distribution, or by correlation functions. 

Suppose N identical structural elements (eg. atoms) to occupy a volume V .  Choose a 
coordinate system arbitrarily inside the body and draw vectors Fl and Fz to fix the space 
elements dV,  and dV,, which are distant at I&l. In the case of chaotically distributed 
atoms, the probability for atom 1 to be in the space element d& and for atom 2 to be in 
the space element dV2 simultaneously is equal to the product 

dV1 d& 
v v  dP(?i,T‘,) = --. 

However, if there is a correlation between the atom locations, 

(59) 

where g(71, F..) is the correlation function. 
For isotropic liquids, g depends on r12 only, so 

g(F1,F.z) = g ( l 6  -%I )  = g(lr;zl) = dr). (61) 

If the origin of the coordinates is placed at atom 1, then the probability of atom 2 being 
in the spherical layer 4xrz dr is equal to 

4xr2 dr 
dP(r) = g ( r ) -  

V 
with a normalization 

1 Tg(r)41ir2  dr = 1. 
v o  

g(r) is called a radial distribution function of atoms, or molecules; it defines the 
probability of an atom being at a distance r from a fixed atom to r + dr (Figure 2.33). 
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Figure 2.33. Schematic of the radial distribu- 
tion function, proportional to the probability 
of any atom being found at a certain distance 
from a fixed atom (Ziman, 1979) [J.M.Ziman 
Models of Disorder. Copyright @ 1979 by Cambridge 
University Press] 

As repulsion forces prevent interpenetration of atoms, g ( r )  = 0 within 0 5 r < d (d  is 

If a spherical layer contains d N  atoms, their numerical density is 
the atom diameter) and r -+ 00 when g ( r )  1 (no correlation). 

dN 
d r )  = 

and 

( 6 5 )  dN = p ( r ) 4 r r 2  dr. 

Integration yields the number of atoms in a volume V except for the one fixed at the 
origin of the coordinates 

J: p(r)47rr2 dr = N - 1, (66) 

where N = const. If N fluctuates about its mean value ( N ) ,  then 

According to Equations 62 and 65, 

47rr2 dr p(r)47rr2 dr - d N  
d P ( r )  = = g(r)li - N ’  

whence 
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p being the mean number of atoms per unit volume. 
Consider a system of N identical atoms interacting through central forces (Skryshevsky, 

1980). Choose a set of n atoms ( n  = 1, 2,. . . , N  - 1) inside it. The probability of these 
atoms being placed in space units d & ,  dV2,. . . ,dVn near the ends of the vectors ?I, F2,. . . ,Fn 
from a fixed atom when the others ( N  - n) are placed arbitrarily is represented by 

7 (70) 
dV1 dV2, .  . . , dV,  

V" dP(Fl,F2,. . . , Fn) = Fn(F1,?*, . . . , ?") 

where Fn(Fl, F2,. . . , Fn) are the radial distribution functions normalized so that 

1 - /. .. /.Fn(F1,?z, . . . , Tn) dVi  dV2,. . . , dVn = 1. 
Vn 

A unary function .F1(Fl) is the simplest radial distribution function 

dV1 dP(F1) = F1(6)- 
V 

to define the probability of existence of an atom in a space element d G  at a distance 
from the origin of the coordinates, when the others ( N  - 1) are placed arbitrarily. If two 
atoms interact with each other, the probability of their existence at a definite distance is 
defined by 

where .F2(?1, ?2) is a binary (pair) distribution function. 
For isotropic systems 

F2(?1,F2) = &(IF1 - ?2l) = F2(w)- (74) 

Comparison between Equation 73 and Equation 60 reveals that 

FZ(T12) = g(r12). (75) 

In liquids, as the distance between two molecules increases, their correlation weakens, 
so 

.Fz( lF~ - F2l) -&(?I) . Fl(F2) + 0 when 

The distance, at which this difference varies from zero, defines the range of correlation. 
In the case of a simultaneous interaction among three atoms, the probability of their 

existence in space elements d h ,  d V z ,  dV3 at distances F1, FZ, F3 is defined by a ternary 
distribution function &(?I, FZ, &): 

IF1 - F2\ -+ 00. ( 76) 

Distribution functions of different order are related by 
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In particular, 

The binary distribution function has assumed a particular significance in the theories of 
liquids. The methods of statistical physics allow one to express the main thermodynamic 
functions through the binary function, namely, the internal energy 

the state equation 

PV = N k T  + - N p T r w g ( r ) l r r 2  1 dr,  dr 6 o  

the isothermal compressibility 
00 

1 1 

pkT k T o  
xT = - + - / [g(r)  ~ 11 4rr2 dr. 

Here p(r) is the intermolecular potential of a pair interaction (see Figure 1.40). 
The binary distribution function g ( r )  is related to the intermolecular potential of the 

pair interaction p(r) via an integro-differential equation, which comprises an unknown 
function &(?1, ?!, a), which is the main difficulty in determining g(F1, F.2). 

Various approaches and approximations have been proposed, aiming to solve this prob- 
lem within the framework of statistical physics (Temperley et d., 1968; Croxton, 1974; 
Skryshevski, 1980; Smirnova, 1982). 

As an example, Figure 2.34 presents g( r )  for Lennard-Johnes’ intermolecular potential 
and for the rigid sphere model (Stanley, 1971). Hence, the themy of liquids replaces 
calculation of the statistical sum and the configurative integral by consideration of the 
probability of configuration groups of 2, 3, and more particles. Therefore, computation 
of the correlation functions leads to the description of all the thermodynamic functions 
(Croxton, 1974). 

To describe the substance behaviour at the critical point, a pair correlation function 

h(%) = g(f-12) - 1 (83) 

and a direct correlation function C ( r )  are often introduced according to Ornstein- 
Zernike’s equation 

h(rl2) = C(rl2) + p / h(r13)C(r23) dV. (84) 

If C(r,,) are known or derived from any simplifying ideas, then this equation is solved 
by means of iterations. h(r12) is written as 

h ( r ~ z )  = C ( r l z ) + p / C ( r 1 3 ) C ( r ~ 3 ) d ~ + ~ ~ / / C ( r 1 3 ) C ( i ~ 3 1 ) C ( ~ ~ ~ ) d 1 / 3  dV4+...(85) 
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1 I\ - 0- 
ro a To 

or, in a diagrammatic form, 
3 3 4  

h(r lz )  = m+n+Q+ e - .  , 

Figure 2.34. Interconnec- 
tion between the radial dis- 
tribution function g ( r )  and 
the pair interaction poten- 
tial v(r) for the model of 
rigid spheres with p ( ~ )  + 
00 when r < ro and 
(p(r) = 0 when r > ro (a) 
and for Lennard-Johnes’ 
potential with cp(r) = 

(Stanley, 1971) [H.E.Stanley 
Introduction to Phase Tmnsr- 
tions and Cntrcal Phenomena. 
Copyright @ 1971 by permis 
sion of Oxford University Press] 

cpo{(ro/r)12 - 2(ro/r)6) ( b )  

where the first summand describes the immediate (direct) correlations between the posi- 
tions of structural elements (atoms, molecules, etc.) 1 and 2. The second one is due not 
to direct correlations, but to the correlations of structural elements 1 and 2 via a third 
element placed at the point F13. The third summand defines such cmrelations through 
two intermediate elements, at the points ?‘I3 and &. When the distribution is random, 

Hence, to describe the internal structure of even simple one-atom liquids (liquidified 
inert gases) is a complex and approximate to some degree matter. More sophisticated 
relationships arise in the case of molecular liquids and their mixtures. At the same time, 
the methods of statistical physics show a basic possibility to describe the internal structure 
of a liquid and its association with the equilibrium properties. 

Let us define a relation between the correlation functions of the internal structure of a 
liquid and the phenomenon of light scattering (Skryshevsky, 1980). The total amplitude of 
the waves scattered by a given configuration of structural elements, each approximated by 
a Rayleigh particle, in the case of vertically polarized light is expressed by (Equations 2.1- 

h(7.12) = C(9-12). 

51,-48,49) 

where E’ is a constant. 
For the scattered light intensity (see Equation 2.1-8), 
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Among N2 terms of this double sum there exist N terms with j = k and, hence, the 
exponent is equal to 1. This means that 

This formula defines the intensity of light scattered from the configuration of the struc- 
tural elements at some instant of time. 

For comparison with experimental data I ,  Equation 89 needs to be averaged over all 
the possible locations of the structural elements. The results of this averaging depend on 
whether or not the vector F3k = < - F’k is constant in magnitude. The case of c k  = const 
means a rigid molecule, whereas the other relates to the case of time changing in the 
location of the structural elements. 

Away from the spinodal, the size of the density fluctuation distance is commensurable 
with the atom size, and the structural heterogeneity of a liquid can be probed by X- 
rays and neutron radiation. Near the critical region, the scale of density fluctuation is 
commensurable with the wavelength of light, and the light scattering methods becomes 
informative. 

Calculation of sum 89 is performed by the radial distribution function g ( r )  related to 
the probability of the presence of atom (molecule) j in a space element dV, and of atom k 
in d v k :  

where V is the scattering space, r , k  is the atom-to-atom distance. 

integrated over the space elements dVj and d v k :  

Therefore, each summand in the double sum 89 must be multiplied by d P ( r , k )  and 

As g ( r 3 k )  + 1 with increasing r J k ,  it is reasonable to represent g ( r 3 k )  as 

d r j k )  = b ( T 3 k )  - l1 + 1. (92) 

Assuming all the N ( N  - 1) terms of the double sum to be equal, and neglecting 1 in 
comparison with N, we write: 
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or 

I = I'NFZ(1 + NX1 + NXZ),  

where 

(94) 

and 

1 (96) 
1 xz = E / / e X p  [y(c - Fk)(.'s - 60) dV,  dvk. 

In Equation 95, integration with respect to V, is extended over all the scattering space 
given as a sphere with a radius L. The volume vk depends on the mutual arrangement 
of atoms. Due to the spherical symmetry of g(r,k) and to the fact that g(r jk)  -+ 1 when 
rJk > T k ,  the space v k  is assumed as a sphere with a radius rk defining the range of the 
correlated area. If a given atom is supposed to be anywhere within the scattering space 
with an equal probability, then 

(97) 
- / d F  1 = 1. 
V 

The centre of atom j is placed at the origin of coordinates. The location of atom k with 
respect to atom j can be expressed in the spherical coordinates. Giving due consideration 
for the spherical symmetry of the structure and the wave vector (Equation 2.1-48), we 
write 

27r rli 
1 

7r 

X1 = v / dy 1 r2 [g(r) - 11 dr 1 exp(iqr wsd)  sin 8 d8 
0 0  0 

(cf. Equation 2.1-76). The double integral in Equation 96 is also calculated on the as- 
sumption of the spherical form of the scattering space with radius L. The integrand is 
the product of two multipliers, of which one is related to atom j and the other to atom IC, 
and each integration is extended over all the scattering space: 

2n L 

= [ 1 dy 1 r2 dr 1 exp(zqr c o s  9 )  sin d dd 
0 0  0 
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Substituting XI from Equation 98, and X2 from Equation 99 to Equation 94, we get 

sin qr 
I ( q )  = Z'N3' 1 + - 47rr' [ g ( r )  - 11 -dr { cp 4r 

N 4 
v 3  

[ 3(sin qL(;L;f cos qL) + - . -?rL3 

As g ( r )  = 1 when r >> rk, the limits of integration can be extended to infinity. With 
due account of Equation 69, we have 00 

sin qr 
Qr 

rim2 [p(r) - p]  -dr 

The first summand defines the intensity of scattering by separate atoms with no inter- 
ference among them, and the second one the scattering with allowance for interference 
caused by the near order in the atom location (correlation of density fluctuations). The 
third term represents the scattering intensity at very small angles and depends on the 
shape and size of the sample with no dependence on its internal structure. 

Indeed, the maximum value of the function cp(qL) = 3(sinqL - qLcosqL)/(qL)? is 
about 1 when qL + 0. With increasing qL, cp(qL) undergoes hardly decaying oscillations 
about its zero value defined by qL = tanqL, i.e. at qL w 4.49, 7.74. When qL > 4.49, 
cp(qL) << 1. It follows from q = 4.49/L that for samples of - 0.1-0.2 cm, q M 4.5-10-' A-'. 
Low-angle scattering in this case is practically unresolvable with modern equipment. This 
may appear when density fluctuations, colloidal particles or macromolecules are of order 
1000 A. Neglecting the component of low-angle scattering (see Equations 100, 83, 69), we 
have the following equivalent formulae 

4rr2 [ p ( r )  - P] sin - qr dr} . 
qr 

Denoting Z ' N p I e ,  and including the normalization condition (Equations 66 and 67) 
at q -+ 0, 
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The methods of statistical physics (see, for example, Stanley, 1971) prove that 

where xT is the isothermal compressibility (Equation 1.1.2-41): 

x T = -  (;:P) - =- p:P- 

Then (see Equations 103, 104, and 105), 
00 

sin qr 

qr 
= 1 + p/4?rr2h(r)-dr = kTpX, M 1 + S(q)p, 

Ie  0 

where S(q) is the structural factor (see Equations 2.1-64,-76.. .80,-82, 2.3-41). 
Thus, the light scattering intensity is immediately related to fluctuations in the num- 

ber of particles in the system (Equation 105) and the isothermal compressibility (Equa- 
tion 107). If the radial function of density distribution is permitted to be spherically 
asymmetrical, the equation 

00 

(108) 
I ( q )  ~ ( q )  = - = 1 -+ p /  h(r)  exp (-i(<q) d~ 
43 0 

holds in a more general case. 
Define the experimental scattering function as 

;(a) = I(q) - 1 

(Rushbrook, 1968), then 

or (for a spherically symmetrical function h(r)) 
00 

qL(q) = 47r J rh ( r )  sin qr dr. 
0 

The inverse Fourier transformation gives 
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or (for a spherically symmetrical h(q)) 

Then (see Equations 83 and 110) 

that enables one to determine experimentally the radial distribution function g ( r )  using 
the radiation diagram i ( q ) .  

Applying the Fourier transformation (Equation 84) and the convolution theorem, we 
obtain 

or 

(1 + P % d ) ( l  - P q q ) )  = 1. (117) 

&(q) + 00 at q + 0, (118) 

Near the critical point xT -+ 00, therefore, it follows from Equation 107 that 

however, according to Equation 117, C(q) is finite and 

(119) 
1 

P. 
C(q) + - at q + 0. 

Thus, Ornstein-Zernike's equation 84 introduces the direct correlation function C(r )  
which is short-range in the critical region. On the other hand, the form of C(q) given by 
other relationships of statistical physics, or by a simpler approximation, enables one to 
obtain the functional dependence of the pair correlation function h(r ) .  

Ornstein and Zernike (1914, 1918; Stanley, 1971; Kociiiski and Wojtezak, 1978) have 
supposed 6(q) to be an even spherically-symmetrical analytical function of q in the vicinity 
q = 0 for any temperature (including Tc),  i.e. 

00 sin qr 
pi*(q) = 4 ~ p / r C ( r ) g d r  p C ( 0 )  - R2q2 + ..  

0 

(if only two terms in the expansion sin z/z M 1 - x2/3! + . . . are left), 

In view of Equations 108-110, 117, and 120, we can write 

I-l(q) = 1 - p C ( 0 )  f R2q2 -t . . . . 
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It also follows from Equations 116 and 120 for small q that 

k ( q )  = Zl(q) + X(q) [pC'(O) - R2q2] . 

h(r)  [l - pC(O)]  = C ( r )  + R2V2h(r ) ,  

(123) 

(124) 

Fourier transformation of Equation 123 leads to 

k(q)q2 = -V%(q). 
From Equations 107 and 117, we have for q -+ 0: 

1 
1 -pC(O) = - - - kTPX, - ;T (g )T .  

If the short-range direct correlation function C ( r )  in Equation 124 is neglected in com- 
parison with the pair correlation function h(r) ,  then Equation 124 reduces to a differential 
equation 

1 - pZl(0) 
h(r )  = 0 

R2 Ah(r) - 

or 

where 

(in terms of Equation 125). 
The solution of Equation 127 has the following form (at large r ) :  

where A is the constant, tp characterizes the efficiency of the correlation fall with distance 
and is called a long-range correlation distance. 

A is defined from the normalization condition (here from the condition that the formula 
for the scattered light intensity at a finite [,, in the limiting case t, + 0 must reduce to 
Einstein's formula 13). 

According to Equation 2.1-73, h ( r )  can be considered as a correlation function of the 
dielectric constant: the conversion factor for Ap + At appears in both the sides of 
Equation 2.1-73 and cancels out. 

If the correlation function of the dielectric constant h(r)  (Equation 2.1-73) is defined, 
we - obtain Equation 2.1-80 for Iz, (see also Table 2.4) with Equation 2.1-77. Replacing 

as we did for Equations 9 and 10, we get 
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According to Equation 2.1-77, w, is the Fourier transform of h(r) ,  i.e. w, = h(q) in this 
section's notation. In terms of Equation 129, 

Comparison between Equations 131 and 130 yields the normalization constant 

A = L  

and, finally, we get 
47T , 

This equation defines the main properties of light scattered by liquid in a wide region of 
the state diagram. Away from the spinodal 6, + 0 and Equation 133 reduces to Einstein's 
equation 13. As the spinodal is approached, the correlation of density fluctuations tQ 
increases, and Equation 133 predicts a deformation of the radiation diagram and a fall 
in the wavelength exponent n from 4 to 2: Rayleigh's scattering gradually passes to 
Rayleigh-Debye's scattering, the intensity of scattering increases due to x, rise. 

According to Equation 133 at low angles (q + 0), light scattering is also described by 
Einstein's formula. Elementary transformations of Equation 133 lead to 

sin2 - . 
2 R i l  = R;Io(l + 6:q2) = R;Lo [I 

ltin2 "I (134) 

Hence, from the slope of R;' us q2 or RB1 us sin2 d / 2 ,  one can determine the long-range 

Debye (1959) has applied another approach to describe critical opalescence, which has 

The space distribution of density fluctuations is expressed by a Fourier transform, whose 

correlation distance 6, (Stanley, 1971; Skripov, 1972; Vuks, 1977). 

turned out to be reasonable both for multicomponent and for one-component systems. 

qth component is a sinusoid with a wavelength A: 

(135) 
27T 
A Ap = q = qo(q) sin -2, 

x being the propagation direction of a fluctuation hypersound wave, which, according to 
Brillouin's formalism of light scattering (see Figure 2.30) makes an angle of 'p = 6/2 with 
the direction of incident light (the vector ko). 

The scattered light intensity is presumed to be equal to the squared amplitude of this 
qth wave (see Equation 9), i.e. Equation 1.4-18 which is calculated with the density- 
fluctuations-related Helmholtz potential increment as a distribution function 
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If fluctuations are small, the expansion of AF into a Taylor series can be confined 
to two terms, the first of which corresponds to the first derivative of F and is equal to 
zero, since the system is in equilibrium (see Tabl: 1.1). Then, Equation 136 reduces to 
Einstein’s equation 13. 

As the critical region is approached, fluctuations become correlated (and no more Gaus- 
sian, cf. Equation 1.4-17), so the subsequent terms in the AF expansion have to be taken 
into account. Special analysis (Zeldovich and Todes, 1940; Cahn and Hilliard, 1958; Cahn, 
1959; Debye, 1959; Landau and Lifshitz, 1964) led to the next term in the A F  series being 
proportional to the squared density gradient (one-component system), or to the squared 
concentration gradient (binary system). Introduction of an additional term is caused by 
the appearance of surface energy in a system with strongly developed fluctuations (like 
a microheterogeneous structure). Debye (1959) indicates it was Rocard (1933) who first 
pointed to the importance of the effect of fluctuation gradient with light scattering near 
the critical point. Since then, this idea has been used repeatedly. 

For a one-component system, Debye (1960) has derived 

2 

T’( 1 + cos2 8 )  [e (E) kTx, 
Rg = 

where f = T/Tc is the reduced temperature. 
The parameter 1 is defined as the range of molecular interaction 

J T%(T) dw 
12 = 

J E(.) dw ’ 

(137) 

where E(.) is the potential energy of interaction, and the space integral is calculated from 
the “contact” point to infinity. The quantity 1 is also called Debye’s length. Debye 
(1963) has shown the full equivalence of Equations 137 and 133 for a system with the 
van der Waals state equation and the conversion rules 

6[: = L:, (139) 

and 

has the meaning of a correlation length and is defined as 

e being the density of the substance, m the mass of a molecule. 
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When T -+ T,, tQ + 00 by the power law (see Table 1.2) 

exp ( -u)  , ( e  > 0) 
[Q - { , ( E  < 0). 

According to Equation 128, 

62 - x;l2. 

As xT N exp (-y), then 

1 
u =  23 

and 

I 1 ,  u =-y. 
2 

The mean field theories give 

1 
2 

y=y'=- 

Hence 

On the basis of Equation 133, 

R g  - q P 2 .  

Equation 147 applies to many systems, but the dependence R,' - q2 shows concavity 
at T + T, in some cases (Stanley, 1971). More rigorous analysis (Fisher, 1964; Stanley, 
1971) has led to a modification of Ornstein-Zernike's approximation 

Its Fourier transform is 

qr) r - ( d - 2 + 0 )  (149) 

where d is the space dimension. The exponent 77 is also classified among the critical indices 
(Stanley, 1971) though it does not reflect the temperature dependence of I&. 

For d-dimensional space, Equation 82 allows us to write 

x, - 7 h ( r ) r d - '  dr, 
0 

and, in view of Equation 149 (Baxter, 1982), 
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so 

7 = V(2 - 7)). (153) 

Analysis based on king’s 3 0  model’ (Fisher, 1967) yields 

(154) 
5 9 1 
4 14 18 7 = - f 0.003, v = - f 0.0025, 7) = - f 0.008. 

Chu (1970) has established experimentally that y 2 1.2 and v 2 0.6 for one- and 
two-component systems. 

It follows from Equation 57 that measuring the halfwidth of the central band on the 
dynamic light scattering spectrum defines the X/cp ratio. In view of Equations 1.1.2-19,- 
43, c p  + 00 on the spinodd and Aw(q) + 0. 

Benedek (1969) reports Zaxman’s data as processed by Lastovka to determine DT = 
X/cprne of SFe on the characteristic lines of the state diagram P-e (Figure 2.35). 

P 

Figure 2.35. A family of curves on the state diagram P-e near the critical point, along 
which the inelastic scattering bandwidth for SFe was measured (Benedek, 1969). 1 is the 
critical isochore, 2 is noncritical isochores, 9 is the critical isotherm, 4 is the spinodd, 5 
is the binodal. P, and pc are the critical pressure and density, respectively 
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The following results have been obtained: along the critical isochore (T 2 T,) 

( T  T,Tc)1-26*o.02 cm2/s, 
DT (1.26 f 0.04)10-2 - 

along the coexistence curve (binodal) (T 5 Tc) 
T - Tc)0.632f0.W2 

DT = (1.79 f 0.01)10-3 ( cm2/s 
Tc 

on the side of vapour, 

( T T, Tc ) 0K35*0*oo3 
DT = (1.75 & 0.02)10-~ - cm2/s 

on the side of liquid. 
Along the critical isotherm as a function of density 

2.4f0.01 

DT = 1.65 . (7) cm2/s. 

(155) 

(156) 

(157) 

Such data are of great importance for comparison with the critical indices from different 

By extrapolation Aw + 0 on the non-critical isochores (see Figure 2.35), the spinodal 
models and theories (see section 1.5). 

temperatures corresponding to 

were obtained, this equation being similar to the spinodal equation in the van der Waals 
approximation 

Analysis of experimental data (Kadanoff et al., 1967; Pokrovski, 1968; Stanley, 1971; 
Skripov, 1972; Anisimov, 1974) shows the critical indices to be universal for the majority 
of liquids within the limits of experimental error. Near the critical point, as should 
be expected, a deviation of experimental data from the predictions of hydrodynamic 
approximation is observed. Other approaches are being developed for this vicinity. 

Near the critical point, an increase in the scattered light intensity (critical opales- 
cence) is observed. The Rayleigh (non-frequency-shifted) line chiefly contributes to this 
increase, its intensity being proportional to cp  - cy (see Equation 53) and exceeding that 
of Mandelshtam-Brillouin's (MB) components (proportional to m/cp, see Equation 53) 
by several orders of magnitude (Swinney, 1978). 

Moreover, as the critical point is approached, the shift of the Mandelshtam-Brillouin 
components +w(q) + 0, because the velocity of sound 
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At the same time, the width of the Mandelshtam-Brillouin components rises due to a 
sharp increase in the bulk viscosity r ] ~  (see Equations 58, 55, 56). 

The width of the Rayleigh central band in a one-component liquid (see Equations 53,57) 
or in a solution (see section 2.4) does actually correspond to the decay rate of fluctuations 
in the order parameter, and can be expressed in the general form as 

where C is the Onsager kinetic factor (thermal conductivity for a one-component liquid 
and diffusion coefficient for a solution, see section 2.4), X is the generalized susceptibil- 
ity which diverges in the critical point, causing r + 0 which is reflected in a critical 
retardation of the order parameter relaxation. 

Indeed, as the configurative point approaches the critical one, more and more time is 
required for the equilibrium state to establish in the system (see further the conclusion 
to subsection 2.4.3). 

The order parameter relaxation near the critical point is quantitatively described by 
the mode-mode coupling theory (Kawasaki, 1966, 1970ab; Kadanoff and Swift, 1968; 
Kawasaki and Lo, 1972; Lo and Kawasaki, 1972; Swinney, 1974; Anisimov, 1987). 

Near the critical point, the different modes of motion corresponding to heat flux 

viscous flux 

sound 

ss = f i V q  (165) 

interact with each other, which leads to a complex pattern of molecular dynamics in 
liquid. According to the mode-mode coupling theory, 

where 
nomena, q* is the so-called high-frequency shear viscosity 

is the correlation length of fluctuations in the order parameter in dynamic phe- 

3 
~ o ( x )  = 4 [I + z2 + (x3 - x-') arctan z] , (167) 

where x = q t .  

Lo, 1972) 
The viscosity q* is related to the macroscopic shear viscosity r ]  through (Kawasaki and 
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where K(z ) /K , ( z )  is a function varying from 1.06 within 0.1 < 2 < 1 to - 1.2 at 2 N 10. 
Correspondingly, for the decay rate of fluctuations in the order parameter, 

where K(&) is Kawasaki's modified function (Kawasaki, 1970a; Kawasaki and Lo, 1972). 
Near the critical point, the characteristic correlation length of fluctuations in the order 

parameter i is related to the characteristic lifetime (relaxational time) of the critical 
fluctuations 

(170) 
- ?  
I - = -  

A '  
where the thermal conductivity X obeys 

kT 
A - -  

6 7 4 '  

This formula is similar to the relation between the diffusion coefficient of a "drop" with 
the size in a liquid with the viscosity pl .  Correspondingly, for ? 

is valid. 

172) 
Thus, the dynamic scaling invariance holds in the critical region (see Equations 169, 

where K ( q [ )  is a universal function, T~ = I?;'. 

2.4. Concentration fluctuations, light scattering and 
diffusion in solutions 

2.4.1. Light scattering. Mean statistical fluctuations 

intensity of scattered light has three terms: 
A new kind of fluctuations (concentration fluctuations) appear in solutions, so the full 

I = Iden + Ik + In,, (1) 

due to the fluctuations in density I&,, in concentration Ik, and in orientation (anisotropy) 
I=,,. As I,, is incalculable in the general case, anisotropic scattering is taken into account 
phenomenologically through Cabannes' factor to be determined experimentally (Equa- 
tions 2.2-19, 20,-24,-25) 
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and 

In the case of scattering on concentration fluctuations, 

Then (see Equation 2.3-5) 

and (see Equations 2.3-3,-4, 4) 

where 1 2  is the mole fraction of the second component. Similar expressions can be written 
for the first component as well. According to Equation 1.4-33, 

kT - _ -  kT   AX^)^ = kT - 

T,P 

where pi is the chemical potential of the mixture components, ii is the overall number of 
moles of two components in the volume v. Substituting the first expression into Equa- 
tion 5 ,  we get 

where vI2 = v / f i  is the molar volume of solution. 
expression in Equation 6, we obtain for 29 = 90" 

Doing the same with the second 

It follows from the last two equations that away from the spinodal, Rk,m is small and 
increases as the configurative point approaches the spinodal. Lisnyanski (1961, 1966), 
Lisnyanski and Vuks (1962, 1964, 1969), Vuks (1977) have proposed to characterize the 
level of concentration fluctuations by a concentration fluctuation function f: 

_ -  ; - (g)T,p. (9) 
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f = 1 for ideal solutions (Equation 1.1.3-13), f > 1 for solutions with a positive 
deviation from ideality, and f < 1 for solutions with a negative deviation from 
ideality. Then, with allowance for Equations 7 and 9, we can write 

Comparison of Equations 7, 8, 10 with experimental d u e s  of Rk,w also causes great 
difficulties to express (&/&2)T,p via experimentally measured values (cf. subsection 2.3.1) 
(Fabelinski, 1965; Kerker, 1969; Vuks, 1977). Vuks (1977) has proposed a formula firmly 
confirmed by light scattering data together with other independent methods: 

1' XlX2V12f,  [ (2n2 + l)(n2 + 2) 
9Y12 

Rk30 = & 
where n is the refractive index of the solution and 6n/ax2 is its increment. An example 
of the concentration dependence of f and Rden,w of a binary solution is shown in 
Figure 2.36. 

If the last expression from Equation 6 is substituted to Equation 5, we obtain 

- 
assuming v/ii 2 VI. 

In view of Equation 1.2-27 and the relationships 

we get 

The last formula is valid for concentration expressed in any units, as the conversion 
factor reduces, so 

Accepting n nl, we derive the traditional formula for Rayleigh's ratio for polymer 
solutions of moderate molecular weights, which is applied to determine the molecular 
weights of polymers 
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Figure 2.36. Concentration dependence of the concentration fluctuation function f at 
T = 20" C ( I ) ,  of Fbyleigh's ratio R i , , W  (2) ,  of the component R,,,m due to the density 
fluctuations &,w,den (3 ) ,  of the diffusion coefficient D ( 4 )  in the system CC14 + C2H50H. 
Ethanol mole fractions are laid off as abscissa. f and R,,,w are taken from (Vuks, 1977, 
pp. 164-165), D is from (Hammond and Stokes, 1956) [Reprinted with permission from: 
B.R.Hammond, R.H.Stokes. Trans. Faraday Soc. 52 (1956) 781-786. Copyright @ 1956 by the Royal 
Society of Chemistry]. Curves 2 and 3 are calculated by Equations 2.4-8 and 2.3-12 for 
individual liquids and their mixtures using volume fractions: R i s , m , d e n  = w ~ R , , , ~ ~ , d e ~ l  + 
v2R,,,90,den2. The circles on curve 2 relate to  the experimental values of with the 
anisotropic component excluded by Equation 2.4-2, X = 546.1 nm. The temperatures of 
the measurement of the scattered light intensity and diffusion are 20 and 25"C, respectively 

2.4.2. Critical opalescence 
As the spinodal is approached, the applicability of Equations 7, 8, 10, 11 disappear 

(Rk,m + 00 on the spinodal) due to  the correlation of concentration fluctuations, so in 
this vicinity the formalism of correlation functions has to be employed to describe critical 
opalescence. 

In the case of solutions, the following parameters of interaction are introduced (Debye, 
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1959): 

where ~ i j ( r )  is the potential energy of interaction between two individual molecules of the 
ith and j t h  kind. The integration extends over the space with volume element dv from 
the value of r at “the moment of contact” to r = 00. Then, a mean range of molecular 
interactions between two molecules (an analogue of Equation 2.3-138), or Debye’s 
length 6 is expressed as (Debye, 1959; Chu, 1970) 

where wi is the volume of a molecule of the ith component. Wij fwiw, is called the cohe- 
sion energy density (CED). Hence, Debye’s length 1 can be expressed via Gildebrand’s 
solubility parameters (Rowlinson, 1969) 6ij: 

Relationship 14 is an approximation, valid for regular solutions and van der Waals’ 
interaction forces, in particular, for the rigid sphere model ( E  + 00 when r < d )  with the 
at tract ion potential 

d being the sphere diameter. 

1970). Then, according to Equations 12 and 15, 
In the case of variously-sized spheres, a contact diameter u;, is introduced (Chu, 

where 611622 = b12 is accepted. 
Debye (1959) has introduced the symbols # and R as 

In view of Equation 13, we get 
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and 

Wll w22 w12 = -+ - -2-. 
w; w; WIW2 

Then for Debye’s length the following relationship is valid: 

Debye has considered the effect of light scattering by two-component solutions within a 
wide area of the state diagram, using the formalism of Brillouin’s scattering (see subsec- 
tion 2.3.5) with the gradient term entering into the energy term of the Helmholtz potential 
only (the entropy term corresponds to random distribution of molecules, i.e. the model of 
regular solution). This led to the following result: 

where 7r (in the denominator) is osmotic pressure, nl is the solvent refractive index, c and 
e are the concentration (g/cm3) and density of the second component, respectively. With 
an optical constant 

2 

W A  

Equation 21 takes the form 

K C  2 C #  16n2 6 -(1 +cos 8 )  = - - sin2 -. Rk$ S”C ( l T T )  + my 2 

Away from the spinodal, the second summand in the right-hand side is small in com- 
parison with the first one, and 

K C  a 
-(1 +cos2”) Fz - (5) 
Rk.8 dc RT (24) 

reduces to Debye-Einstein’s equation (Debye, 1947) to determine the molecular mass 
of the solute (the second component) M 

Used here is the virial two-term expansion of osmotic pressure 
T C  - = - + d 2 c 2 + . . .  , 

RT M 
where d2 is the second virial coefficient. 
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Relationship 25 also follows immediately from Equation 5. If one substitutes the l a d  
expression from Equation 6 to Equation 5 and considers Equation 1.2-27, v/ii E vobl and 

then he gets 

This formula is valid for polymer concentrations expressed in any unit, as the conversion 
factor reduces. If n2 M n: in the denominator, then, in view of Equations 22 and 26, 
Equation 25 will result. 

Equation 25 has gained acceptance to determine the molecular weights of macro- 
molecules with moderate sizes to satisfy the condition of Rayleigh’s scattering (Doty 
and Steiner, 1950; Flory, 1953; Stacey, 1956; Tompa, 1956; Tanford, 1961; Tsvetkov et 
al., 1964; Morawetz, 1965; Kerker, 1969; Eskin, 1973; Rafikov et al., 1978). 

Near the spinodal, the second term in the right-hand side of Equation 53 predominates, 
since on the spinodal (Equations 1.2-52, 1.3-19) aApl/dx2 = 0, therefore, dApl/ac = 0, 
and, according to Equation 1.2-27, 

dR 
a C  
_ -  - 0. 

Owing to the second term in the right-hand side of Equation 23, &,8 is finite on the 
spinodal, but when 29 + 0 this term also tends to zero, whence 

&,@+-, + 00 (Ri,i,o + 0) on the spinodal, (28) 

which was used by Chu et al. (1969) to determine the spinodal location (Figures 2.3% 
2.39). 

The measurements of the scattered light intensity were carried out in the stability region 
of a one-phase solution. The validity of such an extrapolation, which passes through a part 
of the stability area, and through all of the metastable area, seems rather problematic, 
and Chu et al. (1969) call the obtained curve a pseudospinodal (see Figures 2.37-2.39), 
as do the curve obtained from extrapolation D + 0, where D is measured using the 
narrowing of the central band of scattering Aw (see subsection 2.4.4). 

The experimental values of Ri,i=o (or I&o) in the region of critical opalescence also 
obey the experimental law like Equation 1.5-1,-5. Eg. Figure 2.38 shows 

where T,,+ is the spinodal temperature determined from light scattering + 0) 
(see Equation 2.38), Tb; is the binodal temperature. 

In the region of critical opalescence, the parameters of the fluctuation correlation (the 
long-range correlation distance &, the radius of intermolecular interaction forces, i.e. 



188 2.4. Fluctuations, light scattering and diffusion 

0.15 

0.10 

0.05 

0 
0.08 0.12 0.16 

5 2  

D lo4, cm2/s 

Figure 2.37. System isobutylic acid+water. Isotherms 
and D at the critical temperature T, = 26.086"C 

as a function of the mole fraction of isobutylic acid (Chu 
et al., 1969) p.Chu, F.J.Schoenes, M.E.Fisher. Phys. Rev. 185 
(1969) 219-226. Copyright @ 1969 by the American Physical Society] 

0.08 0.12 0.16 
2 2  

Debye's length I ,  the correlation length L k )  are determined as in the case of a one- 
component system (see subsection 2.3.5). 

Eg. in the system perfluoromethylcyclohexane+CCls near the critical point 

L k  N E-", Y 0.540 f 0.013 (30) 

(Chu et al., 1972). 
According to Equation 23, critical opalescence begins near the curve of loss of stability, 

i.e. near the spinodal. In this connection, it seems relevant to recall that during the 
solution-crystal phase separation, the system has no pretransition phenomena like critical 
opalescence (see subsection 1.3.2), and the scattered light intensity starts to increase 
only after the intersection of the configurative point by the liquidus curve, owing to the 
emergence of particles of a new phase (colloidal scattering). 
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Figure 2.38. System isobutylic acid+water. Recip- 
rocal intensity of scattered light I&o extrapolated 
to 8 4 0 with respect to T - Tb, for 0.0906 mole 
fraction of isobutylic acid (Chu et al., 1969). De- 
pendence D = lim(Aw/q2) us T - Tb, for isobutylic 

acid concentrations 0.0906 (I), 0.14 ( 2 ) ,  0.114 (3) 
mole fractions [B . Chu, F . J .Schoenes, M.E .Fisher. Phys. 
Rev. 185 (1969) 219-226. Copyright @ 1969 by the Ameri- 
can Physical Society] 

Tip - Tbi T - Tbi, grad 
P+O 

D 

-0.5 0 1.0 2.0 

T - Tbi, grad 

2.4.3. Diffusion 

to the level of the concentration fluctuations in solution. 
(phenomenological) Fick law 

The diffusion coefficient D, is another experimentally measured quantity sensitive 
It is derived from the first 

y'. = -DiVc;, (31) 

where ?Di is the flux density of the ith component in the mixture (g/cm2s), ci is the 
concentration of the ith diffusing component (g/cm3). If a concentration gradient exists 
only along the direction x, then 

Zo being a unit vector. 
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Figure 2.39. System isobutylic acid+water. Coex- 
istence curve (binodal) ( 1) and pseudospinodal ( 2 )  
from light scattering studies, Z$,=o + 0 (circles) 
and diffusion D = Aw/q2 (triangles) (Chu et al., 
1969) [B.Chu, F.J.Schoenes, M.E.Fisher. Phys. Rev. 185 
(1969) 219-226. Copyright @ 1969 by the American Physical 
Society] 
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The flux density is defined as the amount of substance (in grams, moles, or any other 
units) diffusing through a unit surface normal to the flux direction per unit time. Con- 
centration is expressed in the corresponding units. 

On the other hand, due to one of the basic principles of nonequilibrium thermodynamics, 
the diffusional flux density of components 1 and 2 in a binary mixture (solution) is written 
as (Rehage et al., 1970; Bazarov, 1976; Gurov, 1978) 

where pf is the chemical potential of the ith component per molecule, L i k  stands for 
Onsager's phenomenological coefficients. -apf/az has the meaning of a motive force. 

It follows from Equations 33-34 and Gibbs-Durgham's equations 1.1.2-49 written as 

c1(..) +c2 (Z) = o  

(here z is the coordinate), that 

For the flux density, the phenomenological relationships 

(35) 
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hold, where 6; is the mean velocity of particles (molecules). Comparison between Equa- 
tions 36 and 38 leads to 

The mean velocity/motive force ratio defines a mobility u;. Therefore, 

It results from comparison of Equations 32 and 40 that 

In the course of a diffusional experiment, the concentrations of the diffusing components 
vary in a restricted physical space (a diffusional cell), which leads to changes in the density 
and volume in parts of the diffusional cell with respect to a immovable coordinate system. 
That is why choosing a location of the reference plane of the section, through which passes 
a unit of the substance amount, is not a simple matter, and the coordinate system for 
flux density is fixed in different ways (Erdey-Gruz, 1974; Read et al., 1977; Malkin and 
Chalykh, 1979), which leads to different diffusion coefficients, according to Equation 31. 

In the case of binary systems, the coordinate system (the reference plane of the diffu- 
sional flux) is often chosen so that the diffusion coefficients of both the components could 
be equal: 

D1 = Dz = D. 

D is often called an interdiffusion coefficient (Erdey-Gruz, 1974). 
Then, 

Thus, the interdiffusion coefficient (to be called in what follows just a diffusion CCF 

efficient) depends on the hydrodynamic factor u; and the thermodynamic factor 
c; (dpLf/dc;). 

The quantity fi = l /ui  is often referred to as friction coefficient, then 

This notation is valid for concentrations expressed in any units. With mole fractions, 
in view of Equation 1.1.3-7 and pf = pi/N~, Equation 43 gives Einstein’s equation 

kT Did = - fi (44) 
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for ideal solutions. 
The positiveness of the diffusion coefficient ( D  > 0) in the solution stability area (includ- 

ing the metastable region) is an important corollary of Equation 43 (cf. Equations 1.1.2- 
53,-55 with 43). In an absolutely unstable region 

D < O  (45) 

and 

D = O  (46) 

on the spinodal. 

(Lisnyanski and Vuks, 1964, 1969; Read et al., 1977) 
When studying diffusion in the solution stability region, in many cases the relationship 

applies, where Did = x1D; + 220;; Did is the diffusion coefficient in an ideal solution, 0: 
is an self-diffusion coefficient of molecules of the ith component in its individual state: 
Did + Df when xi -+ 1; f is the function of the concentration fluctuations (Equation 9). 

Hence, the function f relates both to diffusion and to light scattering (see Figure 2.36). 
In this case, f is calculated from vapour pressure at T = 20°C (Vuks, 1977). 

The maximal value fmax corresponds to the critical concentration of the mixture. The 
magnitudes of fmax enable one to judge how distant from T, the isotherm is, since, at T,, 
fmax -+ 00. 

According to Equation 47, the critical concentration corresponds to the minimum &in. 

The concentration at the maximum of Rayleigh’s ratio, &la,w,max, slightly differs from 
the critical one owing to the influence of the concentration dependence of other optical 
quantities of the mixture (Equation 10). 

The study of the concentration dependence f is a very informative and sensitive method 
for analyzing the molecular interactions in binary systems (Vuks, 1974). This dependence 
is obtained experimentally from light scattering data in solution or diffusion. Then, using 
f = f (z2), one can calculate the most important thermodynamic quantities of the system. 

For instance, systematic studies on light scattering in the systems toluene+an alcohol 
(Vuks, 1974) have shown fmru to increase in the line methanol-ethanol-propanol- 
butanol-decanol, with x2, shifting towards higher alcohol concentrations. These data, 
in comparison with similar ones for other systems, have led to important conclusions 
about the structure and character of the intermolecular interactions. 

The same approach was successfully applied to study 13-bonds and more common as- 
sociation phenomena in solutions (Vuks, 1974). 

In agreement with Equation 46, experimental studies on diffusion in the critical region 
of the system phenol+water (Krichevski et al., 1954; Krichevski and Khazanova, 1960) 
have indeed shown a negligibly small value of D at the critical point (Figure 2.40, see also 
Figures 2.37-2.39). 

An infinitely small value of the diffusion coefficient D + 0 at the critical point (and, 
generally, on the spinodal) leads to infinitely slow substance transport even at great 
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Figure 2.40. Dependence of the diffusion 
coefficient in the system phenol+water on 
the phenol concentration (wt %) at 67°C. 
C denotes the critical point (Krichevski 
and Khazanova, 1960) 

0 10 20 30 C 40 

c,  % 

concentration gradients (see Equation 31). This explains a significant difficulty in driving 
experimentally the configurative point to the nearest vicinity of the critical point. In 
the view of Semenchenko (1960), to reach the critical point is a principally unsolvable 
experimental problem. 

There is another corollary of D + 0 near the spinodal: an infinitely low rate of disper- 
sal of the fluctuations arisen spontaneously. According to Onsager's criterion (see subsec- 
tion 2.3.3), these fluctuations turn out to be long-living regions of heterophase fluctuations 
which can be regarded as colloidal particles, and the system itself as a quasicolloidal one 
(microheterogeneous) (J. Frenkel, 1938; Skripov, 1960). 

2.4.4. Dynamics of the concentration fluctuations. Scattered light spectrum 
Alpert et al. (1965) were the first to measure the width of Rayleigh's band in the 

binary system aniline+cyclohexane at the critical concentration. They found that the 
band contracts as the configurative point approaches the critical temperature T,. A direct 
proportionality of Aw us q2 was also found. 

Debye (1965) was the first to explain these experimental data. According to Onsager's 
(1931ab) principle, concentration fluctuations in solutions Sc(F, t )  must obey an equation, 
which is applicable to macroscopic diffusion, i.e. (in this case) to Fick's second law (Berne 
and Pecora, 1976; Marshall, 1978) 

(Equation 48 is obtained by substitution of Equation 31 into Equation 2.3-46, D is the 
diffusion coefficient of the second component). 

Fourier transform of Equation 48 results in 

(49) 
a 
--[&c(gt)] = -q2D6c(q',t), at 

where Sc(6 t )  is the spatial Fourier transform of the concentration fluctuations (cf. Equa- 
tion 2.3-47). The solution is 

Sc(6 t )  = Sc(q', 0) exp [-Dq2t] , (50)  
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where 6c(ij', 0) is the initial fluctuation of the $h component of the Fourier transform of 
the concentration fluctuations (see Figure 2.30). Multiplying by the complex conjugate 
6c*(<, 0) with subsequent averaging (see Equations 2.3-21,-25,-48) yields the temporal 
correlation function 

where (16c(q312) is the mean square concentration fluctuation, which is derived from the 
statistical-thermodynamic theory of fluctuations (see Equation 1.4-33). 

The Fourier transform of this temporal correlation function (Oberhettinger, 1973) is 
the spectral density accurate up to the constant (see Equation 2.3-26) and represents the 
Lorentzian 

with its halfwidth (see Equation 2.3-49) 

AW = Dq2, (53) 

which explains Alpert's results: with approaching the critical point, D -+ 0, A w  -+ 0 ,  
and A w  N q2. 

However, a more rigorous solution of this problem should account for six conservative 
variables in a binary system, namely, energy, kinetic momentum (three components), the 
concentration of the solution, and the total density of the liquid. In the general case, it 
should be taken into account that the solute flux ?involves the diffusional and heat fluxes 

where p is the numerical concentration of molecules, c is the solute/solvent masses ratio, 
m is the mass of the solute molecule, v'is the local velocity, 3'0 is the mass diffusional flux. 

Experiments show the dielectric constant to be a function of P ,  T ,  and c: 

€ = €(P ,T ,C) .  (55) 

Be the problem simplified by considering the pressure as constant and non-fluctuating, 
then 

The scattered light intensity is proportional to the Fourier transform of 

(de*(<, W(@l t ) )  (57) 
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(see Equations 2.3-30,-31). 
This is a linear superposition (in the linearized approximation) of the temporal aut* 

correlation and cross-correlation functions (Sc*(q', O)Sc(q', t ) ) ,  (Sc*(<, O)ST(q', t ) )  etc., 
which are obtained (Berne and Pecora, 1976) after the hydrodynamic and conservative 
equations (Equation 54 being one of them) have been solved jointly. 

On substituting these correlation functions into Equation 57 with subsequent Fourier 
transformation, an expression for the dynamic form factor is deduced (Berne and Pecora, 
1976) : 

where 

KT = D T / D  is a thermal diffusion ratio, p is the chemical potential of the mixture 
per unit mass: 

,=*-E 
ml mz' 

mi being the masses of molecules in the mixture (cf. Equation 1.1.2-48). 
The spectrum (Equation 58) is a superposition of Lorentzian bands 

with their weights depending on many parameters. The complexity of this spectrum arises 
from the relation between diffusion and heat flux. We are dealing with the central band 
of the triplet: Equation 58 lacks Mandelshtam-Brillouin's doublet caused by regard for 
the pressure fluctuations while Equation 58 was derived without it. 

The central Rayleigh's band of the solution spectra can be simplified only under certain 
circumstances. In the limit of small concentrations, c + 0 lim KT = 0 and c+o 

(62) 2 
S+ E -Dq2, S- -DTq ) 
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i.e. the spectrum is a superposition of two Lorentzians, one of which is due to the molecular 
diffusion, while the other is due to the thermal diffusion only: 

TS€€(C w )  = (63) 

Hence, in the limit of low concentrations, heat flux and molecular diffusion are not 
related, and DT and D can be determined separately. Usually, E is a weak function of 
temperature and only the diffusional band predominates in Equation 63. 

In solutions, DT >> D often holds, then 

(64) 2 S+ N -Dqz, S- N -DTq , 

and the spectrum also reduces to a superposition of two Lorentzians, due to the molecular 
and thermal diffusion, respectively. The diffusional component of the spectrum manifests 
itself as a very intensive sharp peak of width Oq2 located at the top of a wider band 
of width DTq2 due to heat flux. For the majority of suspensions (including biological 
objects, such as viruses, cells, etc.) D - cm2/s or lower, so DT >> D is satisfied. In 
this case, the sharp central component 

strongly resembles the spectrum (Equation 52) derived from simpler premises. 

ysis in the limit of small q leads to 
Certainly, there are also pressure fluctuations in real binary mixtures. Complete anal- 

& € ( Q W )  = S,C,(Gw) + ~a,(Q4, (66) 

where S,., is the central component defined by Equation 58, S,", is the spectrum corre- 
sponding to Mandelshtam-Brillouin's doublet 

where w(q)  = Vq,  V is the adiabatic velocity of sound, xs is isoentropic compressibility, 
I' is the attenuation factor of the sound wave 

where 7 = cp JCV and 
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The quantity I? from Equation 67 differs from that in Equation 2.3-56 owing to the 
appearance of a contribution of diffusion and to the mutual influence of diffusion and 
heat flux. Equation 66 does not comprise negligible non-Lorentzian terms like those in 
Equation 2.3-3. 

Thus, the scattered light spectrum of the binary solutions consists of four components. 
Two MB peaks are located at f w ( q )  from the centre with width rq2. The central compc- 
nent comprises a superposition of two Lorentzians, with their parameters depending on 
many factors. 

Currently, the inelastic light scattering technique has been applied to determine the 
diffusion coefficient D in different parts of the state diagram of a binary system, using 
the simplified formula 52 mainly. 

Provided that special equipment is available, a merit of this technique is in the short 
duration of measurements (from several minutes to an hour). No underlayering procedure 
is required, with its requirements of long and thorough thermostating and high skills of 
the operator. 

This advantage of the inelastic scattering technique seemed most promising for mea- 
suring D near the spinodal and critical point, where equilibrium is reached very slowly 
due to D -+ 0. The first applications were devoted to measuring D near the spinodal on 
one-component (Ford and Benedek, 1965) and binary systems (Alpert et al., 1965; Chu, 
1967; Cummins and Pike, 1974) through Aw us q2 (Equations 2.3-57 and 53). Such values 
of D were used to plot a “pseudospinodal” with D + 0 extrapolation (see Figures 2.38 
and 2.39) (Chu et al., 1972; Tscharnuter et al., 1972) (cf. Figure 2.35). 

By virtue of Equation 31, the diffusion coefficient is classified with the parameters 
characterizing a system in nonequilibrium, i.e. with the dynamic parameters of the system. 
The behaviour of such parameters near the spinodal and critical point is called dynamic 
critical phenomena. To describe them, an approach in the fashion of the similarity 
hypothesis has proved to be very fruitful, this hypothesis in its application to the dynamic 
parameters being called a dynamic similarity hypothesis (Stanley, 1971). 

Eg. the experimental data of D near the spinodal (see Figure 2.38) obeys the exponent 
law 

with y = 0.67 (curves 1, 2) and y = 0.68 (curve 3), and T,,,o being the spinodal temper- 
ature determined from diffusion D + 0, Tb;  is the binodal temperature. 

The same critical index, which defines osmotic compressibility in Table 1.2 (x, - E - ~ ,  

where xT = - 1 / 1 2 ( 6 ’ 2 2 / 6 ’ 7 ~ ) ~ ) ,  enters into Equation 69. 
According to Equations 47, 1.1.2-52, 1.2-27, 

However, near the spinodal, the approach based on Onsager’s hypothesis and on the 
solution of the hydrodynamic equations loses its validity. With allowance for the long- 
range correlation distance of the concentration fluctuations &, the validity condition of 
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Onsager’s hypothesis (Halperin and Hohenberg, 1967) is 

>> [ k  Or qtk << 1. ( 70) 

The regions on the state diagram, where these conditions are satisfied, are called hydro- 
dynamic (and the condition itself is referred to as a hydrodynamic mode). In the critical 
region and near the spinodal 

q<k 1, (71) 

and Onsager’s principle is not obviously satisfied (Figure 2.41) along with formulae like 
Equations 2.3-57 and 53. 

Figure 2.41. Schematic of the mutual location of the hydrodynamic and critical regions: 
1 is the low-temperature hydrodynamic area (ql[l << l) ,  2 is the critical area (qIt1 >> l),  
3 is the high-temperature hydrodynamic area (q1[1 << 1). q of neutrons exceeds that of 
light by 3 orders of magnitude (Halperin and Hohenberg, 1967) [B.J.Halperin, P.C.Hohenberg. 
Phys. Rev. Lett. 19 (1967) 700-703. Copyright @ 1967 by the American Physical Society] 

For the dynamic critical phenomena, Debye’s phenomenological approach, developed for 
mean-statistical critical phenomena (see subsection 2.3.5), has turned out to be helpful. 
Introducing a gradient term into AF has led (Fixman, 1966; Chu et al., 1972; Tscharnuter 
et al., 1972) to 

Hence, the plot A w / q 2  us q2 is a straight line cuttin8 off a segment equal to D on the 
ordinate axis and with the slope proportional to 2, <k being a dynamic correlation 
range of the concentration fluctuations (Figure 2.42). 

is the 
dynamic correlation range of the density fluctuations. 

A formula of the type 72 is valid for a one-component system as well, where 
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A W  -io7, cm2/s 
Q2 

Figure 2.42. System fluoro- 
methylcyclohexane+CCl+ Plot 
Aw/q2 vs q2 at T - T, = 0.30"C 
( 1 )  and 0.10"C (2) (Chu et al., 
1972)[B.Chu, 

1.0 

I I sciences] 

I I 1 

1 3 5 i 
q 2 .  IO'O, cm-2 

The hypothesis of dynamic similarity also yields a similar relationship (Halperin and 

For two-component systems, the mode-mode coupling theory in the critical region leads 

In the case of solutions, X is replaced by the diffusion coefficient 

Hohenberg, 1967; Stanley, 1971). 

to expressions like those given at the end of subsection 2.3.5. 

The mode-mode coupling theory predicts the universality of the dimensionless width of 
the central (diffusional) spectrum line 

since r* is expressed through the universal function K(q$): 

Indeed, this theoretical curve fits well into the experimental I'* (from Equation 74) 
measured by means of dynamic light scattering for solutions (Swinney, 1974; Anisimov, 
1987), as well as for pure liquid (subsection 2.3.5). 

We conclude that the scattering of electromagnetic radiation serves as a powerful tool 
in exploring the structure of a substance. 

The effect of light scattering is characterized by several quantities: I,, &, 7, etc., which 
can be expressed through different parameters of the system: the dielectric constant c, 
the polarizability a, the refractive index p ,  Moreover, the polarization of incident light 
beam may be of different character. 

Mismatches in formulae (especially, in numerical coefficients), while using different pa- 
rameters are often met in the light scattering literature. 
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Neglect of the conversion factors among E ,  a, and ,U may cause more serious misun- 
derstanding. Eg. Equations 2.1-76,430 etc. with correlation functions are often applied 
without any changes for ( A E ) ~ ,  ( ~ C Y ) ~ ,  ( a , ~ ) ~ ,  which leads to the breakdown of dimensions. 

In conclusion, we present summary tables of the most important formulae of light 
scattering in Rayleigh’s and Rayleigh-Debye’s (Rayleigh-DebyeHans’) approximations as 
a supplement to the topic “Light scattering” (Tables 2.1-2.4). 

--- 

2.5. Correlation of the order parameter fluctuations 
in the critical region. Hypothesis of similarity. 
Hypothesis of universality 

In many cases, experiment does not fit with the predictions of the mean field the- 
ory, especially in the nearest vicinity of the critical point. Naturally, it is owing to the 
simplifying premises on the basis of mean field approximations. 

The nearest neighbourhood of T, is characterized by significant fluctuations in the order 
parameter Q. This follows already from the form of G (Equation 1.6-1) near the critical 
point (see Figures 1.14, 1.25, and 1.28). When T > T,, the potential has a minimum at 
Qo = 0, and when T < T, it has a maximum; therefore, near T z T, G becomes a very 
weak function of Q. Significant variations of Q do not cause noticeable changes in the 
thermodynamic potential, which causes significant fluctuations in the order parameter Q 
(see Equation 1.4-33). 

As the amplitude and scale of Q fluctuations increase, their correlation arises, which 
is in no way represented by an equation of the type 1.6-1. Moreover, correlated, extended 
and long-living fluctuations of Q lead to a spatially inhomogeneous distribution of 
Q ( 3  in the range T < T,, which also is not taken into account in Equation 1.6-1. 

As the first approximation, the above phenomena can be allowed for by supplementing 
Equation 1.6-1 with new terms with different-order derivatives of Q ( 3 .  The simplest 
potential is written as 

G = Go + 11 { u Q 2 ( 3  + i bQ4(r3  + 6 .  [OQ(3l2 - 2 h ( 3 Q ( 3 }  d3r, 
2 

a,  b, b being functions of pressure and temperature, h(F) a inhomogeneous external field. 
Here G is a functional, whose minimum is given by Euler’s variational equation 

Then, assume Q(F) to differ slightly from the equilibrium value QO with no gradient 
term taken into consideration (see Equation 1.6-8), so 

Q ( F )  = Qo + Qi(3. (3) 
Hence, the equation for Q 1 ( 3  in the first approximation in the absence of field h ( 3  has 
the form (Patashinski and Pokrovski, 1975) 



Table 2.1. Light scattering formulae 
in colloidal solutions of small isotropic spherical particles 

Ravleiph’s Scattering 

The conditions are: ( m  - 1) << 1, a << 1, where a = 27rr/X = 2nrpl/X0 is the relative size, p = p2/p1 is the relative 
refractie index, p2 and p1 are the refractive indices of the disperse phase and dispersion medium, respectively, X and A,, are 
the wavelengths in the medium and vacuum, respectively, T ,  up, and ap are the radius, volume, and polarizability of a particle, 
respectively, N2 is the number of particles per volume unit, €1 and €2 are the permittivities of the disperse phase and dispersion 

iedium, respectively, 29 is the scattering angle, E = p2,  c y p  = 3 (4 + P M  
E1 + 2 E 2  

Parameter 

Polarizability, 
a, cm3 

Permittivity, 
E 

Refractive in- 
dex, P 

r, cm-’ 

Characteristic functions 

&, cm-’ I R8, cm-’ 

8n4 8n4 
- 4 N 2  --a;Nz(l + cos2 29) 
A: 

&,L, cm-’ 

EV2 ( € 2  - €1 ) 2  N2 
A 4  €2 + 2€1 



Table 2.2. Light scattering formulae 
in colloidal solutions with optically “soft” particles 

Ravleirrh-Debve’s approximation 

The conditions are: Irn - 11 << 1, p << 1, a is any, where p = 2alm - 11 = 47rrpllm - ll/Ao is the phase shift, P(29,A, D )  is 
(rn - 1)P’4 vp; P(19, A, D )  = 

€2 - €1 
Debye’s function; D is the characteristic size of nonuniform particles. ap = - 47r up; a p  = 27r 

I 12 

Parameter Characteristic functions 

R,, cm-’ Rs, cm-’ &,.L, cm-’ 

Refractive in- 
dex, P 

27r2 27r2 4 2  
-(m - 1)2v,2N2P(A, D )  
A 4  A4 

-(m - 1)2~,2N2P(19, A, D)(1 + COS’ 29) q ( m  - 1)2~,2N2P(A, D )  



Table 2.3. Light scattering formulae 
in liquids with isotropic molecules and their solutions 

Ravleigh’s scattering 

V < X  

z1 is a space unit where permittivity c’, polarizability CY’, and refraction index p’ differ from the corresponding average macro- 
scopic values €, CY and p by 

r,  cm-l 

A t  = 6‘ - 6; A a  = CY’ - a; Ap = p’ - p. 

The conversion formulae are: Aa E v Ac/47r; At = c‘ - c = p” - p2 = (p‘ - p)(p’ + p )  rn 2p Ap 
In the case of solutions, the mean square fluctuation of every parameter is replaced like 

R ~ o ,  cm-l I&, cm-’ I Rw,l, cm-1 

c being the solution concentration. 

Parameter 

Polarizability, 
a, cm3 

Permittivity, 

Refractive in- 
dex, P 

16n4 (Aa)’ 
3x; 2, 

L\; 
0 w 



Table 2.4. Light scattering formulae 
in liquids at critical opalescence and in solids with density fluctuations 

Ravleiah-Debve's approximation 

Parameter 

Polarizability, 
CY, cm3 

Permittivity, 
€ 

Refractive in- 
dex, P 

The definitions of the correlation functions of parameter fluctuations are: 

( A f ( 3 .  At(?)) = h(p)(a,)a; (Aa(r') . A(Y(?)) = r ( p ) O 2 ;  ( A p ( 3  . Ap(?)) = n(p)(Ap)z  

Characteristic functions 

r ,  cm-' &, cm-l &, cm-' R g O , l ,  cm-' 

(1 +cos2p9) -- 1287r5 ( ~ C Y ) ~  87r4 (Aa)' 87r4 (AcY)' - - 
3x: wa wa Ai! wa % wa 

87r3- 7r2 - IT2 - a'- 
-(A€)2w, -(Ar)2w, - (A~)~ul , ( l  + cos' 8 )  -(At)'w, 
3A; 2x; 2x; A4 

327r3 - 27r2 - 2772 - 47r' - 
~ p ~ ( A p ) ~ w ~  ~ p 2 ( A p ) 2 w r  ~ p 2 ( A p ) 2 u f i ( 1  + cos2 19) ~ p ' ( A p ) ~ w ~  
3x0 2x0 2x0 x o  

16n4 (AcY)* -- -- 

The equivalent volumes on condition that the inhomogeneity areas are spherically symmetric: 

sin qp sin qp sin qp 

qP 
W, = Th(p)--4np2 4P dp, wa = ry(p)- -4npz dp, W~ = 7n(r) -47rp2  4P dp, 

0 0 0 

R 
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(it results from substitution of Equation 3 into Equation 2 with allowance for Equation 2 
for QO and keeping only the first-order derivative term &I(?‘) in [Qo + &1(?)]’). 

If we denote 

then 

AQi(.3 - C2Qi(.3 = 0 (6) 

with its solution (for spherically symmetrical Q1(r) and long T - )  

where ( is the long-range correlation distance. 
If the correlation function of dielectric constant (permittivity) h(r)  is taken as the order 

parameter, Equation 7 is similar to Equation 2.3-129. It reveals Landau’s mean field 
theory with a gradient term equivalent to Ornstein-Zernike’s approximation (section 2.3). 

In turn, Debye’s consideration of critical opalescence is equivalent to these approaches, 
since the method was the same in essence: to supplement the functional dependence of 
the thermodynamic potential with a gradient term, by density or by concentration for 
one-component liquids and solutions, respectively, i.e. by the order parameter Q. 

Analysis of the most significantly varying parameter of the mean square value of the 
order parameter’s fluctuations (AQ)$ in terms of Equation 1 has led Ginzburg (1960) to 
an applicability criterion of the mean field theory: 

( A m -  K a. (8) 

Estimations (Ginzburg, 1960; Strukov and Levanyuk, 1383) yield 

and 

whence 

and, with T, M T allowed for, 

T - T, k2Tcb2 
E=-  >> ~ - - Gi, TC 647r2crd3 

(1.6-8) 

where Gi is Ginzburg’s dimensionless parameter. 
With due account of the expression for a heat capacity jump at T, (Equation 1.6-11) 
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this parameter is expressed as 

IcWT,3 
6 4 ~ ~ ( A c ) ~ 6 ~  

Gi = 

as well. Besides, in the range 
according to Equation 5, is 

a(T - T,)’ 

i.e. the critical index in 

t lal-” 

(12) 

T > T,, &O = 0 and the long-range correlation distance, 

is equal to 1/2, which also agrees with the value of u in Ornstein-Zernike’s approximation 
(Equation 2.3-146). 

Away from T,, where 

T - Tc 
E = -  W l  Tc 

with a = a(T - T,) (Equation 1.6-6) and Equation 13, 

<< 1. 
k2 

647r2te( Ac)* 
Gi = 

(15) 

Hence, away from the critical point (see Equation 15), the applicability range of Lan- 
dau’s approximation extends with increasing the long-range correlation distance. Increas- 
ing E away from T, is equivalent to an admission of a longer range of particle interactions 
in the system, which is the premise of applicability of the mean field theories (see sec- 
tion 1.5). 

Ginzburg’s parameter is derived from the coefficients of the potential G, using the sub- 
stance properties. Eg. corresponding estimations for superconductors give Gi N 

(Ginzburg, 1960; Patashinski and Pokrovski, 1975), it means the inapplicability region 
of the mean field theory is not yet accessible experimentally, and the behaviour of super- 
conductors and some ferroelectrics is well described by the mean field theory. 

Eg. experiment discloses a simple jump of heat capacity at T,. 
To carry out similar analysis in d-dimension space, Equation 1 in the absence of the 

field should be written as 

(17) 
G = G o + + %  [aQ2+$Q4+d.(VQ)2]  1 

2 

(Ma shang-keng, 1976). Then, for heat capacity, 

(T - T,)-O (18) C-d+2/u - (T - T,)-(2-Yd) 

and 
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(see Equation 1.5-10). v = 1/2, as before, and 

which means that heat capacity does not diverge when d > 4, i.e. the system obeys the 
regularities of the mean field theory. This conclusion also follows from Ginzburg’s number 

2 
G i = [  k 4 - 0 1  ] . 

~ ( 2 t ) ~ A c  

Kadanoff’s transformation (Kadanoff, 1966; Kadanoff et al., 1967) has gained accep- 
tance in the modern theories of critical phenomena. 

The area of strong correlation among the structural elements (say, spins on a ferromag- 
net) is arbitrarily divided into blocks with a size L << t. In each block, the spins are 
added according to a certain rule (eg. in Figure 2.43a, each block of 9 spins in the initial 
lattice is replaced by one spin with its direction given by the sum of 9 spins). 

Suppose there is a d-dimension spin lattice with constant a (White and Geballe, 1979). 
Write its Hamiltonian following the pattern of Equations 1.7-24,-25,-35: 

Divide the spin lattice into square blocks with side L (cf. Figure 2.43a). The total spin 
of the block Z is 

Further, the block spin Si needs scaling so that the new block “spin” could take only 
two values, fl: 

s; = 2.91. (24) 

z = Ld (25) 

In the case of a complete spin correlation in a block 

(see Figure 2.43). As the spin block lattice is constructed like the initial one, its Hamil- 
tonian has the same form as Equation 22: 

X L  = -J’L SISJ - HL SI ,  
I J  I 

where JL is a new coupling constant, HL = Z H .  
By virtue of the fact that the spin (Equation 22) and block (Equation 26) Hamiltonians 

are of the same type, the thermodynamic potential per spin will have the same functional 
form in both cases with conversion factor Ld: 

d E L ,  H L )  = Ld&, H ) .  (27) 
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b 

C 

Figure 2.43. Kadanoff’s transformation in a magnetic: a is the initial lattice and formation 
of blocks; b is replacement of the spin blocks by single spins using the rule of simple 
addition of spins; c is adjusting the scale of the spin block lattice (Wilson, 1979) 

On the basis of the analogy between 3t and NL, EL and E are presumed to be propor- 
tional in the critical region ( E  + 0). Increasing the block size L is equivalent to effective 
moving away from the critical point, since the more extended correlation range 6 trans- 
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forms into a less extended one. So, one can expect EL to be a function of L ,  say, L z ,  where 
z is a positive number. Hence, we get 

E L  = LX&.  (28) 

In view of the partial correlation of the spins in a block, consider that 

z = LY. (29) 

g( LZ&, L y H )  = Ldg(c,  H ) ,  

Then Equation 27 rearranges to 

(30) 

i.e. we have arrived at the condition of generalized uniformity of g(&, H ) ,  underlying the 
similarity hypothesis (see section 1.5). 

Indeed, X can be chosen as L d ,  then L = A l l d ,  Axld = A“., and P I d  = XaH, i.e. xld = a,, 
y l d  = a H  in accordance with the notation in Equation 1.5-8. 

Differentiate Equation 30 with respect to H (cf. Equation 1.5-1): 

P M ( L X & ,  LYH) = LdM(&, H ) .  

As this relationship should not depend on the choice of scaling at 

Then, in the limit H + 0, Equation 31 

(-#-Y)l.” M(-1 ,0)  = M(&,O), 

when 6 + -0, 

M ( & ,  0) - ( - E ) @  

and 

d-?/=p. 
2 

takes the form 

(31) 

L << [, assume 

Other critical indices are defined through z and y in a similar way. Eg. 

(33) 

and so on. 
Thus, the existence of correlated areas of the structural elements with long extension 

[ serves as a physical background of the similarity hypothesis, so blocks of the structural 
element of a length L << E can be chosen. 
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The main properties of a system such as compressibility xT and heat capacity c are 
related to the correlation length of the order parameter (eg. Equations 2.3-80.. .82,-150), 
which results in a relation among the critical indices to define the meaning of the similarity 
hypothesis. 

Near the critical point, the system's properties are mainly influenced by the correlation 
range 6, while the character of interaction between the structural elements plays no sig- 
nificant part. Therein lies the universality of the critical phenomena for different physical 
systems, the specific character of which is in the nature of interaction among the nearest 
structural elements. 

The idea of universality goes back to the law of corresponding states, by which all 
liquids and gases have the same state equations accurate up to the renormalization of 
length and energy scales. 

The universality principle hm been further developed into a method of renormaliza- 
tion group (Wilson and Kogut, 1974; Wilson, 1979). 

Suppose the initial system to comprise structural elements at the nodal points of a 
lattice with constant Q. Admit that blocks of structural elements L1 = 2a, Lz = 44 and 
so on, where L1 << 6, L2 << 6 can be considered as new effective structural elements. 

The initial system is characterized by a Hamiltonian 310 with its interaction range 
LO M a ,  this range for 311 is of the order L1 M 2a of magnitude, 3 1 2  - L2 M 4a, and so on. 
The effect of such a transformation (Figure 2.43) is in neglecting all the fluctuations in the 
arrangement of the structural elements, whose scale is less than the block size. This can 
be imagined as looking at the initial lattice through a non-focusing lens (Wilson, 1979), 
when small details are invisible, and big ones are fuzzy and vague. 

Every 
Hamiltonian has its own coupling constant 31. The success of those manipulations de- 
pends on the possibility to discover a certain regularity in the coupling constants, when 
every subsequent 3, is deduced from the previous Jl-1. Then, 311 is derived from the 
initial Hamiltonian No,  312 from ?I1, eg. up to 31, for which 

The sequence No, Nl, R2. . . reflects subsequent roughening of the pattern. 

2,Lo - 6. (35) 

Hence, the technique of renormalization group reduces the problem of a huge number 
of degrees of freedom (in the initial Hamiltonian) to a problem of relatively small degrees 
of freedom, which is soluble by means of specific tools of statistical physics. 

The chain of Hamiltonian transformations is represented as 

The same operation of transformation T is applied at different stages of iteration. It is 

r should be such that the sequence of Nl converges to a fixed point for which 
to  apply n times, so that 2"LO E 6. 

T(W) = 3-1'. (37) 
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There exist several transformations T for any initid Hamiltonian No, which lead, gen- 
erally speaking, to different fixed points 22, WB, or Wc, each of them characterizing a 
certain type of cooperative interaction. 

Universality, i.e. independence on the initial No, exists only for a given type of cooper- 
ative interaction. 

When calculations by means of renormalization group method are made, the space 
dimensionality d and the order parameter dimensions (the number of components) n play 
an important role. 

Eg. for a ferromagnet with n = 1, spins can be placed only along one direction. If they 
are on a film surface, d = 2; if in bulk material, d = 3. n = 2 in the secalled X Y  model 
of a ferromagnet. If the magnetic momentum vector can be oriented along any direction 
in space, then n = 3 (Heisenberg’s model) (Table 2.5). 

For a system with a scalar order parameter (density, concentration difference), n = 1.  
A special universality class has been found by de Gennes for a random walk of connected 

structural elements over a 3 0  lattice (n  = 0, d = 3). This class took on great significance 
for modelling of the macromolecular behaviour in solution (to be considered in detail in 
Chapters 4 and 5 ) .  

Calculations by renormalization group method have shown that different physical sys- 
tems with the same d and n values have the same values of critical indices (see Table 2.5)  
and a common state equation in the scaling form (Stanley et al., 1980). 

d and n in the equations of the renormalization group method take arbitrary continuous 
values though only natural d’s and n’s have physical meaning. 

Figure 2.44 presents a line of common values of the critical indices p and y on the 
plane n against d. Dashed is the area of constant values of these quantities, which agree 
with the values from the mean field approximation. Hence, in multidimensional space 
d 2 4, the critical indices also take values characteristic of the mean field approximation, 
so # = 4 acquires the meaning of the critical dimension (see also Equations 20 and 21) 
(Riedel and Wegner, 1972b). 

This is associated with an increase in the number of the nearest neighbours of a struc- 
tural element with d, and the interaction sphere (i.e. the character of interaction) begins 
to respond to the mean field theory assumption of an extended range of structural element 
interactions to a greater degree. 

Calculations by the renormalization group method in the tricritical point vicinity (Larkin 
and Khmel’nitski, 1969; Riedel and Wegner, 1972) have led to values of the tricritical in- 
dices, coinciding with those in the mean field approximation for 3 0  space # = 3. 

2.6. Lagrangian formalism of the field theory 

The recent, most significant achievements in studying the structure of polymer systems 
are based on applying the field theory formalism. This section contains the definitions 
and brief characterization of the main quantities and terms of the field theory in the 
Lagrangian form. Hereinafter, we follow Amit (1978). 

In classical mechanics, a Lagrangian L is defined as the difference between the kinetic 
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f some physical systems (Wilson, 1979) 
Phvsical svstem I Order Darameter 

liquid mixture near component concen- 
its critical Doint I tration difference 

quarks confined in 
protons, neutrons, 

m 
2 dt 2 

L = T - V = -  ( d z y  - - V(z) = - (i)* - V(z), 

m being the mass of the particle. 
An action A is defined by 

t 2  

A = 1 L(z ,  5 )  d t .  ( 2 )  
tl 

The particle’s motion from the point z(tl) to the point z(t2) may, in principle, occur 
along one of an infinite number of trajectories. In reality the particle moves along the tra- 
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jectory, which satisfies the principle of the least action, i.e. the true motion trajectory 
implies the minimum of A (Goldstein, 1950; Ryder, 1985). 

On transfer to a field, x should be replaced by the order parameter or just the field 

Mass rn preserves its meaning in the field theory, since a classical scalar field after its 

Thus, the action in $-dimensional spice in the field theory is written as 

@ ( X I .  

quantization is interpreted as a particle with mass rn. 

A = 1 Ldt = / C d d i l x ,  (3) 

where L = J C(ia, Via) ddx is called a Lagrangian, and L is a Lagrangian density. 
All the most important properties of the field can be described if the Lagrangian density 

is approximated by a polynomial in @ ( x )  of the most common type plus a gradient term 
(Via)’ (cf. Equation 2.5-1). 

If there is symmetry about a certain direction, 

(D = -a, 

then the polynomial includes only its even powers: 

C [a(.)] = Ao(Via)’ + A1(D2(x) + AZCP4(s) + h i 9 ( ~ ) ,  

where h is an external field, or a source. 
The probability of existence of any field distribution is 

W { a }  = exp { - 1 dx C [ i a ( x ) ] }  . 

If the system has an n-component order parameter, then 
+ 

= [ @ l ( X ) ,  . . . 7  @ n ( Z ) ] .  

In the case of 

ai = -4; 

being invariant, there is one quadratic invariant 

i= l  

and two quaternary ones 

(6’))” and cia!, 
i=l 

which leads to 

JC [ $ ( . ) I  = A o ( V ~ ) ~  + A i @ ( x )  + Az [ @ ( x ) ] ~  + A 3 C i a ! ( x ) ,  
i 
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where 
n 

( V 3 y  = -y(V@i)Z. 
i=l 

+ 
The parameters Ao, AI,. . . , whose set specifies a certain vector A,  are arbitrary and 

So, the distribution probability can be written as 
play no significant role in the theory applications. 

W { 5, A} = exp { - / dz L [6, A} . 
The source, or external field, is included into the Lagrangian in the form 

r'L 

-Z(z)$(z) = - hj(z)@;(z) .  
i = l  

If W {6, z} defines the distribution probability in functional space, then the functional 

z ( i }=  J~d.w(G, i }  (15) 

is the statistical integral, where 
n 

D 6  = n d@,. 
i=t 

The majority of systems have translational invariancy, and the Fourier transform 

is often justified, with an imposed restriction Irc'l 5 1 / ~ ,  where a is a quantity commen- 
surable with the cell linear sizes in Ising's lattice, V is the system volume. 

If @(z) describes a real field then 

With allowance for Equations 13 and 15, the mean value of any quantity is expressed 
by 

1 06 . X { 6, x }  W { 6, z} x =  z {i} 
In particular, for the mean value of @i(z), 

SZ{i;} 
(@i(.)) = 2-'- 

S h ; ( X )  ' 
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and for the correlation function 

or, in a more general case, 

In view of Equation 23, the Taylor series expansion of 2 { h }  can be represented as 

The functions G are called Green’s functions, and 2 is a generating functional 
for these functions. 

2.6.1. Free field 
The magnet system on Ising’s lattice (see section 1.7) is translated into the notation of 

the Lagrangian form of the field theory (Amit, 1978). As a result, an expression in the 
Fourier transform for the Lagrangian is obtained 

< being the wavenumber, 

where p sz Q is the lattice constant. 

notation. 

tion, the Lagrangian takes the form 

So, the square of the “free mass” p2 is proportional to temperature in the field theory 

In the coordinate representation (cf. Equation 17)’ on replacing summation by integra- 

1 
2 

J dx  Lo = - J dx  [(V@)Z + p w ]  

Thus, the Lagrangian with a quadratic polynomial term describes non-interacting 
(free) field that is marked by the subscript ‘0’ at L. Recall that this magnet model (see 
section 1.7) takes into account the interaction among the nearest spins only. 

The correlation function (Green’s function) in the k representation (momentum space) 
is defined as (see Equations 20, 13, and 25) 

1 D@@(Z)@(-rc‘)exp - E ?(k2  1 + p 2 ) @ ( $ ) @ ( - Z ) ]  

Go(Z) = (@(rc’)@(-Z))o = JD9e.p [ k  ( - J d x l O )  (28) 
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and is the Fourier transform of the correlation function in the coordinate space 

(29) 
1 

Go(?') = ( @ ( F ) @ ( O ) )  - -xexp(-izf)Go(z),  O-V k' 

which passes into an integral in d-dimension space when V + 00: 

(the factor ( 2 ~ ) ~  is explained in Equation 79). 

grangian density L o  should be added an addend with the source 
To get Go(L) through the generating functional (see Equation 23)' to the free La- 

Ccp(Z)h(-Z).  (31) 
k' 

Then 

and 

Z o { h }  = / Daexp  { - F  [ i ( k 2  + p2)@(z )@( -z )  + @ ( E ) h ( - E ) ] } ,  

which, after the replacement (shift) of the variable 

@(Z) + @(i) - (k2 + $)-%(Z) 
acquires the form 

(33) 

(34) 

To derive Go(k) according to Equation 32, this integral needs no calculation, since it 

Hence, Equation 32 gives 
will be cancelled with the same integral in Equation 32's denominator. 

Go(Z) = ( I C 2  + p 2 ) - l .  

g(r;  - ~ j )  = ((0; - (~j))(~j - (~j))) 

( 36) 

(37) 

The correlation function in Equation 1.7-33 can be written as 

Gij (2) ( r ;  - ~ j )  

and, in view of Equations 1.7-34 and 29, the susceptibility is expressed through Green's 
function 

x = Go(k = 0), (38) 
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and, in view of Equation 36, 

x = F2, 
i.e. Green’s function Go(k = 0) diverges at p + 0 with 7 = 1 (see Equation 26). 

If the correlation length 6 is defined as 

(cf. Equation 2.3-141)’ then it is expressed through G(k):  

(39) 

I k=O 

(to verify this, substitute G(k) = J G(r)  exp(ikr-) dr into Equation 41). On substituting 
Equation 36 into Equation 41, we get t2 = 2p-2 and v = 112. 

In the case of a free field, the Lagrangian (Equation 27) is a quadratic function of a(?), 
and the probability distribution for the field @ (Equation 6) is Gaussian; all the fields a; 
are statistically independent (Patashinski and Pokrovski, 1975). 

It follows that if z+ D # 0, then correlators of the type (@yap) are decomposed into 
a product of the means ( @ p )  = 0, so ( @ p @ p >  = 0. Hence, 

where Kronecker’s symbol 

Due to the statistical independence of the fields Gp, the correlator 

G&2,...,i” = (%,@z2 * .  %) (44) 

is decomposed into a product of meay for different independent d u e s  of & That is 
= 0 if even one value kt (i = 1, 2,. . . ,n) lacks the pair value kit so that 

ki + kp = 0. 
why - + +  Gt! &,...A 

In particular, it is always the case for odd values 71 = 27n + 1. 
In view of this property, the n-order correlator (Equation 44) is equal to the sum of 

terms, each of which rep_resents a result of different pair combinations. This is the meaning 
of Wick’s theorem for IC space. If the fields to be grouped are denoted by a connecting 
line, then, for example, 
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Wick's theorem also holds for coordinate space and a 2m-point correlator 

The number of different pairs of groups depends, of course, on the symmetry character 
of the system's structural elements. 

The correlator G ( 2 -  Z') tends to infinity at 2 + Z' (see Equation 30). Hence, the 
2m-point correlators G(2m)(x1,z2,. . . xzm) also tend to infinity when several points merge 
into one (Patashinski and Pokrovski, 1979). 

2.6.2. Interacting fields 

order Lint, describe the behaviour of the interacting fields 
The terms of the polynomial, approximating the Lagrangian density above the second 

L = Lo + Lint. (48) 

For such fields with source J, the statistical integral has the following general form 
(Popov, 1976; Amit, 1978; Ryder, 1985) 

exp { - / dx Lint (A)} 20 { J }  

N Z { J }  = 7 (49) 

where 

Zo { J }  = exp { / dz dy J(z)Go(z - y)J(y)}, 

As the argument of Lint, the operator ( 6 / S J )  stands instead of the field @. The nor- 
malization factor N is defined by 

Z { J  = 0 )  = 1. (50) 
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Green’s functions are defined at different points of the field ( N )  using the number of 
fields J ( q )  as functional derivatives 2 with respect to J :  

where the generating functional 2 {J} has the structure of Equation 49. 
Green’s functions are of great importance in field theory: through them are expressed 

many experimentally measured quantities, therefore in what follows their properties will 
be considered in detail. 

To take an example, discuss the derivation of Green’s function of the Q4 theory. The 
Lagrangian of the interaction has the form 

where X is an interaction parameter. 

as a series of perturbation theory: 
The generating functional 2 {J} is considered only as an expansion in terms of X, i.e. 

In the zeroth order of A’, the generating functional for free field 20 { J ]  is obtained. In 
the first order of A, we have for the nominator of 2 {J} 

and 
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This expression is worthwhile representing as Feynman’s diagram. The external coor- 
dinates and every interaction are marked by points on graphs. A line between the points 
z and y is the symbol of the function Go(x - y). So, the function Go(0) is represented by 
a closed circle. The last derivative can be written in terms of Feynman’s diagram as 

The form of the third diagram is determined by the factor a4 in Lint. The factors 3, 
6, and 1 follow from the symmetry character of the system. The first term is obtained as 
a result of connecting two line pairs of the third term in all the possible ways (namely, 
three). The second term is obtained by connecting any two lines of the third term, there 
are six such ways. These numerical factors are called symmetry factors. The first term 
with two closed loops is referred to as a vacuum graph since it has no external lines. 
The term with one closed loop has two external lines (two factors J ) ,  while the last one 
has four such lines (four factors J ) .  

Thus, the generating functional (Equation 53) in this approximation is written as 

[l - i S ( - 3 C o + 6 0 +  X) dz’]exp[$JJ(xl)Go(zl - z z ) J ( z z ) d x ~ d n ]  
1 - J(-3 03) dx‘ Z { J }  = 

As the denominator is defined at J = 0, there are no J-containing terms whose graphs 

On dividing the nominator by the denominator, we get 
have twigs. 

Z { J }  = 1 - 4! ( S o +  X) dx’] exp [f 1 J(zl)Go(zl - z z )J (x z )  dzl dxz] . (53a) [ A J  
It is an important circumstance that the expression of 2 { J }  lacks the vacuum diagram. 

This is the case in all orders of perturbation theory, which is a common property of all 
normalized generating functionals. 

1. Now derive the two-point Green function in the a4 theory (Amit, 1978; Ryder, 
1985). 

According to Equation 51, 

Equation 53a shows that the contribution of the functional’s first term to Green’s 
function is equal to Go(x, - xz), which corresponds to a free propagator in field theory. 
The four-twig term comprises four factors J and, hence, does not contribute to the t w e  
point function defined by two derivatives with respect to J .  After differentiation, factors 
with J remain, which are cancelled on substitution of J = 0. The term with a loop and 
two twigs is equal to 
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and double differentiation yields 

6 x 
__ (. . . ) = - -Go (0)2 (652 ds’ Go (2’ - 2 1) Go (2’ - 2 2 )  J (  2 2 )  exp (i JGOJ) ; 
hJ(X1) 4 

Hence, Green’s two-point function in the first approximation by X is 

x 
2 G(’)(21, 2 2 )  = Go(x1 - 2 2 )  - -Go(O) 1 dx’Go(z’ - q)Go(z’ - x2) + O(Xz). 

In field theory, this function describes the rise of a particle at a certain point 51 in space 
at an instant of time rl, its motion to a point x 2 ,  and disappearance at this point at an 
instant r2. 

It is reasonable to derive Green’s function by means of the diagrammatic technique in 
terms of Wick’s theorem. 

Applying Equation 51 in view of the specific character of the generating functional 
expression reduces to the calculation of several derivatives of the Gaussian form. It is 
clear that a derivat,ive of the characteristic exponent eliminates the term with J .  Hence, 
if a term is not equal to zero on substitution of J = 0, the next derivative mast cancel 
this multiplier. Therefore, if the free part of the generating functional 2 0  { J }  is treated 
by a number of differentiations with further .I = 0 to be substituted, then the derivative- 
containing terms must be paired, and what is more, in all the possible ways. For every 
pair, the factor Go(. - y) must appear, where 2 and y are the coordinates of the fields J 
in the pair. 

The result of this procedure with an odd number of derivatives of 2 0  at J = 0 will be 
equal to zero. This is a manifestation (and the proof) of Wick’s theorem. 

For Green’s twepoint function in the zeroth order of A, we have 

and, in view of Equations 30 and 41, 

In this order N = 1. 
In the first order 

where N1 is the first-order term of the normalization factor. 

must be paired. This can be done in the following way: 
According to Wick’s theorem, the six derivatives in the right-hand side of Equation 55 
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a) J(z1 )  is paired with J(zz), and the four J’s in the interaction are paired among 

b) J(q) and J ( Q )  are paired with J’s in the interaction. 
The version a has three combinations to group for J with the result 

themselves; 

x 
--Go(zl 8 -z2)Sdz’GO(z’ -  d ) G o ( z ’ -  z’). ( 5 6 )  

-A/dz‘Go(zl 2 - z’)Go(z‘- z2)G0(5’- z’). (57) 

The version b includes 12 combinations: J(z1) and J ( z z )  with four fields J of the 
interaction. So, this point gives the contribution 

Equation 56 is of the same form as the second term in Equation 55, namely, Go(z, -z2) 
is multiplied by an expression independent on z1 and 22. These two terms cancel in 
accordance with the theorem on the vacuum parts. 

In diagram form, Equations 56 and 57 are depicted by the graphs a and b in Figure 2.45. 

Figure 2.45. First-order graphs of @) [Figures 2.45-2.61 are reprinted from: D.J.Amit Field 
Theory, the Renomalization Group, and Critical Phenomena. Copyright @ 1984 by World Scientific 
Publishing Co Pte Ltd] 

An algebraic expression not depending on the external coordinates corresponds to the 

The graphs (Figure 2.45) enable one to reconstruct the algebraic expressions, using the 

1) Every non-external point is given a factor 

2) Every line between z and y has its own Go(z - y). 
This expression can be integrated with respect to all the non-external coordinates. The 

result must be multiplied by two factors: the first one originates from the factorial l /n !  
in Equation 53, the second one reflects the internal symmetry of the structure and is 
represented by the number of ways of pairing of the same type as in the given graph. In 
the case considered, these factors are equal to 3 (the graph a) and 12 (the graph b). 

vacuum graph. All the graphs corresponding to the terms in N, have this structure. 

following rules. 

(4). 

In the second order, Green’s functions have the form 
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Pairing is carried out by three categories: 
1) z1 and x2 are paired; 
2) z1 and x2 are paired with either z; or zk; 
3) 21 is paired with zi and z2 is with 2; (or vice versa), zi is with zk. 
The first category comprises three expressions (Figure 2.46). 

-0oco 1 2 T-m 2 re 2 
1’ 2’ 1’ 2’ 1’ 2’ 

a b c 

Figure 2.46. Second-order graphs of Gf), which cancel with N2Gt)  

All of these involve vacuum terms, and finally cancel out. 
There is one expression in the second category 

2 1 
-36 x 2 (3) / dz; GO(ZI - z:)Go(z: - z:)Go(z: - z2) / dz; G:(zi - z;), (62) 
2! 

which is represented by a graph in Figure 2.47 

0 0 0  2l 
1 1’ 2 

Figure 2.47. Second-order graphs of GP), which cancel out with NIGP’ 

It also contains a vacuum graph, and therefore cancels out. 
All the expressions of the third category remain (Figure 2.48). 

(a) 1 1 4 4 x 2  ( a ) ’ / d z l  dz:Go(zl-1:)Go(zl-x2)G~(z:-zk)G0(~:--2:),(63) 
2! 

(b) k96  x 2 (i)’ / dz: dz: Go(zl - z{)G:(z: - z;)Go(z; - 4, (64) 
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& 1 1’ 2 I& 2‘ 
1 -  2 

--cLLL 1 1’ 2’ 2 

a b C 

Figure 2.48. Second-order graphs of GF’ without the vacuum component 

(c) 1 1 4 4  x 2 (i) 1 dz; dzi Go(zl -zi)Go(z: - z;)Go(zi - z’,)Go(zi -2’ , ) (65)  2! 

Factor 2 is introduced into Equations 62-65, which accounts for the permutations of 
the interaction points. 

It should be noted that the remaining expressions correspond to connected graphs 
involving one element, or graphs plotted with one pencil motion. With respect to algebraic 
expressions this means that all the coordinates are connected by integration. 

2. Consider the graphs appearing in Green’s four-point function of the Q4 theory. 
In the zeroth order, 

1 2 1  3 1  4 
, 9 

3 4 2  4 2  3 

Figure 2.49. Zeroth order of GC’ 

Figure 2.49 shows that all the graphs are not connected in this case, and do not contain 

In the first order, there are three possible expressions with a changed notation zi + i 
vacuum terms. 

(Figure 2.50). 

1 4 

3 x 2 
2 m  0 1 1’ 2 1 

3 4 3 4 1’ 

a b 

Figure 2.50. First-order graphs of GY) 

c 
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(a) - (i) 24 / Go( 1 - 1’)Go(2 - 1‘)Go(3 - 1’)Go(4 - 1‘) dl‘, (67) 

(b) - (i) [12/ Go(1 ~ l’)Go(l‘ - l’)Go(l’ - 2) dl’ G3(3-4)+5 permutations,(6l 1 
(c) - (i) 3 [/dl‘G;(l‘ - l’)] Go(1 - 2)Go(3 - 4) + 2 permutations. (69) 

The graphs in Figure 2.5Oabc are connected, disconnected, and disconnected with a 

Now we are able to formulate the general rules of graph building in the scalar field 
vacuum term (which cancels out upon normalization), respectively. 

theory for the interacting Lagrangian of the general form 

Xr Lint = --ar. 
r! 

All the possible graphs in the series expansion of Green’s functions G(N)(z l ,  z2, . . . , IN) 
are built as follows. 

Rule 1. A graph must comprise N external points 1,. . . ,N and n, interaction vertices 
of type r, where r is the power at W (Equation 70), n is the expansion degree of Green’s 
function. Every interaction vertex is a point with its coordinate from which T lines 
originate. All these lines must be connected either with each other or with the external 
points. To eliminate vacuum terms, every interaction line is necessarily connected with 
an external point either immediately or indirectly. 

Figure 2.51. An example of building the graph Gf) in the a4, a3 theory (Amit, 1978) 

Figure 2.51 (left) shows the constituents for building the graph Gf) in the a4, a3 
theory. 

To calculate the numerical value of the perturbation series term corresponding to a 
given graph, rule 2 should be applied. 

Rule 2. Every internal point of type r corresponds to the factor (-X,/r!). To every line 
corresponds Go (the end-to-end coordinate difference). The factor l /nr!  (where n, is the 
number of r-type points) and a symmetry factor to show the number of ways to connect 
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the lines according to Rule 1 for building a graph of the same topological structure should 
be provided. Integration must be carried out over all the internal coordinates. 

These rules are rigorously proved in the special literature. 
Let us adduce two examples (Amit, 1978). 

a 1 b 

Figure 2.52. Constituents and graph Gf) in the Q3 theory (Amit, 1978) 

1. Figure 2.52 shows the graph Gf) in the Q3 theory, to which corresponds the expres- 

- (2) 1 Go( 1 - l‘)Go(2-2’)Go( 3-3’)Go( 1’-2’)Go( 2’-3’)GO(3’- 1’) dl’ d2’ d3’( 71) 

sion 

1 
3! 

x - x symmetry factor. 

Calculate the symmetry factor. There are 3 vertices and 3 external points (see the left 
side of Figure 2.52). The f i s t  external point can be connected to the vertices in 9 ways. 
To preserve the same graph topology, the second external point can be connected to the 
other vertices in 6 ways and, finally, the third one in 3 ways. 

A situation shown in Figure 2.52 has appeared. The vertex connected to point 1 can 
be connected with one of the two lines to the remaining vertices 2 and 3. The other 
line 1 must be connected to one of the two lines of the remaining vertex. Therefore, 
the symmetry factor is 9 x 6 x 3 x 2 x 2 x 2 = (3!)4, and the final numerical factor in 
Equation 71 is equal to 1. 

2. Discuss the graph G(2) in the Q4, Q3 theory shown in Figure 2.53. 
To this graph corresponds the equation 

(- 2) (- ;) 1 Go( 1 - 1’)Go(2 - 2’)Go( 1’ - 3’)Go( 1’ - 2’)Gi(2’ - 3’) dl’ $2’ d3’( 72) 

1 
2! l! 

x - x symmetry factor. 

There are 6 x 4 versions of connection of the external points. After realization of one 
of them (see Figure 2.53b), one of the three remaining lines 2’ can be connected to one of 
the two remaining ones 1’. One of the three lines 3’ is connected to 1’. At last, the two 
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a ?$ b C 

Figure 2.53. Graph G@) in thc G4, G3 theory (e ) ;  a are its constituents, b are its con- 
stituents after connecting the external points (Amit, 1978) 

remaining lines 2’ and 3‘ can be combined in two ways. Hence, the symmetry factor is 
6 x 4 x 3 x 2 x 3 x 2 = (3!)’(4!) and the numerical factor in Equation 72 is equal to 1/2. 

Indeed, the factor l/r! in Equation 70 is chosen so that if the graph has no symmetry 
allowing line exchange in the graph representation, then the numerical factor is equal to 1. 
The loop between 2’ and 3’ provides with the symmetry which leads to the factor 1/2. 

As the Lagrangian is translation inversion, the key expressions of the theory are sim- 
plified as a result of the Fourier transformation. The translation invariance of Green’s 
function is confirmed by the dependence of G(N) on ( N  - 1) coordinate differences only, 
not on all the N coordinates. This can be verified by a simple checking. 

For a scalar field with a source J(Z), the generating functional of the free field in the 
k-representation (in momentum space) has the form (cf. Equation 33) 

Z o { J }  = / Daeexp { - [ i Q ( k ) ( k 2  + p z ) @ ( - k )  - J ( k ) @ ( - k ) ] } ,  
k 

where 

and 

(73) 

Just in the same way, any term of the Lagrangian can be expressed via a($). For the 
polynomial form of the Lagrangian 

t, = J W ( 2 )  ds. (76) 

Substitute Equation 74 into Equation 76: 
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where Kronecker’s function 

1 exp(-ikz) dx = V P ( ~ )  

is used for a finite volume V and discrete values of &. 
If V --+ 00, then k becomes a continuous quantity and 

V6K(i) +- (27r)dd(i) 

with Dirac’s 6 function. It follows form its Fourier transform 

(79) 

that Equation 79 holds at both IC = 0 and k # 0. In this limit 
and the interaction Lagrangian takes the form (see Equation 70) 

f(L) -+ V / ( ~ T ) ~  J d z f ( i )  

By its structure, Equation 81 corresponds to a field with many components zi and the 
coefficient tensor 

(2 $> + 
F(&, . . . , kr) = v-++1s 

1 

Green’s function is written as in Equation 74: 

where 

G(N)(k l , .  . . ,I&) = (@(kl). . . @(kjv)). (84) 

According to the common rule (see Equation 20), 

(@(k,). . . @ ( k N ) )  = ~ - 1  J DQ - ~ ( k , )  -. ~ @(kN) exp [- J ~ ( a )  dz] , (85)  

which immediately gives (cf. Equation 23) 

where 
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with 

Go(k) = (kz + p 2 ) - l .  (88) 

In the expressions for Green’s functions, a volume-containing factor always appears due 
to Equations 74 and 75. In what follows we will omit this factor, since it can be restored 
by dimension analysis at any time. 

The translation invariance of G(N)(x;) manifests itself with a shift of 5; by a‘: Z; + a‘. 
Applying Equation 83 we get 

G(N)(Z;) -+ e x p ( - i a ‘ C ~ ; ) e x p ( - i C ~ i ~ i ) G ( N ) ( ~ i ) .  
ki  7-.,kiv 

Thus, if G(N)(5;) must not change by translation by a’, we must have 

whence an important property of momentum conservation follows. 
In the following, special denomination of the vector quantities will be sometimes omitted 

when there is no ambiguity. 
The quantities k; in G(N) (Equation 86) are called external momenta. The fields J 

related to these must be paired with other derivatives related to the external points or the 
derivatives in Lint. In the expansion of Equation 86 by powers of A, only paired products 
must remain. Pairing must combine k and -k due to Zo being a diagonal matrix in the 
k-space. The factor N will cancel with the vacuum components of the function expansion. 

Consider the second-order term in the expansion G(4)(k1,. . . , k4) with L;nt = (X/4!)Q4 
(Amit, 1978) 

(there are no vacuum terms). 
Extract a special term in the expansion, where two external derivatives are paired with 

the derivatives of another vertex. The two remaining derivatives in each vertex are paired 
(see Figure 2.54a). 

There are three different versions of pairing the external derivatives. Select 1 and 2 for 
connection to the same vertex. The other combinations correspond to the number of the 
external index permutations. 

There are 8 pairing versions for kl, three for kz, four for k3, and three for k4. Lastly, 
the two remaining derivatives at each vertex can be combined in two ways. 

As a result, we obtain a factor l /2 .  
After the counterpairs q1 = -k1, q 2  = -k2, p1 = -k3, pz = -k4 and 43 = -p3,  q4 = -p4 

are chosen, the expression reduces to 
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Figure 2.54. Graphs GP' in momentum space 

After summation over p4: 

P 

Moreovcr, there are two permutations, where ICl + k2 are replaced by kl + k3 or ICl + k4.  
Equation 90 corresponds to the graph in Figure 2.54a. T Y  liqes marked ki give the 

function G o ( k ; ) .  For every vertex, which k; reaches, a factor (-a) 6 (E k ; )  is provided 

for. 
Summation (integration) must be performed over all the internal momenta. The graph 

in Figure 2.54b corresponds to Equation 91. Again, Go(k; )  corresponds to every line. 
There are no 6 functions but the common 6 (C k;) .  The arrows mark the direction of 
the momentum input to output from the vertex. The internal momenta are eliminated 
due to the total momentum for each vertex being equal to zero. Thus, the rules of graph 
building in the k presentation are formulated as follows. 

Rule 3. The graph constituents are N external points, from each of which a line denoted 
by k; (i = 1,. . . , N )  originates. The other constituents are n, vertices of type r ,  consisting 
of n (the order of the function expansion term) points, from which r lines originate, 
denoted by q f ) ,  . . . , qp) (i marks a given vertex of interaction). All the lines must be 
pairwise connected and the sum of the paired indices is equal to zero. One needs not 
build graphs with vacuum terms. 

Rule 4 for the calculation of expressions. For each internal point of type r ,  a factor 

is provided, where q; is the momenta of the lines originating from the point. Each line is 
denoted by {and implies Go(q3. The numerical factor is calculated in the same way as 
above (see Rule 2 ) .  

The summation must be performed over all the internal momenta. In practice, sum- 
mation is carried out over as many internal momenta as there are vertices, since every 
vertex has a 6 function. 

As one 6 function which conserves the total momentum always remains, (n  - 1) internal 
sums can be eliminated, where n is the number of vertices. 

There exist such important properties of graphs as their one-particle reducibility 
(1PR) and, correspondingly, one-particle irreducibility (1PI). 
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Consider 1PR with the graph Gf) of the a3 theory its an example (Figure 2.55), to 

Figure 2.55. Graph GP) in the a3 theory (Amit, 1978) 

which corresponds the algebraic expression 

where the numerical factor and 6 function are not given. 
There is no integration over the momenta connecting the separate parts, and only Go(k) 

and the functions J??) and rf) should be known to deduce the dependence of GF) on kl,  
k2, and k3. Their graphs are shown in Figure 2.56: 

Figure 2.56. Graphs I’f) and (Amit, 1978) 
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The definitions of ry) and I'f) result from comparison of Equation 93 and 92. Once a 
graph can be divided into two ones by breaking an internal line, the momentum of this 
broken line is fixed by means of the momentum of an external line connected to one of 
the disconnected ends. It follows from the fact that the momentum remains for every 
vertex, so the momentum outgoing along an external line is equal to the sum of the pulses 
ingoing along the external lines of the same graph. 

This property of graphs due to the absence of integration over oneline-connected vari- 
ables is called a oneparticle reduction (1PR). In the contrary version, a graph is called 
one-particle irreducible (1PI). 

Green's connected functions and the vertex functions play an important role in field 
theory. 

Green's connected function G,, with connected graphs to correspond to it, exhibits 
interesting and important properties. 

If Z { J }  is the generating functional of Green's function, i.e. 

then it can be written as a Taylor series with Green's functions instead of derivatives 
Z { J }  

(95) 
" I  Z ( J )  = 1 + - G'N)(ki, . . . , k ~ ) ~ ( - k i ) . . . J ( - k ~ ) .  

N = l  N !  kl, ..., kN 

It is specially proved in the field theory that if F {J} is the generating functional of 
Green's connected functions 

(96) 
" 1  F { J } = l +  - G ~ ~ ' ( ~ 1 ,  . . . , ~ ~ ) J ( - ~ ~ ) . . . J ( - ~ ~ ) ,  

N=l N !  ki. ..., kN 

then 

2 { J }  = eFtJ) (97) 

is realized. 
Thus, according to Equation 96, 

In terms of statistical physics, 2 { J }  is the statistical integral, F { J }  is the free energy 

Applying Equations 97 and 98, Green's function can be compared with Green's con- 
(with a negative sign). 

nected functions 
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The functions in the right-hand sides are the cumulants of the statistical distribution 
of the system fields. In their turn, Green's functions are expressed via Green's connected 
ones by means of 

etc. 
Therefore, using the known Green connected functions, one is able to build a complete 

Green function. 
It follows from the above equations that if two coordinates of a line are distant from 

each other, Green's connected functions tend to zero. 
There are connected and disconnected graphs in every order of Green's function expan- 

sion. 
Eg. Figure 2.57 (top) presents disconnected graphs of Green's four-point function up 

to the second order of the a4 theory, below are the connected graphs. 
Figure 2.58 presents Green's two-point connected functions up to the third order. The 

sum of all the terms of this series is called a total  (or dressed) propagator and is denoted 
by (Ryder, 1985) 

Consider a diagram in the second order (A)  

The corresponding expression can be represented w the product 
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1 io<- 3 

Figure 2.57. Connected and disconnected graphs of G(4) (Amit, 1978) 

Gr)  = + A  

Figure 2.58. Graph of the Green connected function Gi2) up to the third order (Ry- 
der, 1985) [Reprinted with permission from: L.H.Ryder Quantum field theory. Copyright @ 1985 by 
Cambridge University Press] 
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The first and last multipliers of this product are external propagators common to di- 
agrams. The field theory (Ryder, 1985) introduces truncated diagrams obtained from 
the total ones by multiplying the external propagators by the reciprocal values of the 
propagators. This procedure is marked with dashed lines as 

- - -  C L Q - - -  (99) 

As a result of this operation, the second diagram of the X2 order takes the form 

and the third one the form 

The diagrams of all orders are subjected to this procedure. 
Of the second-order diagrams, only Equation 99 contains the propagator in the centre 

and turns to be one-particle reducible: it can be divided into two diagrams by cutting 
one internal line. The other diagrams of X2 lack this property and are classified with the 
oneparticle irreducible diagrams. The sum of 1PI diagrams is denoted by 

Hence, the total propagator (Figure 2.58) can be written as 

G?)(k) = Go(k) + Go(k) C(k )Go(k )  (101) 

+ Go(k)C(k)Go(k)C(k)Go(k)  + ... 

with allowance for Equation 2.6-88. 
Equation 101 is written in the accepted notation 

+= +-0-+-0-0-+. 
If physical mass pa is defined as a pole of the propagator 
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then comparison of Equations 101 and 102 leads to 

Cle = P2 - CW, (103) 
i.e. c ( k )  is a correction to  be added to  the mass of the bare propagator to  obtain the 
physical mass of a wave-particle in terms of field theory. 

Equation 101 gives 

[G?)(k)]-' = G;'(k) - C(k) = r @ ) ( k ) ,  (104) 

which defines a second-order vertex function I'[2)(k),  which contains only 1PI dia- 
grams but the reciprocal bare propagator. 

In the general case, a vertex function is Green's rcciprocal connected function in the 
matrix sense. 

The vertex functions play an important role in the field theory. 

The momentum subscript and designation of a field component in coordinate space 
play similar roles in the theory, if the free part of the Lagrangian is a diagonal matrix in 
both spaces. Then, the same subscript can be applied in either case 

Define a functional r { 6 }  through Legendre's transformation 

After functional differentiation, 

and, with due account of Equation 105, 

Legendre's transformation (Equation 106) and the derivatives in Equations 105 and 107 
possess some interesting properties. In the area of the state diagram, where symmetry 
breaks down spontaneously, and a spontaneous field (the order parameter) arises without 
any external source (external field), i.e. 

according to Equation 107, 

= 0. (109) 
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Hence, r { ") has an extremum at 6(i) = .(a). Differentiate 6(i)  in Equation 105 with 
respect to &( j )  once again: 

S 2 F { J )  6 J ( k )  

The last derivative is obtained by differentiating Equation 107, and the equation takes 
the form 

P F  s2r 
a J ( i ) S J ( k )  . 66(k)d&(j) = *". 

When J + 0, then (see Equation 98) 

a2F -+ @(+). 
U ( i )  6 J ( k )  

Thus, the two-point vertex function I'(2)(k,j)  defined by 

in view of Equation 111 is the inverse function of Green's twepoint connected function 
in the matrix sense. 

An N-point vertex function is defined by 

It follows from Equation 114 that r{@} is the generating functional for the vertex 

function, i.e. the latter can be applied for expansion of r{%} into a Taylor series by 
analogy with Equations 95 and 96. 

But earlier (Equations 94 and 98) the derivatives were taken at J = 0, and expansion 
was carried out in terms of J .  In the case of { 6}, the derivatives are taken at J = 0 as 
well, but the expansion is performed in terms of &. 

When 6 = v # 0 at J = 0, 

where 
- 

v, = J+O lim @i. (116) 

If the source disappears, then the summation of Equation 115 starts from N = 2, as 
for J = 0 
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In the region of the state diagram, where the system’s symmetry remains, v; = 0 and 

The question of symmetry breakdown is solved by means of 

d r  { 6} 
-- - 0, 

C M  

the solutions of which are defined when 6 # 0. 
As 

and 

Gr)(1,2) = ((@(I) - ~ ) ( @ ( 2 )  - ~ 2 ) )  (121 1 
which is a positive semi-definite matrix, then the extremum of I?{&} (Equation 119) is a 
minimum. Another useful function is r for a uniform distribution 6 = @, 

If the field distribution is uniform (6 = @), then 

The Fourier transform of I ‘ (N)  in the limit of an infinite volume 

It follows from translational invariance that 

J?)(]Cl,. . . , k ~ )  = (2K)d6 (ck;) r(N)(kl,. . . , k N )  

r {a} = - ri::.,iN(o,. . . , opi ,  . . . ~iN(27T)ds(o) (125) 

(124) 

and Equation 122 can be written as 

- 1  

N = l  N !  i l .  .... i~ 

(27r)d6( O)U( a). 

The emergence of (27~)~6(0) simply means that the quantity r {a} is proportional to 
the system’s volume. The quantity U(@) is called a potential, or an effective potential. 
The condition of symmetry breakdown of a system (continuous phase transition) results 
from U(ia)’s minimum for @ # 0. 

The source J can be identified with an external physical field. If this field is assumed 
to be uniform, the mean value of @ is calculated from 

-- - Ji. 
a@¶ 
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Equation 125 enables us to deduce 

which is the state equation of the system. 
Hence, the vertex function determines the free enelyly and the state equa- 

tion of a system. 
Discuss the main nth-order graph in perturbation theory, which is related to the vertex 

function with E external points and I internal lines. Integration should be performed in 
the k-space over each internal line but with the momentum of each vertex to be conserved. 
As one 6 function must remain for the conservation of the total momentum, only ( n  - 1) 
6 functions of the remaining ones turn out to be effective, and the integration number (or 
the number of integrations) in momentum space is 

L =  I - ( n - l )  = I - n +  1. (128) 

In this connection, the approximate approaches and theories, where expressions are 
written up to a certain integration number in the k space, are called loop approxima- 
tions. 

Landau-Ginzburg's approximation with the free energy 

1 x 
2 4! 

U ( @ )  = - p W  + -@4 

results in the zero loop approximation. In the one-loop approximation, 

Depending on the space dimensionality, the integrals in one- (and so on) loop ap- 
proximation may diverge at small q (an infrared divergence), as well as at large q (a 
ultraviolet divergence). 

Methods of revealing and classifying divergences are related to a regularization p r e  
cedure. The ways of eliminating divergences constitute the context of renormalization 
methods (eg. Wilson's renormalization group approach). 

A dimensional regularization is one of the methods of regularization, based on 
the idea to use the space dimensionality d as a continuous variable. Application of the 
method begins with calculating the integrals at d < 2 to yield forms that are subsequently 
extrapolated to any d (Kholodenko and Freed, 1983). 

Vertex and Green's functions involving combined operators are used in polymer theory 
(see section 5.5). 

First, let us discuss these functions as applied to magnetics and general-type systems 
(Amit, 1978). 

If, for example, the correlation between energy density and magnetization at different 
points inside a magnetic needs to be determined, the means of the type 
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should be considered. These correlation functions allow generalization by means of i n t r e  
ducing a new source 

P+LZ 
6k1(21). ’ ‘ &hi~(zN)6t j ,  (y l ) .  . ‘ d t j ~ ( j L )  

= 2-1 

The combined operators of the @’ type acquire special and independent meaning when 
fluctuations of the thermodynamic quantities play a significant part in the system’s prop- 
erties. 

The function G(N,L) can be also deduced from the function (ii G(N+2L) by means of 
pairwise combination of the last 2L points and consideration o f t  e points in the pairs as 
identical. 

Away from the critical point, the equality 

L 

holds. 
Eg. the function G(4)(21,. . . , z4), calculated in the first order with respect to the inter- 

action constant (Equations 66-69), can be employed to derive the function G(’”)(zl, zz, y),  
assuming z3 = z4 = y with subsequent multiplication of the result by 1/2: 

- 2 /dz’Go(zl - z’)Go(zz - 2’) [Go(y - .’)Iz 

- 5 4 /dz’Go(zI - z’)Go(z’- z’)Go(z’ - zZ)Go(y - y) 

- 2 /dz ’Go(zz - z’)Go(z’ - z’)Go(z’ - y)Go(z~ - y) 

(c) 

(dl 

(e) 

(f ) 

- dz‘Go(zl - z’)GO(z’ - z’)Go(z’ - y)Go(y - z 2 )  
2 
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- 1 J dx' [Go(y - z')]' Go(x' - x')Go(zl - x2) 

- 1 J dx' [Go(z' - 41' Go(zl - y)Go(z2 - y) 

(g) 

(h) 

(9 

4 

x 
16 - - Jdx' [Go(z' - ~ ' ) ] ~ G o ( q -  zZ)GO(y - y) 

8 

Different permutations in Equations 66-69 are presented here explicitly, since some of 
them prove to be identical after 23 = 2 4  = y. 

1 2 6. ' 1 Y 2  L,A,Ll&, 1 1 ' 2  1 1 ' 2  0 Y 

Figure 2.59. Graphs G('?') in the first order of the interaction constant (Amit,  1978) 

The graphs, corresponding to the 9 summands (Equations 135a.. . ), are shown in Fig- 
ure 2.59. Two external points, merging into one, are denoted by a point with a wave line. 
The point y plays the same role as the interaction vertex (having, as in this case, two 
twigs) except that no integration is performed. 

The choice of the factor 1/2! in the definition of the combined operator @' implies 
that the graph symmetry factor follows immediately from considering the point y as a 
vertex; therefore, the symmetry factor can be determined from the graph topology (see 
Figure 2.59 and the factors in the summands of Equation 135). 

This property turns out to be common. 
If the @' inclusions are generated by the term 

1 -w@2(4, 2! (136) 

it can be included into the interaction Lagrangian density L;,,t. Then, the expression for 
2 { J} (Equation 53) is generalized: 

Applying the operation in Equation 133 to G(N*L), we find that t derivatives with 
respect to t(y1) at t = 0 choose one term of all of the sum over 1, namely, the term with 
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I = C, and exclude integration with respect to y. N does not depend on J and t ,  and, 
therefore, will not depend on the derivatives. 

Then G(NL) can be written in the form 

Hence, the nth-order terms in the perturbation expansion of G(N,L) are calculated in 
the same way as the nth-order terms of G(N) with ordinary interaction vertices and the 
first-order ones in L: vertices with two different twigs, whose integration is not performed 
over. In other words, there is no (L!)-' multiplied by the expression corresponding to the 
graph. 

Figure 2.60. 
(Amit, 1978) 

Second-order graph G('.')(zI, 2 2 ,  y1, y2) 

The second-order graph of G('")(z1, x2, yl, yz) shown in Figure 2.60 is derived by mul- 
tiplying by (-X/4!) for each a4 vertex, by 1/2 for each a' inclusion, by l/2! by virtue 
of the second X order (not due to two inclusions). Then, the number of ways to build 
this specific graph is calculated. 

The symmetry factor 1/2 is caused by the graph symmetry about replacing its lower 
part by two lines. The final expression is 

x Go(Y1 - YZ)GO(YZ - x:)Go(z: - ~ 2 ) .  

Cancellation of the vacuum graphs happens just as before, since N has not been altered. 

The effect of merging of two coordinates into G(N+2) to build G(Npl) is really illustrated 

The Fourier transform of G(N,') is defined by 

It follows that only h and d of the graphs in Figure 2.59 are cancelled. 

in the momentum representation. 

G ( N 7 1 ) ( ~ I , .  . . , Z N ,  y) = G(N'l)(kl, . . . , k ~ , p )  exp [-i(lc;zi + p y ) ]  . (140) 
ka PP 

By analogy with Equations 83 and 84, 
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where ip2(p) is derived from 

[a(.)]* = exp(-ips)iP2(p). (142) 
P 

If the left-hand side of Equation 142 is subjected to the Fourier transformation with 
respect to ip(z), then 

@(a = @(i)iP($- Z). 
k 

Hence, 

(143) 

The combined operator a’((.) implies summation over two momenta of ( N  + 2) mo- 
mentum variables in G(Nf2)  with their sum being fixed. These relationships provide one 
of the ways to calculate G(N*l) from G(N+2) in the momentum space. 

Another way consists in considering iP2 as vertex inclusions. Then 
G(N*L)(kl,. . . , k ~ , p ~ ,  . . . , p ~ )  in the nth order of ordinary interactions is the first- 
order in C q!Ja-interactions, i.e. there is no (C!)-’. Moreover, though all the interactions 
have the form 

O2 has the form: 

Therefore, to calculate the graph G(N*L),  the rules of G(N) calculation are applicable just 
in the same sequence by the ordinary interactions, and in the first order by L interactions 
like Equation 146. 

There must be a 6 function at a2 interaction vertices to make the sum of two ingoing 
momenta to be equal to 6. 

klp:a: k2 Icl :2m2;+pz 
kl + p1 + pz 

Qs 41 f k1 - 42 
a b 

Figure 2.61. Second-order graphs G@*’)( k l ,  kz,  p l ,  p z )  in momentum space (Amit, 1978) 

In the momentum space, the graph in Figure 2.60 takes the form shown in Figure 2.61. 
The graph in Figure 2.61a has five internal momenta. In Figure 2.61b, the momentum of 
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6 functions is taken into account. As a result of the conservation of the total momentum, 
we have kl - kz + pl  + pz = 0. 

The expression corresponding to the graph in Figure 2.61b has the form 

2.6.3. Tricritical state 
Section 1.6 has described the tricritical state of a thermodynamic system whose poten- 

tial expansion coefficients in terms of even powers of the order parameter are functions of 
temperature and pressure. 

In a more general case, for determination of the properties of the tricritical state, a 
Hamiltonian with even powers of the order parameter and coefficients depending, cxcept 
temperature and pressure, on the nonorienting field g (see section 1.6) and the tricritical 
interaction parameter (see further) is considered (Riedel and Wegner, 1972). 

The behaviour of such systems has been studied using the renormalization group 
method. In particular, the tricritical indices have been estimated. Eg. for 3 0  space 
(d  = 3) 

i.e. they agree with their values in the mean field approximation (cf. section 1.6). There- 
fore, the boundary value of space dimensionality (beginning with which the mean field 
relationships become valid in the tricritical region) is d’ = 3, in contrast to the critical 
phenomena during continuous transitions, where d* = 4 (see section 2.5, Figure 2.44). 
The examples considered in section 1.6 relate to symmetrical tricritical points where the 
positive and negative values of the order parameter are equivalent due to the even powers 
in the potential expansion series. 

Asymmetric tricritical points are observed in mixtures of several components (Grif- 
fiths, 1974), and will be considered in detail later using polymer systems as examples 
(section 3.10). 

So, symmetrical tricritical points are observed in systems with the Hamiltonian (in 3 0  
space) 

where si is the nth-component spin (-cc < s, < cc) (Stephen et al., 1975). 
The parameters ro, 264, and 266 depend on the thermodynamic fields in the system. 

Using the mixture 3 H e  + 4He as an example, these are temperature T and the chemical 



246 2.6. Lagrangian formalism of the field theory 

T TtC- 

potential difference pM = p3 - p4. The field C is conjugate to the order parameter (see 
section 1.6). 

Near the tricritical point, it is more reasonable to measure the thermodynamic quanti- 
ties as functions of their distance from the tricritical point in a specially chosen coordinate 
system of scaling fields, which provides the validity of the scaling relationships for ther- 
modynamic quantities (see section 1.6). 

Q 

............................ . 

I . .  

P34 = P3 - p4 

Figure 2.62. Lines of first order (1) and continuous (f1) transitions, which converge in the 
tricritical point, with the mixture 3He+4He. p3 and p4 are the chemical potentials of the 
components, Q and p are the axes of the scaling fields (Stephen et al., 1975) [M.J.Stephen, 
E.Abrahams. Phys. Rev. B 12 (1975) 256-262. Copyright @ 1975 by the American Physical Society] 

Here Q and p are chosen as the coordinate axes of scaling fields (Figure 2.62). They 
are drawn from the tricritical point perpendicularly and tangentially to the continuous 
critical point curve (Riedel, 1972). 

In the first approximation of perturbation theory, the new variables are related to the 
system parameters by (Stephen et al., 1975) 

(150) 
n+2 

6 
(. + 2)(n + 4) 

p = ro + -u431(0) + 5! .6F? (0) 

where 
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with Green’s function 

G(k,r) = (k’ + r)-’, 

and T is the reciprocal susceptibility (see Equations 36 and 39). 

p = O ,  Q=O, and ( = O  

corresponds to the tricritical point in the new coordinates. 

the tricritical region provided that 
Stephen et al. (1975) have employed the diagrammatic technique to build the theory of 

266 < 1 and Q 2 / r  < 1. (155) 

The results have been obtained in terms of the vertex functions r(’)(r), 1’(4)(~),  and 
r@)( r )  : 

where 
3n + 22 

C(T) = 1 - ~ 4gon2 u ~ I ~ T ,  

2(” + 4) 
3” + 22. 

p = -  

(158) 

The vertex functions and the order parameter M are used to express, eg., the reciprocal 

Equations 154, 156, and 157 are followed by t-e conditions of the tricritica 
expressed through the vertex functions 

r(*)(r) = 0 and r(4)(~) = 0. 

(162) 

state, 

These results are applied to build the theory of tricritical region in polymer systems 
(see section 5.5). 
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Chapter summary 

1. Light scattering by a dipole in a plane is considered. Colloidal scattering is discussed 
using the Rayleigh-Debye approximation, which holds for optically-soft any-form particles 
comparable with the wavelength. 

The Rayleigh-Debye approximation is of great significance for exploring substance with 
a statistically-heterogeneous (continuous) structure described with the correlation func- 
tions formalism. In this case, the scattering intensity is proportional to the correlation 
volume (w) representing the Fourier image of the correlation function for the order pa- 
rameter (such as: the density of one-component substance, the component concentration 
in mixture). 

The premises and main results of the van de Hulst approximation are given and used 
(as well as the rigorous Mie theory) in the turbidity spectrum method applied for the 
characterization of ill-defined disperse systems. 

In particular, the ensemble of a new phase during phase separation proceeding in a 
multi-component system belongs to  such systems. In this case, the turbidity spectrum 
method provides the determination of the mass-volume new-phase particle concentration, 
as well as the degree of phase transitjon; this can be used to construct the molecular-mass 
polymer distribution function (the method of spectroturbidimetric titration for polymer 
solutions-subsection 3.2.3) and for a phase analysis (identification) of the phase separa- 
tion type in polymer systems (paragraph 3.6.2.5, sections 6.2 and 6.4). 

The determination of particle sizes in the process of phase separation gives information 
about the mechanism of phase separation kinetics. 

The schemes and tables of various applications of the turbidity spectrum method are 
given, and the fields of its practical applications are briefly listed. 

A master table is presented containing the formulae of colloidal scattering for the char- 
acteristic quantities 7 ,  & ,Ro, and &* in terms of polarizability cy, permittivity and 
refractive index p of the components in the Rayleigh and Rayleigh-Debye approximations 
is given. 

2. Light scattering in one-component liquids (including the region of critical opales- 
cence) is of great importance in solving a number of problems discussed in this book. 

A radial function of molecule distribution and interparticle distribution functions are 
included into consideration. 

The pair distribution function, in terms of which all the thermodynamic functions of 
liquid are expressed, is of particular significance in the liquid state theories. 

To describe the liquid behaviour in the critical region, the pair correlation function h(r) 
and the direct correlation function C(r) are introduced. 

The correlation of density fluctuations in the critical region is determined by the long- 
range correlation distance [, (Equation 2.3-129) characterizing the efficiency of the cor- 
relation falls of density fluctuations with distance. 

Light scattering in liquids within the critical region is described with the Rayleigh- 
Debye approximation including the correlation functions formalism. 

The intensity of light scattering is proportional to x the correlation volume we corre 
sponding to the Fourier transformant h(r), i.e. w, = h(q).  
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To such a formalism of light scattering in the critical region leads Debye’s consideration 
based on adding to the free energy function a term containing the square of the density 
gradient and taking into account the correlation of density fluctuations in the critical 
region ils the first approximation. 
3. The opinion on the symbathy of the scattered light intensity and the molecular 

association can often be found in the literature. Meanwhile, there can be just the other 
way about. The low value of the intensity of light scattered in water being the most 
structured (associated) liquid is an example. 

The matter is the association suppresses the development of density fluctuations, which 
causes a low compression and a low turbidity value. 

A similar effect can be observed in polymer systems as well. For instance, the inten- 
sity of scattered light is an extremal function of the polymer concentration in solution 
(section 3.3.1.1.1). 

At high polymer concentrations, the solution turns very transparent (up to the con- 
densed state of the polymer) due to suppressing concentration fluctuations by the increas- 
ing viscosity. 

In gels, cross-links withstand concentration fluctuations and classic gels are character- 
ized by high transparency. 

Of course, if cross-links are caused by crystallites, the gel structure becomes heteroge- 
neous, which is accompanied by high turbidity of such gels (section 3.5.5). 

Dynamic light scattering in onecomponent liquid is the beginning of the consideration 
of this phenomenon as well as of the investigative method. 

4. In a two-component system, both light scattering and diffusion depend directly 
upon the value of dpl /dz2 (or an equivalent one) which, in turn, determines the therm* 
dynamic stability of the one-phase system state and the level of concentration fluctuations 
(cf. formulae 1.1.2-53, 1.4-35, and 2.4-8,-9,43). Due to this, near the mixture critical 
concentration zZc at the isotherm of the state diagram there are both a maximum of 
the scattered light intensity and a minimum of the diffusion coefficient D ( q )  (see Fig- 

ures 2.36 and 2.37). As the configurative point approaches the spinodal, 

the scattered light intensity increases and the diffusion coefficient D decreases. 
In the nearest vicinity of the spinodal, concentration fluctuations become correlated, 

and it is necessary to pass from Rayleigh-Einstein’s scattering to Rayleigh-Debye’s ap- 
proximation for the correct description of light scattering. 

In the spinodal vicinity D + 0, and according to the Fick first law, it must cause 
an infinitely slow diffusional stream (the so-called critical retardation). This leads to 
principal difficulties in the approach of the configurative point to the spinodal. According 
to Onsager’s hypothesis, the evolution of the order parameter fluctuations in the critical 
region obeys macroscopic regularities. In that case, the effect of critical retardation shows 
itself in a low rate of the resolution of spontaneously appeared concentration fluctuations, 
and the solution morphology in the critical region can be compared with a colloidal system, 
with long-living heterophase concentration fluctuations being particles (quasi-particles) of 
the disperse phase. 

5. The relation between the scattering of radiation and diffusion manifests itself directly 
in the dynamics of concentration fluctuations as well; as a result, the diffusion coefficient, 

(E)*,p -+ 0, 
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as well as other transport (hydrodynamic) solution characteristics, can be obtained from 
the spectrum of scattered light. However, some difficulties in interpreting experimen- 
tal data near the spinodal due to the increase of the correlation range of concentration 
fluctuations arise in the methodology of inelastic light scattering. It causes the failure 
of Onsager’s principle being the basis for the theory of dynamic light scattering in the 
hydrodynamic approximation. That is why a theory of dynamic light scattering in the 
approximation of modemode coupling has been developed for the nearest vicinity of the 
spinodal. 
6. The influence of the order parameter fluctuations on the system’s properties is taken 

into account to a first degree within the general mean field theory by means of adding 
a gradient term to the expansion of the thermodynamic potential in terms of the order 
parameter. 

In this approximation, the correlations of the order parameter fluctuations are described 
with the exponential correlation function within long-range correlations E. The level of 
the order parameter fluctuations allowing the mean field approximation is determined by 
the Ginzburg parameter. 

The given mean field approximation enables one to relate to the coefficients of both 
the square and gradient terms in the expansion of the potential (Equation 2.5-13). 

On the basis of this relation, the deduction of the state equation for polymer systems, 
taking into account the fluctuations in the component concentration in the mean field 
approximation has been done (Equation 3.7-36). 

in the critical 
region affects mainly the system’s properties, so the specific features of the short-range 
intermolecular interactions no longer play a significant role. 

This serves as a physical basis for the scaling hypothesis regarding the critical indices 
to be related to each other, so only the values of any two ones are necessary for the 
determination of them all. 

It follows from the same that the property of homogeneity of the system’s thermody- 
namic potentials holds. 

The existence of large-distance fluctuations of the order parameter in the critical region 
leads also to the universality hypothesis, according to  which the properties of thermody- 
namic functions of different physical systems are given by the space dimensionality d and 
the order parameter dimensionality n. The systems with equal d and n form a class of 
universality with the same critical indices. 

The model of self-avoiding walks of segments on a 3 0  lattice, which is equivalent to a 
polymer chain conformation in a good solvent, is a special class of universality with d = 3 
and la = 0. 

Section 2.6 gives the Lagrangian formalism of field theory. The properties of the cor- 
relation function of the order parameter G (Green’s function) are treated in detail, sjncp 
many experimentally determined values are expressed in terms of this function. 

The diagrammatic technique is successfully used to calculate Green’s functions. The 
rules for drawing graphs, as well as many examples of the correspondence between al- 
gebraic expressions and graphs representing different contributions into Green’s function 
values, are given. 

The properties of the connected Green function are specially discussed. The latter can 

7. The existence of large correlated regions of the order parameter 
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be represented with a connected graph. 
For the majority of physical systems, the Lagrangian is invariant to any space transla- 

tion. In this case, all the equations of the theory can be simplified by means of Fourier’s 
transformation, i.e. by considering the characteristic values in the momentum space. The 
rules for drawing graphs of the characteristic values in the momentum space are given. 

The property of the graph one-particle reducibility allowing to simplify significantly the 
corresponding algebraic expressions is considered. 

The properties of vertex functions playing an important role in field theory (the free 
energy and the state equation of a system can be obtained with their help) are discussed 
in detail. 

Vertex functions and Green’s ones, including combined operators are considered. They 
are of great significance for the description of the phase transitions of the continuous type. 

The attributes of the symmetrical tricritical point in the common-type system described 
by the Hamiltonian (2.6-149) are given. 

The expressions for the susceptibility and the state equations of a system in terms of 
the vertex functions I?(’), r(4), and r(6) in the tricritical region axe given. The equalities 
I’(’) = 1’(4) = 0 serve as a condition of the tricritical state. 





Chapter 3 

Polymer+low-molecular-liquid 
system. Mean field approaches. 
Liquid-liquid phase separation 

3.1. Binary systems 

3.1.1. State equations 
The ideas of regular mixtures find application in the description of the properties of 

the system polymer+low-molecular-weight liquid (P+LMWL). 
Flory-Huggins’ theory (Flory, 1941, 1942, 1945; Huggins, 1941, 1942abc, 1958; Tompa, 

1956; Volkenshtein, 1959; Casassa, 1976, 1977) is based on a model of a rigid lattice of 
rn cells, whose volume w1 is commensurable to that of the LMWL molecule. The lattice 
with the coordination number v contains m2 macromolecules and ml LMWL molecules. 
Each macromolecule is composed of z fragments (segments), each occupying one cell 
of the lattice: 

Gi being the molar volume of the components, v2 the specific partial volume of polymer, 
Mz its molecular weight (hereinafter M2 = M), w2 the volume of a macromolecule. Then, 
the volume fractions of the components are expressed as 

n1 rnl - 

zrn2 - 

u1 = - 
ml + zma nl + 2712’ 

ml + zma n1+ 2722’ 

2122 u2 = - 

where n; = r n ; / N ~  are the numbers of moles. 
According to the general principles of statist-:a1 thermoL,mamics, ASm, , 

AG, = AH, - T AS, 

are derived in terms of this model. In view of Equation 1.1.149, 

AS, = S - nlSol - n2302 = nlSl + n2S2 - nlSo1 - nzSo2- 

(3) 

Hm and 

(4) 
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The entropy S of the mixture, using Boltzmann’s formula 

S = LInR, (6) 

is expressed via the number of ways to realize the state system a, i.e. the number of ways 
to arrange the structural elements on the lattice. 

In this approximation, the lattice contains 11722 macromolecules, while the other cells are 
occupied with r n l  LMWL molecules. 

In order to calculate R, determine the number @;+I of possible arrangements of the 
( i  + 1)th macromolecule given the i previous ones are prearranged, and the fraction of 
occupied cells z i / m  is assumed equal over the whole lattice as well as in its certain 
local place (the mean field approximation). This situation is valid for moderate (middle) 
polymer concentrations and, certainly, is not the case in dilute solutions. 

In the case of flexible chains, no restrictions are imposed on the placement of all the 
z chain fragments, i.e. every next fragment can occupy any neighbouring cell but one 
occupied by the previous fragment. 

Figure 3.1. A pattern 0, the ( i  + 1)th macromolecule 
being placed on the lattice 

Thus, (rn - zd) cells are accessible, on the average, for the first fragment of the (d + 1)th 
macromolecule. The second fragment, due to its being linked with the first one, can oc- 
cupy, generally speaking, v neighbouring cells but the part of them occupied by fragments 
of the i previously arranged macromolecules, so the number of accessible cells is 

a(i+l)z = v - voce 

It is presumed that 

then 

Q(i+l)Z = v (1 - E) . 
The number of accessible cells for the third and subsequent fragments is 
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as one cell is occupied by the previous fragment. 
For simultaneous arrangement of, say, four fragments, 

and of all z ones, 

pj+1 = (rn - zi )v(v - 1)-2 1 - - ( 3 - l ’  

or, assuming u x v - 1, 

(m - zi)+ - 1)z--1 
Pit1 = mz-l 

In the case of large m, z ,  and i ,  the relationship 

(m - zi ) !  
[m - z ( i  + I)]! (m  - zi)l x 

applies with good accuracy; one can verify it, taking specific examples. Then, 

(m  - zi)! (u  - 1y-1 p. N 
[m - z ( i  + I)]! m z - 1 ‘  

r + 1  - 

When mz macromolecules are arranged simultaneously, 

a = i=O 

ma! ’ 

(14) 

where possible identical conformations of m2 macromolecules are excluded. Substituting 
Equation 14 to Equation 15, we get 

m!(u - 1)*-’(m - z)!(u - I)’-’ . .. [m - z(m2 - 1)]!(u - 1y-I R =  
mz! (m - z) !  m’-l(m - 22)! mz-1. * [m - z(m2 - l)]! mz-ym - zmz)! mz-’ 

With Stirling’s formula applied to Equation 6, in view of Equation 16, and transferring 
to moles, we obtain 

u - 1  + Rnz(z - 1) In -. S=-Rnlln--Rnzln- nl nz 
n1+ znz n1+ znz e 

By virtue of ml LMWL molecules being indiscernible in the lattice of ml cells, 

m1’ Sol = kln 2 = O 
ml! ’ 

while 

(17) 
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which reflects the entropy of polymer disorientation from complete order (an ideal 
crystal) to chaotical disorder (the amorphous state). Equations 5, 17-19, including Equa- 
tions 2 and 3, yield 

ASm,cmb = -R(nl l n q  + nzlnvz). (20) 

The mean molar combinatorial entropy of mixing (Equation 1.1.1-50) per mole of lattice 
cells n = nl + zn2 is expressed as 

If we pass onto mole fractions, 

and 

we can make sure that the entropy of mixing Agm,comt, (Equation 21) is larger than that of 
an ideal mixture Asm,id (Equation 1.1.3-20) (Kubo, 1968) (ASm,comb = ASm,id at z = 1). 
This is a peculiar feature of mixing of flexible macromolecules in comparison with that of 
the rigid ones of the same molecular weight. 

Of course, the entropy of mixing of ml LMWL molecules with the same number zmz 
of disconnected fragments (i.e. with zm2 molecules of a LMW substance) will be larger. 

Note that the restrictions of the above deduction are also caused by the fact that the 
links among the fragments of the previously placed d macromolecules were in no way 
accounted for, though these links were certainly taken into account when placing the 
(i + 1)th macromolecule (Equations 8-10). 

According to the general idea of the model of regular solutions (subsection 1.3.1), 
it is assumed that AH, # 0 in Equation 4 and the combinatorial entropy of mixing 
hS,,.=.,,,,b, whose derivation neglects the influence of energy interactions on the character 
of arrangement of the mixture’s structural elements, acts as the entropy of mixing. 

The excess functions of mixing are usually defined by Equation 1.1.3-28, though other 
versions are known (Shakhparonov, 1956). In particular, it is reasonable to define excess 
functions of mixing for polymer solutions by 

with AS,,e, = 0 in the model of a regular solution. If the calculation of AH, in Flory- 
Huggins’ theory is carried out by means of the pair interaction model (see subsection 1.3.1 
and section 1.5), then the contacts 1-2 and 2-2 are understood as a contact between a 
LMWL molecule and a fragment of a macromolecule, and a contact between two fragments 
of macromolecules, respectively, 

AH, = P ~ ~ A E ,  (25) 
where P12 is the number of contacts between LMWL molecules with macromolecule frag- 
ments, Ae is the difference between the energies of interaction of the structural elements 
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(the energy of mixing) per contact (Equation 1.3-4). As well as in subsection 1.3.1, 
A H ,  = AE, owing to AV, = 0 (the model of a rigid lattice). 

In the arrangement pattern (Figure 3.1), every non-end macromolecule fragment con- 
tacts (v - 2) LMWL molecules, and the whole of the macromolecule possesses z(v - 2) 
mixed contacts and 2 end ones. For m2 macromolecules, the number of contacts is 
m2[(v - 2)z + 21. 

Only a part of these contacts are realized due to the prearrangement of the i macrc 
molecules. The efficiency factor of the mixed contact number is assumed to be equal to 
V l ,  so 

PI2 = m2[(v - 2)" + 21.~1 M m2vzv1. 

zm2 v2 

(26) 

Substituting zm2 from 

-- - - 

ml v1 

to Equation 26, we get 

PlZ 1: vv2ml. (27) 

Introduce a dimensionless interaction parameter (Flory-Huggins' parameter) x 
as the interaction energy per LMWL molecule expressed in kT units 

i.e. x characterizes the variation of the interaction energy as a result of an arbitrary 
transfer of a LMWL molecule from the medium of LMWL into the surrounding of polymer 
fragments after their disconnection (see Figure 3.1). After such a procedure, v bonds with 

Substituting Equation 27 to Equation 25, and with due account of Equation 28, we 
and v bonds with e22 are broken and v bonds with ~ 1 2  appear. 

obtain 

A H ,  = RTnlvZx, (29) 

AH, = R T v ~ v ~ x .  (30) 

and, per mole of the lattice's cells, 

With allowance for Equations 20 and 29, the Gibbs potential of mixing can be written 
as 

AG, = RT(n1 In VI + 722 In vz + xnlvz) (31) 

and (see Equations 30 and 21) 

v2 AG, = RT(v1 In VI + - In v2 + xvlvz). 

Comparison of Equations 28 and 1.3-9 leads to 
z 

a x = - -  
RT (33) 



258 3.1. Binary systems 

(see section 1.3 to refresh a) .  

deep analogy with Equation 1.3-10. 
Thus, on replacement of the volume fractions by the mole ones, Equation 32 exhibits a 

The first versions of the theory considered only endothermic mixing and x 1 0, i.e. the 
energy of mixed contacts is less than the sum of the energies of homogeneous contacts 
~ i j  by magnitude (cf. Equation 1.3-7). The choice of this condition seems completely 
natural in the methodology of regular mixtures where the non-combinatorial entropy of 
mixing is neglected (to simplify calculations). By virtue of x 2 0, the third term in 
Equations 31 and 32 is positive, while the first and second ones are always negative. It 
follows that x determines the thermodynamic quality (affinity) of the solvent: the less 
x, the more negative the Gibbs potential of mixing AGm is and the more preferable is 
mixing (see Equation 1.1.3-14). 

As z increases, the second negative term in Equation 32 diminishes in magnitude, 
leading to the same decrease of the negative potential of mixing. This explains the well- 
known fact: the higher the molecular weight of a polymer, the worse its solubility. 

Flory-Huggins’ interaction parameter x proves to be semiempirical (in particular, due to  
Y being indetermined). On the other hand, this circumstance enables x to be generalized 
with the model of regular solutions to be replaced by a more realistic model of strictly 
regular solutions with AS,, # 0 or with a non-zero uncombinatorial contribution to 
the entropy of mixing (cf. Equation 24) 

ASuncomb # 0. (34) 

Such a transfer to the model of strictly regular solutions can be made by giving the 
quantity AE in Equation 28 the meaning of an additional increment of the Gibbs potential 

AE + Ag = Ah - T ASuncomb, (35) 
where Asun,omb is given the sense of a non-combinatorial component of the overall entropy 
change (the zero approximation of strictly regular solutions) (Tompa, 1956), Ah is the 
enthalpy change. 

In the general case, x should be, of course, a function of the polymer concentration and 
molecular weight (more rigorously, a function of the molecular-weight distribution). The 
concentration dependence of x can be represented, generally, by means of an expansion 
series in terms of v2 

x = x, + x,%? f x,v; + . . . . (36) 

Then, no concentration dependence (x = x,) can be accepted as the first approximation 
of Flory-Huggins’ theory. The second one must be related to an explicit concentration 
dependence of x with the coefficients x,, x,, x, etc. to be determined (see subsection 3.6.2 
for details). 

The third approximation accounts for the dependence of x on the polymer molecular 
weight (see subsection 3.6.3 for details). 

So, at x = x1 = const and including Equations 35 and 28, we get 
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Introduce two interaction parameters, namely, the enthalpy parameter 

u Ah 
kT 

K1 = - 

and the entropy parameter 

1 ~Asuncomb 
* 1 = 2 +  k ’  

then 
1 
2 x, = K1 - $1 + -. 

Their ratio defines the Flory temperature 8 

Ki 8 _ -  - - 
*l T’  

(38) 

(39) 

Therefore, transfer to the model of strictly regular solutions leads to the addition of 
the second summand to the expression for x in comparison with Equation 33 

CY x = x  =-++. 
RT 

It follows from Equation 37, with allowance for Equation 38, that 

and (see Equation 39) 

In the symbols of Equation 42, 
a 

K l  = - 
RT’ (45) 

The expressions of the Gibbs potential of mixing, like Equations 31 and 32 with x 
comprising two summands, x ,  + x,, are derived immediately within the framework of the 
methodology of strictly regular solutions, see Equations 4.65 and 4.80 in (Tompa, 1956). 
In the zero approximation 

x = x, + X X  

with 

(47) 
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1 
lim xs = - 2 - *1. 
Y -to 

At  x = x,, it follows from Equation 31 that 

3.1. Binary s-ystems 

(49) 

In comparison with the plots of the concentration dependences of Apl and Apz (Fig- 
ure 1.5), the functions Apl(~2)  and ApZ(v2) (Figures 3.2 and 3.3) show a strong asymme 
try caused by a drastic difference in the molecuIar sizes of the components. If we confine 
ourselves to small v2 in Equation 50 (so that In( 1 - v2) M -v2 - v;/2 - . .) and let z -+ 00, 

then it follows from Equations 1.2-27, 1.3-37, 1, 2.4-26 and 50 that 

or (see Equation 40) 

or (see Equation 41) 

Certainly, the second virial coefficient A2 also determines the solvent thermodynamic 
quality, being related (in this approximation) to x, by Equation 52 and to other param- 
eters by Equations 53 and 54, which is shown in Figure 3.4. 

At T = 8, A2 = 0 (see Equation 54) and, according to Equations 52 and 53, 

(55) 
1 x = -  fC1=?)1 ’ 2’ 

(see Figure 3.4). 
At T = 8, a polymer solution is sometimes called ideal as A2 = 0 (cf. Equations 1.2-29 

and 1.3-38). 
In contrast to the ideal mixtures of LMW substances, here A2 = 0 is not a consequence 

of the solution being athermal.  As ASm,comb > ASm,id, for AG, = AGm,id (where AG, 
and AG,,id are defined by Equations 32 and 1.1.3-15, respectively) to be valid, the large 
combinatorial entropy of mixing must be compensated for by a negative contribution of 
the enthalpy of mixing (see Equation 55). 

To emphasize this circumstance, polymer solutions at T = 8 are sometimes called 
pseudoideal, or just solutions in the theta solvent. 

Unlike Equations 52-54, experimental data show a power dependence of A2 on molec- 
ular weight: A2 - M-‘. 
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Figure 3.2. Chemical potential of mixing of LMW component ( u )  and that of polymer 
( b )  in RT units against the volume fraction of polymer 02, z = 1,000 (the values of x, 
are specified near the curves) (Tompa, 1956) [H.Tompa Polymer Solutions. Copyright @ 1956 
by Academic Press] 

That there is no M dependence of A2 in Equations 52-54 is due to the fact that the 
segments of i macromolecules are regarded as disconnected when the number of ways to 
place the ( z  + 1)th one is being determined. 



262 3.1. Binary systems 

104. 

Figure 3.3. Chemical potential of mixing of LMW component Apl in its mixture with 
polymer ( z  = 1,000) against the volume fraction of polymer (the values of x ,  are specified 
near the curves) (Tompa, 1956) [H.Tompa Polymer Solutions. Copyright @ 1956 by Academic 

p-I 

There is an alternative approach to evaluate x,. Extract it from Equation 50: 

On the other hand, 

ACLI = ACLlcomb + &lex. 

According to Equation 50, 

Apicomb = Api IX1=o = RT 

(57) 

Having divided both the sides of Equation 57 by v;RT and rearranged the terms, we 
get 

Comparison between Equations 56 and 58 leads to 

which can be regarded as the definition of x, in the fkst approximation of the model of 
strictly regular solutions. The zero approximation (Shakhparonov, 1956, p. 327) follows 
from Equations 58 and 59 provided that v2 + 0 and z + 00, 90 that 

v2” ln(1- 212) M -v2 - - - - 0 -  , 
2 
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Figure 3.4. Thermodynamic and structural parameters in the P+LMWL system with an 
UCST 
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If Apl is represented as 

Apl = AK1- T AS1 

and 

Ai1 
* 1 =  v22,’ 

are defined, then Equation 60 yields 
1 
2 (64) XI = IC1 - $1 + - 

in accordance with Equation 40. 
If we substitute Equation 64 to Equation 60 and take Equation 41 into account, then 

In view of Equation 54, 

Huggins (1942a) has shown that in Equation 47, xs 2 l /v .  Typical experimental values 
of xs fall inside 0.3.. .0.4 in excellent agreement with the theory (Blanks and Prausnitz, 
1964; Fkbenfeld et al., 1976). 

For the enthalpy component, Huggins (1942a) obtained 

where &, 61 are Hildebrand’s solubility parameters of the polymer and solvent which 
have the same meaning as in the theory of regular solutions of LMW components by 
Hildebrand and Scott (1950). This theory gives for the enthalpy of component mixing 
(Shakhparonov, 1963: Read et al., 1977) 

2 1/2 
AH, = V [ (2) - (2)lf2] v1v2, 

where Wi is the energy of liquid vapourization per mole and V is the total volume of 
mixing. The cohesion energy density (CED) Wi/v& is determined by the set of inter- 
molecular forces in liquid, and the quantity 
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is called Hildebrand’s solubility parameter (cf. Equation 2.4-14). 
There appears a solubility parameter SI of a LMWL in Equation 68, corresponding to 

Equation 70. The solubility parameter of polymer Sp is calculated by means of Small’s 
(1953) group contribution or measured by the density of a dilute solution, by equilibrium 
swelling (van Krevelen, 1972; Barton, 1975), and by turbidimetric titration (Suh and 
Clarke, 1967, 1968; Elias, 1977). See also: Lipatov et al. (1971), Tager et al. (1976b), 
Yakovlev et al. (1984). 

Askadski et al. (1977) have proposed a procedure to calculate the CET) of I,MWI, 
and polymers in terms of the molecule packing coefficients. These values match those 
calculated by means of Small’s method in the case of simple non-polar liquids and are 
closer to the experimental ones for more complex (polar and with H-bonds) liquids. 

Thus, assuming Equation 68 for x H  and the mean experimental value for x,, we obtain 

v,l X ,  = xS + x H  = 0.34 + -(Sp - RT 
Initially, the solubility parameter 6 was applied to liquids with intermolecular interac- 

tions of the dispersion type. Then, S has been represented by a threecomponent param- 
eter caused by dispersion Sd and polar interactions S,, and the ability to form H-bonds bh 
(Crowley et al., 1966, 1967; Barton, 1975; Rebenfeld et al., 1976; Blanks, 1977) 

It follows from Equation 71 that the best solubility (compatibility) is shown by com- 

Tager and Kolmakova (1980) report the details and a discussion of the solubility pa- 
ponents with close solubility parameters. 

rameters of polymers. 

Let us emphasize once again that state equation 31 does not suit dilute solutions where 
macromolecules are separated by long spaces on the lattice (see Figure 3.1) filled with 
LMWL molecules, which excludes Equations 7 and 26 while deriving Equation 31. 

That is why the state equation of the P+LMWL system in the range of small concen- 
trations turns out to be that of a macromolecular coil, which is a system (subsystem) of 
many structural elements. 

Hence, to an individual molecular coil are applicable the relationships of statistical 
thermodynamics and statistical physics, on the basis of which the state equation of a 
molecular coil is written down. To solve this problem, a model of the system (subsystem) 
is required. One model (lattice’s, more exactly, cell’s) was used at the beginning of this 
section. 

Let us consider other models. One of them (Freed, 1972) assumes a chain to comprise 
( n  + 1) units (monomers), linked to each other consecutively and enumerated O , l , .  . .n.  

The locations of the units are defined by a set of coordinates { F k }  with respect to a 
certain arbitrarily-chosen origin of coordinates. If no external force is applied and space 
is isotropic, F, = 0 can be chosen as a coordinate origin. Then, the potential energy of 
the chain is written as 
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Here u j  reflects the chains being sequentially linked, and cp involves all the other interac- 
tions. All the statistical properties of the chain are defined by the distribution 

G ( { 6 } )  = exp [-u({Fk})/kT] a (73) 

(74) 

The partition function is calculated as 

2 = J d{Fkk) eXp [-u({Fk})] 3 1 d{Fk}G({;k}), 

where d { F k }  = fi d?k, when & zz 0. 
k=l  

The normalized distribution function of chain conformations is defined in the standard 
way 

p({?.k}) = Z-'G({Fk}). (75) 

As usual, P({?k}) d{.'kk) is the probability of such a conformation, when the chains are 

The main property of a polymer chain is, indeed, sequential binding of the segments, 
placed between { F k }  and {Fk  + dr'k} ( d l  IC # 0). 

and bond vectors are often introduced (Yamakawa, 1971) - 
Rj = < - < - I .  (76) 

(77) 

The character of linking is, therefore, expressed via the probabilities of bonds 
.+ 

T(R3) = exp [-.j(&)/ICT] 7 

/ d $ j r ( g j )  = 1 (78) 

where uj(%) u j ( c ,  c-1). The zero energy level is chosen so that the normalization 

is realized, and rj(Ej) is the probability of the j t h  bond being of length 2,. Then, G({Fk}) 
from Equation 73 takes the form 

As usually happens in statistical physics, this equation contains more information than 
is really required. Experimentally measured quantities result from these distributions by 
means of integration over all the set of bond vectors (Equation 79) or over all the set of 
chain locations (Equation 73). 

Consider the end-to-end vector h' distribution function 

G(z, n) = / G({&})J(rf,  - x)  d{Zkk),  (80) 

which (without regard for normalization) is the probability of the last chain Fn hitting 
the point h'. 

Allowing for Equation 76, we have 
II 

r', = c Zj, (81) 
3=1 



3.1.1. State equations 267 

4 

where the end-to-end vector h = Fn is represented as the sum of bond vectors, then 

G(i, n )  = 1 G({&})S(e iJ - x ) d { & ) ,  
j=l 

and the partition function is 

2 = J d L G ( L , n ) ,  (83) 

and the end-bend vector probability distribution is 

P ( i ,  n )  = 2-'G(Z, n) .  (84) 

The b function in Equations 80 and 82 selects, of all the possible conformations, only 
those for which 

satisfies. 

/ d i P ( i , n )  = 1 (86) 

serves as the condition of P ( i ,  n )  normalization. 
If all the bonds are accepted as identical, then ~j(<j) = T ( & )  for every j and 

1,et 11s consider the simplest case with cp = 0 (an unperturbed chain): it follows from 
Equations 78 and 83 that 

2 - 1  (88) 

and 

Such a chain is also called a chain of random (free) walk, since Equation 89 matches 
the distribution calculation of random walk probability of a structural element in space 
with n jumps (steps) from one position to another with the length of each jump (step) 
defined by the probability distribution ~ ( l $ )  (Flory, 1953; Yamakawa, 1971). Hence, 
Equation 89 relates the statistics of polymer chains to the problems of random walk and 
diffusion. As the diffusion equation is mathematically similar to Schrodinger's one, the 
common ideology and common mathematical solutions unite the conformational tasks of 
a polymer chain, the state of quantum-mechanical systems, and the field theory. 
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Supposing no bond-bond interaction (no short-range interactions) , all the bonds 
are of the same length I, and 

and P(Z,  n) concerns random walk with n equal steps of length 1. Equation 89, therefore, 
can be solved for T(&) (Equation 90) by means of Markov’s method (Yamakawa, 1971) 
as follows. 

Introduction of the Fourier representation of the S function 

into Equation 89 yields the product of n identical functions 

i s  the characteristic function of the distribution P(& n) which, in the case of Equation 90, 
is calculated exactly: 

where k = l i l .  But P(L,  n) can be derived from Equation 93 as a series only. 
Fromprobability theory, it is known that the moments of any quantity by the distribu- 

tion P(h,  n )  are deduced irnmediatcly from the characteristic function; here, from K ( k ,  n) 
(Equation 94). 

Eg. the pth end-to-end distance moment 

(P) = J c i ~  ~(i, n ) P  

(P) = nl2 = L1, 

(96) 

is proportional to the coefficient of $P in the power series K($, n) in terms of $. 
It results that ( z p )  = 0, if p is odd and, for instance, 

(97) 

where L = PEL is the contour length of a polymer chain_. 

central limit theorem n -+ 00. 

In the case of a sufficiently long polymer chain, P ( h ,  n) is determined by means of the 
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+ 
If n, is large, then K ( i ,  n )  (Fqiiation 95) has a sharp peak about k = 0. Such behaviour 

of the characteristic function should be expected at any other choice of r(dj). Then, from 
Equation 92, we have for long enough polymer chains 

-. -. 
lim P ( h , n )  = P,(h) 

n-tlarge 

d3k exp(- iZ)exp(nln{/ddjT(&) [ l + i f f i ,  - Z(kRj)’+.. .]}) 1 - +  . (98) n-blarge 

Here the power series expansioe reflects the expectation of the Fourier transfocm of 
~ ( f & )  having a sharp peak about k = 0. By virtue of the spherical symmetry of T ( R ~ )  in 
Equation 98, the term linear with respect to k vanishes. If we define 1 as 

+ 

and expand the In in Equation 98 into a series up to order k2 ,  then we get 

3 

It is characteristic that P,(L) is rather small but not equal to zero for h’ > nl, while 
Equations 90 and 92 equal zero for any_ length greater than the overall length of {he chain. 

In a more general case of n and h being varied, the distribution with T ( R ~ )  has a 
more sophisticated expression (according to Equation 90) (Yamakawa, 1971). In this 
connection, it seems reasonable to have such an approximation of T ( & )  that would lead 
to the chief properties of the chain (Equations 97 and 100) with simpler mathematical 
operations. The Gaussian function 

4 

has turned out to be such a function 7 ( f i j )  to satisfy Equations 97 and 100 for any n (one 
can verify it by substituting Equation 101 into Equation 92). 

In the general case, there is an interaction between Rj and, say, Rj-,, Rj-s-lr R,+, for 
s <( n due to the hindcrcd rotation of the monomeric units about each other (short-range 
effects, chain skeleton effect). 

In this case, a model has proved to be reasonable, which implies substitution of the real 
polymer chain by an equivalent random-walk one comprising N segments of the length 
-4 = As to be chosen from 

+ + + + 

N A =  L (102) 
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and 

In other words, a segment includes as many monomeric units of the real chain as is needed 
for the spatial orientation of each chain not to depend on the orientation of the previous 
and next ones as a result of micro-Brownian thermal motion. 

The quantity A depends on the correlation among the neighbouring monomeric units, 
caused by the character of motion about valent bonds and other short-range effects. SO, A 
is defined by the rigidity of a polymer chain. Then the probability density of distribution 
of N linked non-interacting (bodyless) segments of length A is expected by the Gaussian 
random-walk function (Equation 100) 

where h' = h,;+ h,;+ h,i  is the end-to-end distance. 
If one end of the chain is fixed, the probability of the end-to-end distance being within [z, h'+ d i ]  (i.e. the other end finding itself within the space element with the coordinates 

h,,h, + dh,; h,,h, + dh,; h,,h, + dh,) is expressed as 

The probability of the end-to-end distance being within [h, h + dh] despite of its spatial 
orientation is 

= P(h,, h,, h,)4rh2 dh = F ( h )  dh, 

and the second moment of the distribution 
distance 

co 

( h i )  = 1 h21?(h) dh = NA2.  
0 

function gives the mean-square end-bend 

(106) 

The subscript '0' denotes the lack of long-range effects (unperturbed state). In fact, 
distant (along the chain) segments (monomeric units), having come together as a result 
of micro-Brownian motion, interact with a common-type potential p(.) the examples of 
which are shown in Figures 1.40 and 2.34. 

Sometimes, the repulsion component prep > 0 in p(r) predominates, and the chain sizes 
increase in comparison with the unperturbed state, and ( h 2 )  > (hi) .  

If the attraction component pattr(r) < 0 predominates, then (h2)  < ( h i ) ,  and the coil 
contracts (collapses) in comparison with its unperturbed state. 

A Gaussian chain divided into subchains with the Gaussian distribution function is a 
modification of this model. 
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While modelling, the chain is represented as a result of random walk over the nodes of 
Ising’s lattice with edge A (an equivalent of the unperturbed chain with its distribution 
function (Equation 104) (see Figure 1.23d). The quantity A, as in the previous case, 
involves short-range effects while the long-range ones are taken into account by imposing 
special conditions of walk, in particular, the condition of self-avoiding. 

In some cases, a model of pearl necklace is used where N beads are threaded on a 
bodyless thread with the distance between the neighbouring beads determined by the 
Gaussian distribution function of the type 105. Long-range effects are taken into account 
by an interaction potential among the beads. 

It has proved to be important that the properties of macromolecules and polymer sys- 
tems on the whole are practically independent of the model of the molecular chain. Every 
separate problem allows the researcher to apply the most convenient (for computation) 
model (Khokhlov, 1985). 

Write the state equation for an ideal (without long-range effects) molecular chain whose 
internal energy is equal to zero, i.e. (see Equation 1.1.1-25) 

F = -TS. 
Applying Boltzmann’s formula (Equation 1.4-1) for the entropy of a molecular coil, and 
in view of Equations 104 and 106, we write 

3k ( h2) 3k ( h2) s(Q = const - - = const - - 
2 N A 2  2 (hi) 

and 

If the chain ends are stretched by action of force f; then the equilibrium in the system 
is achieved with a-compensating elastic force fel of entropy nature: while stretching the 
chain (increasing h) ,  its entropy diminishes as the set of conformations to realize the coil 
state with a given distance h’ is depleted. So, f+ & = 0 and 

+ dF(X) 3kT + 3kT- 
h = --h. -~ - f - 

d i  NA2 (h i )  
el - 

This formula is of key importance in explaining the phenomena of high-elastic deformation 
of polymer materials. 

In his theory of polymer dilute solutions, Flory (1945, 1949c, 1953) (Orofino and Flory, 
1957; Flory and Fisk, 1966) (see also: Morawetz, 1965; Tanford, 1961; Tsvetkov et al., 
1964; Bresler and Yerusalimski, 1965; Yamakawa, 1971; Casassa, 1976, 1977; Rafikov et 
al., 1978) modelled a macromolecule with a cloud of disconnected segments distributed 
about the centre of mass by the Gaussian law (Equation 104). The equivalent sphere is 
subdivided into elementary spherical layers for which the Gibbs potential (Equation 31) 
AG,,i is realized. 

In a thermodynamically good solvent (0 < x, < 0.5), where the repulsion component 
of the interaction potential c p , c , ( ~ )  among distant segments predominates, the chain size 
increases so that 

(hZ)l12 = 0: (110) 
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where is the root-mean-square end-to-end distance in the unperturbed state, i.e. 
in the theta solvent where the effective long-range forces (with allowance for the polymer- 
solvent interaction) are mutually compensated, a is an expansion factor. 

A coil is being swollen owing to the Gibbs potential of mixing summarized over all the 
sphere layers Ci AGm,i. Increasing (hZ)'l2 leads to a decrease in entropy which causes a 
returning force with the potential AG,,(a). To calculate AG,,, we should assume that 
the Gaussian character of segment distribution remains while the coil is being expanded. 

Hence, the overall change of the Gibbs potential involves two summands 

AG(a) = CAGm,i(a) + AGel(a). (111) 
i 

The condition of the thermodynamic equilibrium 

= o  13 AG(a) 
aa 

leads (Flory, 1953; Tompa, 1956) to Flory's equation 

where 

(a factor with a certain dimension to adjust both sides of Equation 113 to a common 
dimension) which is also written as 

cy5 - a3 = 2.62, (115) 

where 

is the excluded volume parameter. 
Flory's derivation of Equation 115 is rather cumbersome. Many years later, the state 

equation of a molecular coil in the mean field approximation came to be derived in a much 
simpler manner (de Gennes, 1979; Khokhlov, 1985) in terms of the segment excluded 
volume p for the range of a very good solvent. 

Consider the influence of long-range effects on the chain model (Equation 72), taking 
segments of length A as units (to allow for short-range effects). Let the pair potential 

(117) cp.. - (- a3 - CP yi - 5 )  
act among all the pairs of segments, which is justified at a low segment density. As the 
chain is in solution, Equation 117 involves all the effects of polymer segment interactions 
with LMWI, molecules. 
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Equation 117 is often approximated by a short-range repulsion potential  that is 
mathematically expressed with the space 6 function (Staverman, 1962; Yamakawa, 1971; 
Freed, 1972) 

exp [-p(<j)/W] = exp [-pS(.'ij)] = 1 

where 

p = dcj (1 - exp [ - y ( < j ) / / c ~ ] ~  

(-,L3 is the binary cluster integral, Equation 
tial y ( r ) ,  

W 

,B = 4r J' [I - exp(-cp(r) /~) l  r 2  dr. 
0 

The quantity /3 is a so-called excluded 

- P S ( % j ) ,  (118) 

(119) 

1.8-9). For a spherically symmetrical poten- 

(120) 

volume of a segment, i.e. that which is 
excluded for all the other segments due to their repulsion. Then, the mean-square end- 
to-end distance is expressed as (see Equation 87) 

where the symbol n d ( i k ) / d i  points to integration over all the values of & provided that 
(see Equation 85) h' = x k  i i k  remains constant. 

For further calculations, probability distribution functions of segment free walk are 
introduced (Zimm et al., 1953; Fixman, 1955; Kurata and Yamakawa, 1958; Kurata, 
1961; Staverman, 1962) 

(125) 

The latter function is the probability that the mentioned s e p e n t  pairs contact each 
other, and the Nth segment is in a space unit at the distance h from the zero segment. 
Applying Equations 124 and 125, Equation 123 can be expanded in a power series of /3 
(the series of perturbation theory) 
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where 

- PO(O,j,. . . , Z) 
PO(Q 

PO(Oij,. . . , h )  = 

Substituting Equation 126 into Equations 122 and 121, we get 

(h')  = J,iPo(T)d? 

+ p p  [Po(T)Po(o;j) -P0(Oij ,Z)] d ? + - . .  
i< j 

and on performing calculations within the framework of perturbation theory, 

( h 2 )  = N A ~ ~ ;  = (h i )& 

where 
4 
3 

CY: = 1 + -Z - 2.082' + . . . 
and 

Similar calculations carried out for the radius of gyration of a coil 

1 
R2 = ( & j ) 2 ,  

N i<j 

in the first order of perturbation theory have led to 

5 134 
105 

(YR - a; = -2 

while those in the second order (Yamakawa et al., 1966; Chikahisa, 1970) have yielded 

C& = 1 + 1.276~ - 2.0822' + . . . , (134) 

where CYR = R/Re. 
Chikahisa (1970) has introduced a diagrammatic calculation technique for the excluded 

volume effects of polymer chains like multi-particle systems in statistical physics of real 
gas and ionic solutions. 

(Yh and (YR somewhat differ due to a slight anisodiametry of coil expanding. 
Thus, in higher orders of the theory, results are derived as a series in z (Equations 116 

and 131), which must be rather small to confine the series to two or three terms and, 
generally speaking, for the series to converge. 

However, z is proportional to a large quantity, M'I2, and can be small if only M'12 is 
compensated for by another multiplier (1 - BIT) = (T - B)/T, which must, therefore, be 
much less than 1: 

T - 0  
- << 1. T 
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This is the main restriction' of perturbation theory which is d i d  in the close vicinity 
of the 8 temperature only. 

On the other hand, the potential in Equations 118-120 has no attraction component, 
so it is valid only for a solution in a very good solvent, i.e. far from the 8 point (cf. Bz of 
real gas molecules at high temperatures, the last paragraph of subsection 1.2.4). This is 
a manifestation of the inconsistency of the formalism of this approach. 

In accordance with the general mean field theory, the parameter z acts as Ginzburg's 
parameter Gi w z (Nystrom and Roots, 1982). 

Special analysis shows ,B to depend slightly on a specific form of p(r), so a model of 
potential barrier can be accepted 

at r > A, 
"'{!T-kB a t r < A  (1 35) 

with the barrier value being so low as to permit one to confine oneself with only two terms 
in the Taylor series of exp(-cp/kT). It follows from Equation 120 that 

or (see Equations 40 and 41) 

where 

Po A3 (138) 
is the segment excluded volume at 1' -+ 00 or at 6 -+ 0, i.e. in an athermal solvent (see 
Equation 41) - the thermodynamically best one, 7 = ( T -  B)/T is reduced temperature. 

In a good solvent, the interaction energy is the segment repulsion energy proportional 
to the number of segment pairs, i.e. to the squared local density of segments in a coil 

As F = U - T S ,  then (see Equation 108) 

F 3R2 P 
kT 2Ri 
- = - + 2 / p z ( r ) d 3 r .  

(139) 

In the mean field approximation, the local density of segments in a coil is constant 

F 3R2 ,BN2 
k T - m ' % ? *  

and - - N 
R3 

p(.) = coast N - 

The equilibrium value of R is determined from the condition aF/BR = 0: 

'In general, perturbation theories have too many restrictions and presently come out of fashion. Editor's 
note 



276 3.1. Binary systems 

This equation coincides with Flory's one (Equations 115, 116) in the limit of large coil 
sizes. In Flory's approximation, coil expansion is regarded isotropic with no differences 
between CYR and CY) ,  (a  is written without any subscript). Flory's equation has been 
confirmed by numerous experimental data. 

Chapters 4 and 5 will explicitly consider the significant role of the order parameter 
(the segment density in a coil) fluctqations in the system P+LMWL, so the mean field 
approximation, strictly speaking, is not correct for describing the behaviour of this system. 

The success of Flory's formula is due to the mutual compensation of the effects not taken 
into account. In effect, the entropy component in Equation 111 or 141 is overestimated 
owing to the Gaussian statistics applied. The energy component is also overestimated by 
a close value due to the neglect of the correlation of segment density fluctuations in a coil. 

In d-dimensional space, Equation 141 takes the form (de Gennes, 1979) 

F R2d /3 N 2  
- E - + - . -  

kT- 2NA2 2 R d '  

F is minimal when 

Rd'2c=/3A2N3 and R -  N u ,  

where 

3 
d + 2 '  

v=- 

(143) 

(144) 

(145) 

whence it follows that, in d = 4 space, chains become ideal at v = 1/2 (cf. Figure 2.44). 
If z in d-dimensional space is written as 

- pN(4-412, 

then for d > 4 and N + 00, z tends to zero and so are the interaction terms in Equa- 
tion 143. Hence, the chain turns out to be ideal in any d 2 4dimensional space. 

The methods of statistical physics (Flory, 1945, 1949c; Orofino and Flory, 1957; Kurata 
and Yamakawa, 1958; Tanford, 1961; Staverman, 1962; Tsvetkov et al., 1964; Bresler and 
Yerusalimski, 1965; Morawetz, 1965; Flory and Fisk, 1966; Yamakawa, 1971; Casassa, 
1976, 1977; Rafikov et al., 1978) applied to the problem of collisions among the segments 
of two coils lead to the following expression for A2 

v$ 
v o l  2 = - ( L  - xl) h ( z )  = dkh(z), (147) 

where M, is the molecular weight of a segment, /3 is its excluded volume. 
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The expression 

NAP 4= sM,2 

(see Equation 146) has the meaning of the second virial coefficient of a “disconnected” 
segment solution (cf. Equation 1.3-40) with h ( z )  defining the correction for their bonds 
and being a sophisticated function of z (Equation 116). 

For a Gaussian coil, 

holds (Volkenshtein, 1959; Tsvetkov et al., 1964; Flory, 1969; Yamakawa, 1971). 
It follows from Equations 114, 116, 146, and 149 that 

pM’l2 
z =  

(47r (Ri )  /M)312M,” ( 150) 

The nominator of the last line is the effective excluded volume of the whole coil v,, due 
to intercollisions of N segments while the denominator is proportional to the coil volume 
in the unperturbed state vug, so 

which determines the physical meaning of the parameter z (Birshtein et al., 1975). 
Including Equation 106, Equation 150 is transformed into 

z =  ($)3/2 PN‘I’ 
A3 . (153) 

The theory of dilute solutions is often referred to as the two-parameter theory.  This 
is due to the fact that the main quantities characterizing coil conformations are expressed 
through the three chief parameters N ,  A and p combined into two expressions, namely, 
NA2 and z - PN’l2/A3 (see Equations 106, 153, 110, 113, 114, 146, 147). The function 
h ( z )  can be expanded into a Taylor series with respect to z (Albrecht, 1957; Stockmayer, 
1960; Kurata et al., 1964; Yamakawa, 1971 Casassa, 1976, 1977), but this series turns out 
to be hardly convergent; near the 0 point 

h ( z )  = 1 - BZ + Gz’ - ... . (154) 

For a linear chain, B = 2.865, C = 9.201 (Yamakawa, 1971; Casassa, 1976, 1977). 
Yamakawa (1971) reports closed expressions for h ( z )  as well. 
Analysis (Schulz et al., 1960, 1963, 1966; Lechner and Schulz, 1973) shows that no mean 

field theory explains the experimental data; however, near the 0 point, the best results 
are obviously given by Orofino-Flory’s (1957) theory and, in the case of good (athermal) 
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solvents, Casassa's (1959, 1976, 1977) (see also: Casassa and Markovitz, 1958) theory is 
the best choice with 

1 - exp(-5.68z/ag) 
5.68z/a& 

h ( z )  = 

and 

a; - a: = 2.042, 

where CYR is defined by 

(R) = Q R  ( RB) . 
Combination of Equations 146 and 151 gives 

d2M'/' 
( x ( R i )  /M)3'24N.4' 

Zh(z) = 

(155) 

(157) 

Thus, the product z h ( z )  is determined experimentally. Then the theoretical dependence 
h ( z )  vs z h ( z )  (Figure 3.5) enables us to determine h ( z )  and, according to Equations 155 
and 156, QR and z.  

0 
0 0.4 0.8 1.2 1.6 

4 2 )  

Figure 3.5. Plot of h(z )v s zh ( z )  for Casassa's function (Casassa, 1959; Lechner and Schulz, 
1973) [Reprinted from Europ. Polym. J .  9 (1973) 723-733. Copyright @ 1973 with kind permission of 
Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands] 

Different theoretical approaches are compared by the form of the function $(CYR)  (Ya- 
makawa, 1971; Eskin, 1973; Rafikov et al., 1978) (see Figure 5.19). 
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The right-hand side means +(CYR)  is evaluated experimentally with subsequent deriva- 
tion of +(cYR).  The experimental (R)  and (YR found, according to Equation 157, yields the 
unperturbed coil size (a) which can be compared with independent experimental data 
or calculations of the thermodynamic rigidity of a chain (Equation 106). 

Hence, in a good solvent (T > 8 for systems with UCST), the repulsion component 
predominates in the potential p(r) (Figures l.4Oa, 2.34b), the segment excluded volume 
,B > /30 (Equation 136), which leads to an increase in the molecular coil size in dilute 
solutions (see Equations 157, 113, 153, 115). 

However, with increasing polymer concentration, effective repulsion of segments of dif- 
ferent macromolecules should result in a decrease in the molecular coil sizes. This does 
qualitatively follow from Equations 113 and 114. An increase in polymer concentration 
for a labelled (eg. deuterated) macromolecule can be regarded as effective increase in the 
solvent molecular volume, which leads to a decrease in CM in Equation 114 and, therefore, 
to a decrease in a in Equation 113’. In the limit u1 -+ 0, the labelled macromolecule finds 
itself to be among similar ones (in the thermodynamic and morphological sense). In view 
of Equations 113 and 114, Kt --+ 0, CM + 0 and a --+ 1. 

Hence, a macromolecular coil takes its unperturbed size (Bo) in the amorphous con- 
densed state of polymer. 

More rigorous considerations lead to  (Eizner, 1961; Yamakawa, 1971) 

where a~ = a ~ ( o ) ,  a h  = a h ( ( ) ) ,  i.e. at c = 0, ho(z /a i )  is the function from Equation 155. 
Contraction of macromolecules with increasing polymer concentration has been con- 

firmed by neutron scattering in polystyrene solutions in the good solvent CCl4 (Fig- 
ure 3.6). 

The contrast required for neutron scattering was provided by deuterating some of the 
macromolecules (for comparison: light scattering, Chapter 2, requires an increment in 
refractive index for contrast). 

Baranov et al. (1986, 1987) have proposed a way of measuring the limiting viscosity 
number at a finite polymer concentration [q], and shown that, as the polymer concen- 
tration in a good solvent (polystyrene in bromoform, 25°C) increases, [q], gradually 
diminishes to the value of [77]0 in the theta solvent (polystyrene in decaline, 25°C). 

Let us discuss another model of a polymer chain, which has assumed an importance in 
developing the theory of polymer solutions based on the field theory formalism (Freed, 
1972). 

2This may not be the case. Eg., neutron scattering allows one to observe segregation of D- and H -  
polyethylenes up to  superlattices appear. Fditor’s note 
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Figure 3.6. Concentration depen- 
dence of the radius of gyration of 
polystyrene macromolecules in CC14 
as given by neutron scattering. A 

part of polystyrene macromolecules 
was deuterated to provide contrast. 
The values c along the abscissa axis 
relate to the overall concentration 
of both protonated and deuterated 
polystyrene macromolecules (Daoud 
et a]., 1975) [Reprinted with permission 
from: M.Daoud et al. Macromolecules 8 
(1975) 804-818. Copyright @ 1975 Ameri- 
can Chemical Society] 

" g/cm3 

An equivalent Gaussian chain, obeying Equations 102 and 103, is subdivided into m 
Gaussian segments of length A s  each, so that 

(163) m a s  = L 

with the bond probability distribution 

(Freed, 1972). 
On substituting Equations 163 and 164 into Equation 92, one can see that 

where 

( $)m = J dg ~ ( 6 ,  m)E2. 

Including the normalization of ~(6j) (Equation 78), and assuming cp = 0 in Equation 79, 
we obtain for the probability distribution function of all the chain conformations 

where 
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is the normalization factor from 

1 d { F k } P ( { r k ) )  = 1. (170) 

As the distribution (Equation 168) gives the probability of a specific chain conformation 
with f'o 3 0, Fl,. . . ,Fm, this conformation { F k }  can be assumed as a discrete representation 
of the continuous curve F ( s ) ,  so that 

Fj = F((jAs) E F(sJ) (171) 

defines the position of the j t h  segment with respect to the origin (so = 0) for which 7'0 = 0 
is presumed in the absence of external fields. 

Then, in the limits 

As + 0 ,  m -+ 00, mas = L (172) 

a model of continuous equivalent random-walk chain (CERWC) results, and the 
exponent in Equation 168 is written as 

In this limit, 

2 

As (173) 

is the probability that the chain conformation is represented by a continuous curve located 
between F(s) and F(s) + dF(s). 

The normalization factor is often included into the differential and is denoted as 

Thus, 

is the probability of the chain conformation F(s)  (Wiener's measure) 
By virtue of Equation 172, 

l i m N  -+ ( 0 0 ) ~ .  (177) 

Mathematically, Wiener's measure is not defined; however, its introduction has proven 
to be reasonable and very fruitful physically (cf. Dirads S function) (Freed, 1972). 
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In the continuous limit, it follows from Equation 170 that 

where integration is taken over all the continuous curves qs), 0 5 s 5 L with F(0) E 0. 
Hence, the probability that the chain should have some conformation is equal to 1, and 
the "infinite" normalization (Equations 175 and 177) must lead to this value. 

The second integral in Equation 178 is classified with functional integrals, which 
have taken on great significance in field theory and are finding applications in polymer 
theory. 

Consider the case of a polymer chain being subject to external field, eg. in gravitational 
one or in a field appearing due to polymer-solvent or polymer-polymer interactions. 

If we denote W(F') the potential energy per unit chain length, then the distribution 
function of thermal motion for a discrete chain will be 

G({Fk}) d(?k} (179) 

where the centre of force application is assumed to be at the centre of each bond (at 
As + 0, this approximation becomes exact). That there is an external force means that 
space is no longer isotropic. Let us presume that 

+ 
ro R, (180) 

m 

d { r ' k }  = n dF'. 
3=1 

The partition function results from Equation 179 through 

and the probability distribution is 

Assuming 

W 
V Z E ,  

we obtain in the limit of a continuous chain 
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G[F(s)] dr‘(s) = D[F(s)] exp (186) 

As noted above, G[F(s)] contains all the information related to the conformational 
statistics of a polymer chain. 

To obtain expressions for experimentally measured quantities, a more restricted number 
of distributions will suffice. 

Among the :implest distributions, there is the distribution of the vector between the 
chain ends G(h, R‘; L )  which is obtained by selection of those chains from Equation 179 
for which FO = R‘ and Cm = h, i.e. 

+ ’ 

G ( & 2 ; L )  = J d F ~ / d { ; k } a ( r ‘ , - ~ ) ~ ( T : ,  - i )G({r ‘k}) ,  (187) 

G(L, 2; L )  = J dC(s) JdCoS[r‘o - 2 ] 6 ( F ( L )  - z)G[F(s)]. 

and, in the continuous limit, 

(188) 

In the explicit form, 

which provides a definition for the functional integral for G ( i , $ ; L )  as a limit of the 
iterative one. ThisJuqctional integral is also called Wiener’s integral. 

The function G(h,  R’; L )  from Equation 189 satisfies the diffusion equation for a particle 
in the external field potential V ( i )  (Gelfand and Yaglom, 1956; Freed, 1972) 

[A - t V ;  + Y ( h )  G(& 2; L )  = 0, L # 0 ‘1 
with the boundary condition 

lim ~ ( i ,  P ;  L )  = ~(i - 21, 
L+O 

i.e. G(Z, 2; L )  is Green’s function in the diffusion problem. 
In Equation 190, the contour length is an analogue of time. Free walking or Brownian 

motion is regarded as a diffusion process for quite long periods of time with the “diffusion 
constant” defined as the mean squared displacement along the chain per unit time. 
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Applying Equation 164, one can obtain 

We now discuss the excluded volume problem in terms of the CERWC model when a 
chain comprises N segments of length A each. The repulsion potential 

wij = cp(< - 6) (193) 

acts among all the pairs of segments at short distances. 
As the polymer chain is in solution, here 'p is the mean field potentid including polymer- 

solvent interactions. Its short-range character is mathematically expressed through the 6 
function of the "pseudopotential" 

c p ( <  - Fj)  
= pa(< - C), 

2kT (194) 

p having the meaning of the segment excluded volume (see Equations 118 and 119) 

Consider the distribution function (Equations 73 and 79) 

where, for the sake of generality, Asj is assumed to be of different length. 
The bond probability is expressed through the Gaussian function (see Equation 101) 

In the continuous limit 
m 

lim 5 lim Asj = L,  
CERWC m+= 

< -  

mar As, +O 

and it is reasonable to represent the interaction as the interaction energy of two segments 
per unit squared length 

Then the energy of the interaction between two chain fragments Asi and Asj will be 

p;j AS; AS j 
A2 
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Hencc, for a discrete chain (the subscript ‘g’), the end-bend distribution function is 

where 

(202) 

(203) 

9% 
vi3 = (1 - &j)-. 

kTA2 
Then the distribution function for the end-to-end vector is 

P,(ht; L )  = Zi’(L)G,(ht; L )  
with the partition function 

2, (L)  = / dZG, (Z;L) .  

On passing to the continuous limit, 

r’(L)=R L L L  
3 

G(ht0; LO) =/. [.‘((.)I exp { -- 1 ds +2(s) - a 1 ds J ds’V [F(s) - F‘(s’)] 
?(O)=O 2A  0 0 0  

The interrelation between Wiener’s integral (Equation 189) and the diffusion equation 
(Equation 190) presupposes the existence of a differential equation for G(Z0, LO) (Gelfand 
and Yaglom, 1956). Special analysis (Freed, 1972) shows that the function from Equa- 
tion 205 can be represented only by a hierarchy of integro-differential equations. For this 
purpose, Green’s three-point function 

F(L)=F 

r’(O)=O 

G3(ht2O; LL’O) = 1 D [.‘((.)I S [F‘(L’) - l?] (206) 

is defined, which selects chains having their segments at the points 00, PL’, and ZL out 
of a large set of chains with the contour length L. The corresponding probability is 

GS(Z2O; LL’O) P(2L’ lZL)  = 
G( i o ;  LO) . 

If no fixing of the chain ends in space is required, then the probability of the presence 
of the segment at (2, L’) at any end-bend vector will be 

J d z  GS(z20; LL’O) 
J dht G( i o ;  LO) 

P ( 2 L ’ I L )  = 
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and the hierarchy begins with 

= S ( Z ) S ( L ) .  

Then follows a similar equation for G3, involving the four-point function Gd, etc. For 
a continuous chain, the hierarchy is endless while for a discrete one it finishes at G, I 
G ({.;C}) (Equation 79). 

The assumption that there exists an appropriate self-consistent field implies break-down 
of the space isotropy in some way. Such anisotropy is introduced either by a statement 
that the initial point preserves its position r‘(0) = 0 or by additional fixing of the second 
end of the chain at r‘(L) h’. In the first case, the field is spherically symmetrical about 
the origin of coordinate. In the second case, (r‘(0) G 0 and ?(L) I h’ are fixed), the field 
has the symmetry Dmh with respect to these two points (focuses). 

In addition to bred-down of the space isotropy, introduction of the self-consistent field 
implies the approximation of Markov’s processes for an actually non-Markov one described 
by Equation 209. Hence, if V ~ C F  is the self-consistent field, then Markov’s approximation 
of Equation 205 is contained in 

where [h] means that h’ and L are fixed, [Vo(O) 
obeys the differential equation 

01. This equation shows that GSCF 

[E - bo;, + Y s c , ( ~ [ ~ ] )  Gsc~(k?;ss’[zL])  = S(ii’ - l?) x S(s - s‘), (211) 
8s 6 1 

where Vsm is a certain functional of GSCF. 
Thus, this equation is closed. Its defining G ~ C F  BS Green’s function of the diffusion 

equation points to the fact that it describes Markov’s process in an external field (Gelfand 
and Yaglom, 1956). 

To get Markov’s approximation for G3, the n>mber-of the chains going from 00 to ks 
is multiplied by that of the chains going from R’s to hL, or 

G ~ S C F (  zzo; L s O [ b ] )  = GSCF( z 2 ;  LS[LL])GS~F( 2 0 ;  LsO[h] ) .  (212) 

Introduction of Green’s function of the self-consistent field including an intermediate 
point along the chain (in addition to the end points of the chain) is the cost to be paid 
for using Markov’s approximation. 
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Closure of the s_elf;consisqent field equation requires a motion equation for the main 
propagator Gs"(R'R''; ss'[hL]). It is specially proven (Freed, 1972) that if V ~ C F  is chosen 
to give the best approximation for direct calculating (h2)  by 

J dZ Z2G(ZO; LO) 
( h 2 ) L  = J dZ G(Z0; LO) ' 

then Equation 211 with 

L 

/ d r ' / d s V y ( $  -q)PSCF(eslZL) 
0 

should be used as a motion equation. 
This problem is mathematically similar to the problem of electron motion in the mean 

(self-consistent) field of the other electrons in a multiatomic molecules (Edwards, 1965, 
1966, 1967; Freed, 1972), its solution is 

G(h0; LO) = N(L)  exp { -27 { h - (3315 - L315} A} 7 (215) 

which matches, in essence, Flory's results (Equation 113) 

Now let us discuss the morphological features of polymer solutions within a wide con- 
centration range. To this end, a pair correlation function of segment density s(+') is 
introduced (de Gennes, 1979; Khokhlov, 1985): a certain chain segment is placed at the 
origin of coordinates and the numerical density of all the other segments at distance r' is 
determined with subsequent averaging of the results over all the possible ways of choosing 
the first (fixed) segment. 

In view of Equations 104 and 149, 
3 

gid(+') = - 
TA2r'' 

In a rough approximation (see Equation 106) 

N r2 1 
g i d ( r )  - - - - - ~ 

r3 A2+ A2r' 
Morphologically, a dilute solution is spoken of when molecular coils do not overlap. 
In a semidilute solution, the coils overlap, but the segment density is small in com- 

parison with that in the condensed state. If we denote the overlap density as 

N 
V '  

c = -  
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then the overlap (mutual touch) boundary corresponds to the equality of the segment 
densities in solution and inside a coil 

Hence, at 

c < c* 

the solution is dilute, at 

c* < c << cp 

it is semidilute (where cp is the segment density in the condensed state). In the range 

the solution is regarded as concentrated . 
In the range of dilute solutions, the density of non-interacting segments inside a coil with 

reference to the fixed segment decreases according to Equations 217 and 218 (Figure 3.7, 
curve 1). 

Figure 3.7. Pair correlation function of segments g ( r )  in dilute solutions (a single chain) 
in ideal (1) and good (2 )  solvent, and in semidilute solutions (3) (de Gennes, 1979) 
[Reprinted from Pierre-Gilles de Gennes Sealing Concepts in Polymer Physics. Copyright @ 1979 by 
Cornell University. Used by permission of the publisher, Cornell University Press] 

In a good solvent (see Equation 142), 
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i.e. the segment concentration measured from a fixed point inside the coil diminishcs with 
distance somewhat stronger (Figure 3.7, curve 2). 

As the polymer concentration increases, at small ( r  < E )  distances, the distribution 
(Equation 224) characteristic of a good solvent remains. But at large ( r  > [) distances, 
the distribution of chain fragments of length E becomes Gaussian (Equation 218) (as in 
the 8 solvent) due to the repulsion of the segments of other macromolecules. 

The distance [ is called a screening length (originally introduced by Edwards, 1966). 
In dilute solutions, no compensation of the segment excluded volume by other macro- 

molecules takes place, so the coil size R determines the upper boundary of [. As the 
polymer concentration rises, [ may, in principle, diminish to the linear sizes of the seg- 
ment excluded volume 

We remind that when T -+ 19, the excluded volume p + 0. 
In terms of segment density (Equation 224), the screening length [ in semidilute solu- 

tions is equivalent to the distance from a certain fixed segment, where the local segment 
concentration Q([) becomes equal to the mean c over all the solution. 

At distances r 5 E ,  chain fragments (alias called blobs) behave as if the molecular 
chain were isolated, i.e. a blob “keeps its memory” of the structure of an isolated coil in 
a good solvent. If a blob comprises g segments, then (see Equation 142) 

At distances r > E ,  the “memory” of the structure of an isolated coil in a good solvent 
(semidilute solution) gets lost, and the blobs form already a chain of non-interacting 
elements, so 

where N / g  is the number of blobs in a macromolecule (cf. Equation 103) (Figure 3.8). 
In semidilute solutions with c > c*, the screening length [ does not depend on the 

number of segments in a macromolecule and corresponds (on the average) to the distance 
between the contacts of non-neighbouring segments (see Figure 3.8). 

The length [ is called screening due to the sufficient analogy with Debye-Huckel’s 
screening length (interaction between a charged surface and ions in solution in the problem 
of a double electrical layer). 

In the approximation of ideal chains being in the mean field of the potential v(F) 
owing to the presence of other chains (Edwards, 1966; de Gennes, 1979), the segment 
concentration near the point 7 given p(7) is small falls according to 

a.nd the correlation function g ( 3  differs from g i d ( F )  by 
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Figure 3.8. Schematic of the struc- 
ture of a polymer semidilute solution 
(de Gennes, 1979) [Reprinted from Pierre- 
Gilles de Gennes Scaling Concepts in Poly- 
mer Physics. Copyright @ 1979 by Cornell 
University. Used by permission of the pub- 
lisher, Cornell University Press] 

where C is a normalization constant differing from that g ( 3 .  
In terms of generalized functions (see, eg. Vladimirov, 1967, 1979), 

A (3 2 = - 4 ~ 6 ( 3 .  (230) 

In view of Equations 230 and 217, applying Laplace’s operator to both the sides of 
Equation 229 gives 

Here we have used the property of the 6(F) function: 

J 6(F-  .‘)Cp(?) d.‘ = p(3.  
Further, the potential cp(.l) is assumed to be proportional to the local concentration 

g ( 3 ,  and the excluded volume p, i.e. 

4.3 = kTPg(r‘).  (23’2) 

Therein lies the self-consistent field procedure. 

Hiickel type in the problem of a double electrical layer 
12 

Substitution of Equation 239 into Equation 231 leads to  an equation of the Debye- 

v”(q = ( -2g( .3  - --s(qc, A2 (233) 

where 
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Of all the solutions of Equation 233, only that must be selected which reduces to 
an unperturbed function Qid at small distances, since, in this case, the situation due to 
one chain always predominates, and Edwards’ (1966) approximation (de Gennes, 1979) 
presumes every chain to be ideal (see Equation 217), i.e. 

with C to be determined from 

Finally, we have 

(Figure 3.7, curve 3). 
Its Fourier transform (de Gennes, 1979) (cf. Equations 2.3-129,-131.. .133) 

is proportional to the scattered light intensity with an appropriate X range (see Chapter 2 
for details). 

By means of light scattering, the screening length [ can be defined with Equation 238. 
According to Equation 234, [& must be constant, which has been observed in experi- 
ments on light and neutron scattering in polystyrene solutions in cyclohexane (Cotton et 
al., 1972). There are two plateaux on the curve [fi us c.  According to Equation 234, 
the data at high or low concentrations correspond to the excluded volume of a segment 
or of the whole macromolecule vex, respectively. Further details about the properties of 
will be considered in Chapter 4. 

3.1.2. Conditions of liquid-liquid phase separation 
Figures 3.2 and 3.3 show that when x, > 0.5 

hold within a certain concentration range 712, which points to the existence of a region of 
absolute instability. 

One can easily make sure of the identity of the spinodal conditions (Equations 1.2- 
60, 1.3-19) and the critical point conditions (Equations 1.2-60,-61, 1.3-19,-20) when 
concentrations are expressed in different units. 

The spinodal equation in the P+LMWL system results from state equation 50 and 
i3Apl/dnl = 0 (Figure 3.9) 

1 1 + -. = 2(1 - u2) 2zv2 (239) 
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Figure 3.9. State diagram of the binary sys- 
tem P+LMWL from Flory-Huggins' lattice 
model. Plot x, vs u2 (solid lined are binodals, 
dotted lines are spinodals, and the digits at 
the curves are the values of z) (Tompa, 1956) 
[H.Tornpa Polymer Solutions. Copyright @ 1956 by 
Academic Press] 

0 0.1 0.3 0.5 
0 2  

For the critical point, in addition, 

-- - 0  

must be satisfied 

a2a/11 
an: 

1 
= 2( 1 - V2J2' 

It can be obtained from Equations 239 and 240 by solving the quadratic equation with 
respect to v2, that 

1 
02, = - 

1 + & '  

In the limit z + 00, 712, + 0, and, in view of Equation 240, x,, + 112. 
In the other limiting case z = 1, 0 2 ,  + 112 in accordance with Equation 1.3-22 (x2 

replaced by 02) and x,, = 2. In view of Equation 33, x,, = a /RT,  = 2 in accordance with 
Equation 1.3-23 as well. 

Excluding vzC from Equations 240 and 241, we have 
1 1 1  

XI, = - + - + -. 22 2 u 2  2 
Taking Equations 40 and 41 into account, 

(243) 
1 

XI, = K l c  - *1+  5 
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and 

K l c  -- - 
$1 Tc' 

Substitution of Equation 243 into Equations 244 and 242 yields 

or (see Equation 1) 

Hence, the plot 

1 1 1  
- u s - + -  
T, 22 & 

or 

1 1 1 
- u s - + -  
T, 2 M  

is a straight line whose parameters give l / 8  and 41 (Shultz and Flory, 1952). Then, it 
follows from Equation 244 that 

Q*l 

Tc 

041 
T '  

K l c  = - 

or, for any other temperature, 

K1 = - 

and (see Equations 40 and 41) 

(247) 

So, we are able to convert the x, axis (see Figure 3.9) into a temperature one which is 
necessary to a comparison between the theoretical spinodals (Equation 239) and binodals 
(further) and the experimental ones. 

Equation 245 implies that Flory's temperature 8 is the critical one T, for z + 00 (Shultz 
and Flory, 1952). 

The plot of Equation 245 is valid, strictly speaking, only when $1 = const (see Fig- 
ure 3.4), but Equations 245 and 246 have turned out to be low sensitive to a number of 
details of the P+LMWL lattice model. More rigorous consideration involving the third 
virial coefficient As (Stockmayer, 1960) leads to 
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A$ being the third virial coefficient at the 8 point (cf. Figure 1.41). 
The parameters 0, x,, &, and I C ~  can be also estimated from the temperature depen- 

dence of .A2. The 0 temperature results immediately from the plot of A2 us T at A2 = 0 
(see Figure 3.4) (Shultz et al., 1960, 1963, 1966; Eskin, 1973), and G1 (Equation 53 or 146) 
is obtained from 

(when T + 8, h(z)  + 1). 
As experiment shows, the 6 values determined from Equations 246 and 250 are in ex- 

cellent agreement while $1 from the same equations differ noticeably. Eg. for the systems 
polyisobutylene+diisobutylketone and polystyrene+cyclohexane, according to Equa- 
tion 246, $1 = 0.65 and 1.06, respectively, while those calculated from Equation 25 are of 
the order of 0.1 (Shultz and Flory, 1952). This discrepancy reveals the limitations of the 
lattice model (Flory, 1953). 

Application of the binodal conditions (Equations 1.3-26 and 1.3-27) for liquid-liquid 
twwphase separation A p i ~  = Ap111, Ap21 = A p z r ~  to the P+LMWL system with state 
equations 50 and 51 leads to 

VZII = V2I exp(zu), (252) 

(253) 0 = ~ X , ( V Z I I  - w) + In -. 

where 
V11I 

V1I  

As u > 0 and z is large, Equation 252 shows great asymmetry of the binodal curves 

Flory (1944, 1953) has proposed the following method for binodal calculations at small 

If we exclude x1 from Equations 1.3-23 and 1.3-27 with allowance for Equations 50 

(see Figure 3.9). 

v21 and ~211. 

and 51, then 

will result, where y = V ~ I I / V ~ I .  Now the logarithmic terms should be expanded into their 
Taylor series with keeping the terms with v&, and several summands are approximated 
by 

and 

where 
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Solving Equations 1.3-26 and 1.3-27 together with Equations 50 and 51 with respect 
to x, yields 

Binodals are calculated as follows: y is chosen arbitrarily. For a given z and chosen y, 
2121 is calculated according to Equation 255 and 11211 = yvzz. Then, Equation 256 enables 
x, to be calculated. Conversion to the T scale is performed by means of Equation 249. 

Figure 3.9 presents examples of binodals and spinodals. 
Shultz and Flory (1952) have compared theory and experiment for the polystyrene+cy- 

clohexane system and revealed qualitative agreement in the locations of phase separation 
regions, but the theoretical region of incompatibility proved to be more narrow; this was 
explained by the authors by the imperfection of the theory. On the other hand, this 
discrepancy may be caused by polymolecularity of polymer fractions (Koningsveld, 1968; 
1970a; Koningsveld and Staverman, 1966, 1967ab, 1968abcde; Rehage and Koningsveld, 
1968; Gordon et al., 1969; Koningsveld et al., 1970ab, 1974a; Koningsveld and Kleintjens, 
1971) (see below). 

In the general case, expansion of the logarithmic terms into a Taylor series with respect 
to v2z powers brings Equation 254 to the form (Klenin and Shchyogolev, 1979) 

where 
k - 2  

Ak = - /CL+'(y - 1)'+2/2k(k - I ) ,  
1=1 

(3;'' are the binomial coefficients. This equation is solved by successive approximations 
with Equation 255 accepted as the first approximation. 

For a given x,, the points u 2 s p ~  and u 2 s p ~ ~  on the spinodal are obtained by solving the 
quadratic (with respect to vzsp)  equation 239. 

In particular, near the critical point, the solution of Equation 239 is (Klenin and Shchyo- 
golev, 1979) 

z-l + nx, + z-1/2 ~ A ~ , ( A ~ ,  + 22-1/2) 
v z s p z ,  v2spzz = 3 (258) 

2x1 

where Ax, = x, - x,,, and xl, is determined by Equation 242. The minus sign before the 
radical relates to uzSpz, and the plus sign relates to u z S p z ~ .  

Maron and Nakajima (1966) plotted binodals using the Ap1(v2) and Apz(uz) depen- 
dences. By the trial and error method, they found such values of u21 and U ~ Z Z  as to satisfy 
A p i ~  = Aplzz and APZZ = Apzzz. 

Van Emmerik and Smolders (1973a) calculated AG, f RT and plotted AG, f RT vs w, 
w being the weight fraction of a polymer. The two points of the straight line's tangency 
to the isotherm corresponded to the binodal concentrations (WZ and WZI) for a given T 
(see Figures 1.7 and 1.13b). 
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Budtov (1983, 1985b, 1986) has proposed an analytical approximation for the binodal 
and spinodal near the critical point with the interaction parameter x, replaced by the 
parameter E 

E = 2x, - 1, (259) 

which is larger than zero for a non-solvent and a poor solvent at a finite molecular mass 
and is less than zero for a good solvent. E = 0 and E = -1 in the case of the 8 solvent 
and an athermal one, respectively. 

At the critical point, 

2&+1 1 E, = - x -. 
fi 

1 
N -  

1 
VZC = - 

& + 1  fi' z 

Near it, 

where 

x:, x, = xs + -. T 

Substitution of Equations 259 and 261 to spinodal equation 239 leads to expressions 
for the left-hand v2sp~  and right-hand v z S p ~ ~  branches of the spinodal 

E 
v2spr1  = - l + E  

at 6 > 1. 

To calculate the binodal, 

Avzr = ~ 2 ~ ~ 1  - v21 and Avzrr = vasprr - 0211 (266) 

Avzr << vaC and A v ~ ~ I < <  212,. (267) 

are accepted with 

The Taylor series expansion ofApl and A p z  near and ' ~ 2 ~ ~ 1 1 ,  in view of Equa- 
tions 259 and 261, followed by approximation of the first terms by an analytical function, 
gives 

Determine the critical indices p (for the binodal) and pSp (for the spinodal) according 
to the above approximations of Flory-Huggins' theory. 
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According to Equation 258, 

,/Ax,(Ax, + 2 2 - q  
v2spxx - V2spI = 

x ,  

Neglecting (Ax,)z in the nominator, 

Setting the approximation x, - 1/T, it follows that 

where p ,  = 112, which is in agreement with the mean field approximation. 
Equations 264 and 268 yield the law of /3 = 1/2 and / I s p  = 112: 

vzspzx - 2)2spr = WZC [ 1 + m + . . . - (1 - m + . . .)I M 2JZv2,&. 

With due account of Equations 262 and 260, we get 

~ 2 ~ ~ 1 1 -  vZSp~ FZ A ( - E ) ~ ’ * z - ’ / ~ .  (273) 

~ 2 1 1 -  V ~ I  = 1.817A(-~)’/~~-~/‘,  (274) 

Similarly, it follows from Equations 268, 260, and 262 that 

i.e. near the critical point, the binodal ampli tude (Equation 274) exceeds the spinodal 
ampli tude (Equation 273) by 1.817. 

Sanchez (1984) has performed analysis of the binodd and spinodal amplitudes, using 

The Gibbs potential is written as 
Flory-Huggins’s theory in the fashion of Landau’s phenomenological theory. 

G = G(T,, Q c )  + GoA@ + GTAT + GGTAQAT (275) 
1 1 1 + -GTT 2 (AT)’ + ~ G ~ ~ T A T  (A@)2 + ~ G a a e a  (A@)‘, 

where 6 is the volume fraction of a polymer, AT = T -Tc, A@ = @-ac. The superscripts 
denotes the derivative with respect to the corresponding variables at the critical point. 

According to Equations 1.2-60,-61, and 1.3-19,-20, Garp = Gee@ = 0. 
For the binodal (Equations 1.3-26,-27), 

According to Landau’s theory, the binodal is symmetrical about ‘P, near the critical 
point, and 

6 1 1  - Q C  = A@bi = Q C  - @ I ,  (277) 
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and, together with Equation 276, 

1 
G ~ w A T  + ;Game = 0 

or 

where 

S is the entropy. 
For systems with an UCST, AT < 0 and Sa, < 0 while for systems with a LCST 

Ar > 0 and Sa* > 0 (Prigogine and Defay, 1954), so &*AT is always positive. 
As the function G = G(9) has a shallow minimum on the critical isotherm at 9 = aC, 

G Q Q ~ ~  > 0. Hence, according to Equation 279, A@,,, is always real for systems with either 
UCST or LCST. 

With the new notation, the Gibbs potential takes the form (cf. Equation 31) 

(280) 
9 

G = Go + kT (1 - 9) ln( l  - 9) + - In9  + @(l - C J ) ~ , ]  . [ 
The spinodal equation is (cf. Equation 239) 

= ((1 - @)-’ + (z@)-’ - 2x,} kT = 0. 

At the critical point, G B Q ~  = 0 and (cf. Equation 241) 

1 
= - 

1 + 2112’ 

With the approximation 2x, = B/T and 

e 
2% = - 

lC Tc ($1 = f )  
(cf. Equations 248, 243, and 249) and substituting Equation 282 to Equation 281, we get 

Equation 280 yields 

(285) 
bB 

G~QT = -Sa* = k (1 + .z-’/’)~ = - 
TC 
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Substitution of these equations to Equation 279 leads to 

1.e. 

A@,; - 
where p = 112. 

Having denoted 

Q s p I l  - @c = A@sp = @ c  - Q s p I ,  

we obtain from the spinodal condition d2G/dQ2 = 0 and Equation 275 

It is characteristic that the relationship 

(291) 

matches that for the binary low-molecular mixture (Cook and Hilliard, 1965) and for 
liquid-vapour transitions (a so-called "square root of three" rule) (cf. Equations 273 
and 274) (Landau and Lifshitz, 1964). 

A simulation on the 3 0  Ising's lattice (Gaunt and Baker, 1970) has shown the spinodal 
to be located closer to the binodal 

In any case, estimations of the relativc position of the binodal and spinodal may be 
helpful from different viewpoints since the spinodal is calculated in a much simpler way 
than the binodal. 

Either Equations 290, 291, 287 or Equations 280, 290 give, in Flory-Huggins-Sanchez' 
approximation, 

1 
P s p  = 5' 

The location of the binodals and spinodds in polymer systems will he discussed in 
section 4.3. 

In the above considerations, only binary interactions of macromolecule( s )  segments 
were taken into account in the state equations. The measure of the intramolecular pair 
interactions is the segment excluded volume p (the binary cluster integral, Equation 120). 
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The measure of the intermolecular pair interactions is the second virial coefficient A2 in 
the virial expansion of osmotic pressure (see Equations 1.3-37, 52-54, 146-148). 

Now, let us take into account ternary interactions which are reflected in the third virial 
coefficient AB, i.e. the coefficient with the cubic term of the virial series expansion of T 

(de Gennes, 1979; Perzynski et al., 1987). 
In conformity to  the real gas theory, the third virial coefficient (see Equation 1.2-68) 

is proportional to the triple cluster integral (see Equations 1.8-15,-14,-10). 
According to what has been said, when R is expressed through Ap1 (Equation 1.2-27), 

In( 1 - v2) in Equation 50 should be approximated by a three-term series expansion 

Then 

RT 

and 

If we expand a with respect to c (g/cm3), then 

or (see Equations 1, 52) 

(294) 

where 

In what follows, we will perform virial expansion in terms of the number of polymer 
fragments per unit volume (Perzynski et al., 1987) 

1.e. 
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Introduce the second virial coefficient of the last expansion series as 

VO, 

NA v = - ( 1 - 2  X l )  

and the third one w by means of 

n $ 1  1 
kT z 2 3 
_ -  - - + -V?#b2 + -w?p, 

generalizing 

(300) 

(301) 

to a function responsible for the specific features of ternary interactions. 

(Equation 32) 
Accepting the expansion series of In( 1 - Q) with three terms, we write for the potential 

(303) 

and, using concentration $ (Equation 298), 

or 

(305) 

where AGL = AG,,,/%l is the Gibbs potential of mixing per unit lattice volume. 
Let us derive a binodal equation for t h e  P+LMWL system with due account of the 

ternary interactions. 
One condition of the two-phase equilibrium Ap11 = Ap111 is given by the equality 

of the osmotic pressure in both the phases (see Equations 295 and 301). To obtain the 
second condition, Ap21 = Ap211, we differentiate Equation 305 with respect to the second 
component concentration II, 

According to A& = write 

and, assuming $1 << 1, neglect the second and third terms in the left-hand side 

(306) 

(307) 

(308) 
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According to Equation 301, write 

In a rough approximation, presume $1 -+ 0 and 41112 + 0, whence 

Substituting it to Equation 308, we get for the binodal 

1 21.21 3 v 2  1 * I  3v2 
2 * I 1  8w 2 v211 8 w '  

dAp' a 2 4 4  - 

or -In---= --- -In - = _ _  

From the critical point condition, 

2 = O  and - -0 .  a* w2 
From Equations 306 and 312 we get 

and 

vc = - 2 g .  

Approximate the second virial coefficient (cf. Equations 146 and 136) 

v = p7, 
where 

T - 8  
T '  

j-=- 

Equations 314 and 315 also yield 

and 
p27.,"2 w = -  

4 ,  
w is considered to be temperature-independent in this approximation. 

Combining Equations 313, 315, and 318, we get for the binodal 

In- * I  = -3 (L>' 
+ I I  2 rC 

or (see Equations 310 and 311), 
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Correlation between this binodal and experimental data (Perzynski et al., 1987) will 
be followed in section 5.5 where the results of polymer theories based on the ideas of the 
general field theory are considered. 

Introduction of ternary interactions is of principal significance for a shift effect of the 
0 point. By definition, this point implies that the second virial coefficient is equal to zero. 
If Equation 301 is represented as 

and the expression in the parentheses is defined as an effective second virial coefficient 
G, then this quantity vanishes at the true Flory point e" (de Gennes, 1979) 

(322) 
1 1  2 
2 3  3 

5 = -v + -w+ = 0 and v = --w$. 

This means, at the true 6 point, the attraction-repulsion compensation takes place not 
only at the level of two-particle interactions, but two-particle attraction is compensated 
for by three-particle repulsion. 

At the intramolecular level, the shift of the 0 point must be observed with a rather large 
w and provided that the segment concentration in a coil is quite high, which depends on 
coil topology. Eg. three-particle interactions are most probable in branching (star-like) 
macromolecules with other conditions being equal. 

The fine compensation effect at the 0 point will be discussed in more detail in section 5.5 
in connection with renormalization group approaches in polymer theory. 

As to the measurable properties of polymer systems, threeparticle interactions are not 
fully described in the literature and, as a rule, are not explicitly taken into account while 
interpreting results in the mean field approximation. 

3.2. Polynary systems 

3.2.1. State  equations 
For real systems containing v components of a polymolecular polymer and a LMWL 

(Flory, 1944, 1953, 1970; Scott and Magat, 1945; Stockmayer, 1949; Tompa, 1956; Kon- 
ingsveld and Staverman, 1966, 1967ab, 1968abcde; Koningsveld, 1968, 1970a, 1975; Re- 
hage and Koningsveld, 1968; Gordon et al., 1969; Koningsveld et al., 1970ab, 1974ab; 
Koningsveld and Kleintjens, 1971; Kennedy et al., 1972, 1975; Kleintjens et al., 1976ab; 
Vink, 1976), a natural generalization of the Gibbs potential of mixing AGm (Equation 3.1- 
32) takes the form 

where cpo is the volume fraction of LMWL, cpi and pi are the volume fraction and relative 
chain length of the ith polymer homologue, cp = Cbl pi is the overall volume fraction of 
a polymer. 
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While passing on to polynary systems, we have to change our notation. If the sub- 
script ‘1’ remains to denote LMWL, the polymer homologues should be denoted by ‘2’ 
etc. which is inconvenient. On the other hand, the components of binary systems are 
most naturally denoted by the subscripts ‘1’ and ‘2’. To emphasize the difference between 
the binary and the polynary systems, it is reasonable to change the notation of volume 
fractions (vi and ‘pi, respectively). 

In what follows, we will replace x by g. 
For a polynary (v + 1)-component system, the spinodal equation is expressed (Stock- 

mayer, 1949; Flory, 1953; Prigogine and Defay, 1954; Tompa, 1956; Koningsveld, 1968, 
1970b; Koningsveld and Staverman, 1968b; Kennedy et al., 1975; Vink, 1976) as (see 
Equations 1.2-58.. .61) 

and the critical state (see Equations 1.2-60,-61) is defined by this equation and 

Dk = 0, (3) 

where Db is the determinant of (v + 1) columns and rows, Db is that resulted from 
replacement of one row or column on DG by 8D,/a‘pj (Equation 1.2-59). 

Equation 2 defines a spinodal surface in (v + 1)-dimensional space based on the v- 
dimensional composition polyhedron (providing for the material balance condition, Equa- 
tion 1.1.1-40) plus the temperature axis, P = const. Equations 2 and 3 define a v- 
dimensional critical surface. 

It follows from Equation 1 (cf. Equations 3.1-50 and 51) 

- = ln(1 - ‘p) + (1 - Pi1) ‘p + x,‘p2, 
PO 
RT 

where pn is the number average relative chain length 

(4) 

p o  = no/ns, no being the number of LMWL moles, ns the number of moles of thc lattice 
cells, I+,; the molar volume of the ith polymer homologue, the molar volume of LMWL, 
vp  the specific partial volume of a polymer in solution (in a polynary mixture). 

The condition of twephase coexistence in equilibrium (Equation 1.2-8) at T = const 
and P = const 

A p i ~  = A ~ ; I I ,  i = 0,1,. . . v, (8) 
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supplemented by the material balance expression gives equations to define a v-dimensional 
binodal surface (Flory, 1944, 1953; Tompa, 1956; Koningsveld and Staverman, 1967a, 
1968a; Huggins and Okamoto, 1967). 

According to Equations 1 and 2, the spinodal equation (Stockmayer, 1949; Koningsveld, 
1975) is 

2x1 = (PPw)-l+ (1 - p)-l, (9) 

and the critical concentration (combine Equations 1, 2, and 3) is 

where pw and p z  are the weight- and z-average chain lengths, respectively. 
Its substitution to Equation 3 leads to 

Flory (1944, 1953) has used Equation 8 to obtain an interphase separation coeffi- 
cient ZC(p;) 

(12) 
ptrr  
Pi1 

h’(p,) = - = exP(aPi) , 

where 

The volume fraction of the ith fraction’s macromolecules in phase I1 with respect to 
the overall content of this phase is expressed as 

or, including Equation 12, 

where 

VI and V’I are the volumes of polymer-depleted phase I and of polymer-enriched phase 11, 
respectively. 

When a polymer with different p ,  is settled step-by-step, eg. during accumulating frac- 
tionation (Cantow, 1967; Koningsveld and Staverman, 1968de; Koningsveld, 1970a), its 
fraction transferred to the precipitated phase (11) 
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is called a degree of phase transformation/separation of this polymolecular polymer. 
If the initial polymer is characterized by a continuous differential MWD function with 

respect to weight f ( p ) ,  the similar function of the precipitated phase f ~ ~ ( p )  is expressed 
(Huggins and Okamoto, 1967; Koningsveld and Staverman, 1967b ; Kamide, 1977) (cf. 
Equation 14) as 

where 

J 1 + P exp( -up)’ I - r  ~ (19) 

i.e. f&) is normalized on the basis of 2. The difference f ( p )  - f~i(p) = f&) represents 
the (1 - z)-normalized distribution function f&) in phase I. 

Thus, Equation 8 reduces (by Flory) to two equations 

6=0, - 1 [1 - (PdP + ”1 1 - PIP 4 P  + 1) 
(PI 2 + P - 1 + - -  2 

1 + T exp( -up) ’ 
0 

where 

Z(r7fl)  - - z (r ,  0 )  Pn,II = oo 
f ( P )  dP s fII(p)p-’ dp  i p 11 + r exp(op)l  p ’ 

0 0 

p , , ~  and ~ , , J I  are the number average lengths of macromolecules in phases I and II. 
The material balance condition reduces to 

PI = 11 -x(P,u)]cp(l+’-l). (25) 
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Equations 20 and 21 can be used, in principle, to determine any pair of the four main 
quantities of phase separation, namely, u, r ,  I, and 'p. First, we arbitrarily choose values 
of r and u;  second, we calculate other quantities using Equations 21-24. Third, we employ 
Equation 20 to calculate 'pz and, through ,f3, ~ Z I .  Flory (1944) expands the logarithmic 
functions in Equation 20 into a series with several terms with subsequent approximation 
by a closed function. A quadratic (with respect to 911) equation results. 

Equation 21 lets one calculate I, Equation 25 gives p 

Using Equation 13, 

is calculated. This ends the calculation of all the characteristic quantities from the chosen 
pair r and a. 

A number of practically important problems, in particular, plotting a quasibinary sec- 
tion of a polynary system (see further) requires a way of determining the characteristic 
quantities of phase separation from a given overall polymer concentration that Flory's 
method is unablc to provide. 

Koningsveld and Staverman (1968a) have worked out a computer algorithm to search 
for such values of r and u which make Equations 20 and 21 valid for given values of p 
and x (Koningsveld, 1968, 1970b). 

A more effective procedure for computing the characteristic values of phase separation 
in terms of Equations 20 and 21 at given 'p and x has been proposed by Shchyogolev 
(1983). 

At a sufficiently low polymer concentration 

pz << VI1 1 (28) 

is valid, and q I  in Equation 8 in negligible. If, in addition, p i '  is neglected in Equation 4, 
then Equation 20 is drastically simplified (Scott, 1945) 

So is for the expression for c7 

'p?Z u = ~ X , ~ Z Z  + In( 1 - V I Z )  x ~ X , P Z I  - Y Z I  - - - . . . 2 
and, in view of Equation 29, 

0 = ~ X , P Z Z  - x,'P?I - PII. (31) 

By definition, 
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vp being the polymer volume in the system. 
Substituting VII from Equation 32 to Equation 15, we get (Sayre, 1953) 

( P I I V ~  
XVP 

r = -. 

It follows from the first of Equations 32 and Equation 15 that 

Substitution of Equation 34 to Equation 33 yields 

(PI1 
= xjo(l+ r-1) 

and, when r >> 1, 

911 r = -  
x'p ' 

and also (see Eqiiations 17 and 19) 

(33) 

(34) 

(35) 

(36) 

(37) 

To grasp the features of phase separation in polynary systems (a polymolecular poly- 
mer+LMWL), the ternary system LMWL+2 polymer homologues 0 + PI + Pz can be 
taken as a model one (Rehage et al., 1965; Koningsveld and Staverman, 1967a; Kon- 
ingsveld, 1968, 1970b; Vink, 1976). According to Equations 2 ,3 ,  and 8, the spinodal and 
binodal surfaces are surfaces in 3 0  space inside a prism with its basis being the composi- 
tion triangle OPlP2 and its edges being the tcrnperature axes (Figure 3.10). The binodal 
(DRCAECoC4C) and spinodal (KCLCoC4C) surfaces have a common curve of critical 
points (CoC&'). 

At a constant temperature (eg. T = T4), the state diagram is represented by the section 
of the prism by the plane T = T4 (Figure 3.11). The curve D4C4E4 defines the binodal 
as the locus of points corresponding to the composition of two equilibrium phases. 

The straight lines a'pl, bc, dl, eg, 9 4  f are tie lines, C4 is the critical point. The binodal 
D4C4E4 separates the regions of the one-phase and two-phase states of the system and so 
is the boundary of a phase separation region , or, for brevity, a phase boundary 
(Cahn and Charles, 1965). 

While the configurative point moves along the line OX (see Figures 3.10 and 3.11), the 
(PI  + Pz)/LMWL ratio varies, i.e. the volume concentration of the polymer varies with a 
constant P,/Pz ratio. So, the location of the straight line OX on the composition triangle 
models the MWD of the polymer. In multi-dimensional composition space, the point X 
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Figure 3.10. State dia- 
gram of the ternary sys- 
tem 0 + PI + Pz where 0 
is LMWL, PI and Pz are 
polymer homologues with 
different chain lengths. 
DBCAE is the section 
of the binodal surface by 
the plane T = const; 
KCL is the section of the 
spinodal surface; RC4A 
is a quasibinary section; 
C,C,C is the critical point 
curve (Koningsveld, 1968, 
1970b) [Reprinted from Ad- 
vances in Colloid and Inter- 
face Science 2 (1968) 161- 
215. Copyright @I 1968 with 
kind permission of Elsevier Sci- 
ence - NL, Sara Burgerhart- 
straat 25, 1055 KV Amster- 
dam, The Netherlands] 

defines the MWD of the polymer, and the point on the line OX defines the total polymer 
concentration p. 

The curve of intersection of the plane TOX with the binodal surface is a quasibinary 
section (see Figure 3.10), also called a cloud-point curve (CPC) according to a way 
of its experimental determination when a solution (a system with an UCST) is being 
cooled and then temperature of its turning cloudy is fixed by means of a colorimeter or 
nephelometer, as well as visually. 

Emphasis should be placed on the obvious imperfection of this method which is not 
capable of recording precisely the phase separation region boundary Ta. 

On the one hand, there is a critical opalescence region in front of the liquid-liquid 
separation region, the former being extended by temperature (see paragraph 3.3.1.2) and 
having a high turbidity level. So, one may well erroneously take the temperature within 
the critical opalescence region as Ta. The distance along the temperature axis from such 
a temperature to the phase boundary depends on the experimental conditions and on the 
way of recording turbidity visually (the volume and shape of the vessel, the background 
colour, the skills and mood of the experimenter, etc.) or instrumental (the volume and 
shape of the vessel, the minimum discernible signal of instruments, etc.). 
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Figure 3.11. State diagram of the ternary system 0 + PI + P2 at the temperature T = T4 
(see Figure 3.10). 0 is LMWL, PI and P2 are polymer-homologues, D4C4E4 and K4C4L4 
are the binodal and spinodal sections, respectively, C4 is the critical point. The axis 
OX defines variation of the total polymer concentration with a constant component ratio 
P1/P2 = X (a quasibinary system). At  the total polymer concentration $01, $02,$03,  (pc, and 
994, the system is divided into two phases with the component concentrations represented 
by the points on the state diagram: cp1 and a; c and 6; 1 and d; g and e; f and (p4 with the 
polymer concentrations cp1 and q l r r ;  9921 and $9211; $931 and 99311; cpCr and (pcrr; $041 and $94. 

For 9 2 :  T = bp2/(p2c (the lever rule); for 991, T = 00 (T-' = 0); for y4, r = 0. The sections 
O X ~ I I  and 0x2,; 0x311 and 0x31 represent the redistribution of the homologues Pl and 
P2 in both the phases (the fractionation effect) (Koningsveld, 1968, 1970b) [Reprinted from 
Advances in Colloid and Interface Science 2 (1968) 151-215. Copyright @ 1968 with kind permission of 
Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands] 

On the other hand, the system may be overcooled (oversaturated) due to the long 
induction period of formation of the new phase particles and/or the absence of heteroge- 
neous nuclei (if the solution was carefully cleared prior to cooling). Indeed, according to 
the majority of patterns of formation of the new phase particles, the induction period on 
the binodal seems to be infinitely long. In this case, the system will remain transparent 
(the metastable state) till a certain overcooling level is reached. Moreover, the effect of 
critical retardation may complicate the situation. 
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These questions are of principal significance and will be discussed in detail later though 
they are related in full measure to phase separation kinetics. 

Tompa (1956) has called the highest (in case of UCST) or lowest (in the case of LCST) 
temperature TPt at which phase separation may occur (the maximum or minimum of the 
phase boundary) a precipitation threshold. 

Thus, by the CPC, the phase boundary on a quasibinary section of a polynary system 
is really meant. 

The location of the phase coexistence curves on a quasibinary section of a polynary 
system depends on the total polymer concentration (Figures 3.11-3.13). 

A !?I $92 $93 PC $94 B w 

Figure 3.12. Schematic of the quasibinary section of a ternary (multicomponent) system, 
Tpf is the temperature of the precipitation threshold; CPC is the cloud-point curve (the 
phase boundary). 1 stands for the phase coexistence curves at the total polymer concen- 
tration: 'p1,92, ps, (po and $94. SL is the shadow line. The concentrations of the coexisting 
phases at the temperature T = T4 are marked (Koningsveld, 1968, 1970b) [Reprinted from 
Advances in Colloid and Interface Science 2 (1968) 151-215. Copyright @ 1968 with kind permission of 
Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands] 

At cp < 'pc, the left-hand branch of the coexistence curve goes inside the area bounded 
by the CPC and ends on the CPC at the concentration equal to the initial polymer 
concentration. The right-hand branch of the coexistence curve goes outside the CPC 
region and ends at the point corresponding to the temperature of the end of the left- 
hand branch of the coexistence curve. The set of the endpoints of the coexistence curve's 
right-hand branch forms a shadow line (SL). 
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Figure 3.13. Phase diagram of the csystem polystyrene+cyclohexane. Polystyrene: M ,  = 
210,000, Mu = 346,000, M, = 550,000. CPC is the cloud-point curve. SL is the shadow 
line. C is the critical point. The coexistence curves have been obtained for the polymer 
concentrations (wt %) 2 ( I ) ,  6 (Z), 10(3), 15 ( 4 ) ,  and 20 (5) (Rehage et al., 1965) [Reprinted 
with permission from: G.€khage, D.Moller, 0 .Emst.  Die Makromolekular Chemie 88 (1965) S. 232-255. 
Copyright @ 1965 by Huthig & Wept Publishers, Zug, Switzerland] 

Such a location of the characteristic curves of a quasibinary system follows from consid- 
eration of the schemes (see Figures 3.11 and 3.12) and experimental data of Rehage et al. 
(1965) (see Figure 3.13) recorded while the configurative point was moved from ‘p = 0 (the 
point 0)  along the line OX (see Figure 3.11). The entry point (to the phase separation 
region) p1 corresponds to the second equilibrium phase (the point a)  with the polymer 
concentration p1zI,  which is greater than the concentration 9 4  corresponding to the exit 
from the phase separation region at T = T4 (see Figure 3.12). At any configurative point 
on the tie line a y l ,  the system is separated into two phases with their compositions given 
by the points a and 9 1 .  The concentration 992 corresponds to the configurative point on 
the tie line cb. The system is separated into phases with (p21 (on the left-hand branch of 
the coexistence curve) and p2zz (on the right-hand one). 

On a further increase in temperature, the phase separation region contracts. On the 
left-hand branch (see Figure 3.12), ‘p21 approaches ‘pz  and at 9 2 1  = ‘pz  all the polymer is 
in the “left-hand” phase alone (the end of the left-hand branch of the coexistence curve). 
As temperature increases, the polymer concentration in the second (“right-hand”) phase 
decreases, and the right-hand branch of the coexistence curve ends at the temperature 
where 921  = 9 2 .  Therefore, the end of the right-hand branch of the coexistence curve can 
be treated as the point on the state diagram with an infinitesimal amount of the second 
phase in equilibrium with the first (“left-hand”) one, which contains all the polymer 
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921 = pz. The set of these points where the right-hand branch of the coexistence curve 
breaks defines the shadow line. Correspondingly, the phase boundary temperature Ta 
(the cloud temperature) can be defined as the temperature at which an infinitesimal 
amount of the second (“right-hand”) phase coexists with the polymer solution of the 
given concentration. The concentration of this infinitesimal amount is defined as the 
intersection point of the line T = Ta with the SL (see Figure 3.12). 

One can observe that at y > pc (eg. cp = 9 4  in Figures 3.11 and 3.12), the right-hand 
branch of the coexistence curve, going outside the CPC-bounded region, ends on the CPC 
at ~ 4 1 1  = ( p 4 .  At this temperature, the left-hand branch ends at the point 9 4 1  i.e. on the 
shadow line, which now (at cp > pc) goes inside the CPC-bounded region. 

Koningsveld-Staverman’s methods of computing the basic quantities of phase separation 
are capable of determining the location of the characteristic curves of a quasibinary section 
for some model MWD functions. 

Eg. Koningsveld and Staverman (1968abc) have calculated a number of phase separation 
functions for a chosen polymer concentration cp and a number of large r (if p < pc) or 
small T (if ‘p > yc). The calculated values of x, (at p = eonst) were extrapolated 
to T - ~  = 0 or T- = 0, respectively. Repeating this procedure for different p yields the 
dependences x, us cp. Further passing from x, to T* leads to the CPC (Table 3.1) 

Table 3.1 
Values of some parameters on the phase separation boundary 

When p < ( p c ,  the plot cp11 us T-’ at a given cp gives a point on the SL on extrapolating 
to T--’ = 0. In the caqe of cp > po cpz should be plotted against T and extrapolated to 
f = 0. 

As the choice of T depends on whether p is larger or smaller than (pc, t h e  critical 
conditions must be known beforehand. 

In strictly binary systems, the precipitation threshold matches the critical temperature 
and the CPC matches the binodal (the phase coexistence curve) (Francis, 1963). The CPC 
location on a quasibinary section of a polynary system depends on the MWD function 
and the thermodynamic properties through x = x(T, cp, MWD). 

Equations 2, 3, and 8 serve, in principle, as the basis for calculating the CPC loca- 
tion on a quasibinary section of the v-dimensional binodal surface at a given form of 
the dependence x = x(T,p ,MWD) (or g = g(T,p,MWD) in Koningsveld-Staverman’s 
notation). However, such calculations are extremely laborious even using modern com- 
puters. Koningsveld and Staverman applied their own method of calculating the CPC 
and spinodals for systems with the logarithmically normal and exponential MWD func- 
tions. Shchyogolev (1983) plotted the characteristic curves of phase separation for the 
differential MWD function of the gamma function type. 
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Figure 3.14. Simulated CPC of the 
P+LMWL system where the polymer 
has the same p ,  with different poly- 
molecularity (sp is the spinodal, cir- 
cles are the critical points, u)1O-u)14 

present hypothetical mixtures of two 
polymers with the exponential MWD) 
(Koningsveld, 1968) [Reprinted from Ad- 
vances in Colloid and Interface Science 2 (1968) 
151-215. Copyright @ 1968 with kind permis- 
sion of Elsevier Science ~ NL, Sara Burgerhart- 
straat 25, 1055 KV Amsterdam, The Nether- 
lands] 

0 0.05 0.10 9 

Figure 3.14 shows simulated phase boundaries for P+LMWL mixtures where the poly- 
mers comprises two fractions with the exponential MWD functions taken in such a pro- 
portion that the resulted MWD functions have different widths but the same p,.  

According to Equation 9, these systems must have the same spinodal while ‘pc increases 
with the pz/pw ratio (Equation 10). 

Some other computational procedures for systems with a polymolecular polymer are 
presented in (Baysal and Stockmayer, 1967, Solc, 1974; Shishov and Frenkel, 1979). 

The series of papers by Koningsveld et al. (Koningsveld and Staverman, 1966, 1967ab, 
1968abcde; Koningsveld, 1968, 1970a, 1975; Rehage and Koningsveld, 1968; Gordon et 
al., 1969; Koningsveld et al., 197Oab, 1974ab; Koningsveld and Kleintjens, 1971; Kennedy 
et al., 1972; Kleintjens et al., 1976ab) has provided the basis for modification of Flory- 
Huggins’ traditional theory, and has fostered the new level of its development (see below). 

3.2.2. Fractionation 
Equations 13-19 serve as the a basis of polymer fractionation. The character of macro- 

molecule length distribution p in phase I1 is described by the function R (see Equations 17- 
19 and Figure 3.15). 

Fractionation is called ideal when all macromolecules of length p above a certain fixed 
value pt are in the precipitate phase (see the dashed area of f ( p )  in Figure 3.16). Ideal 
fractionation is depicted by line 4 in Figure 3.15. A problem how much the results of real 
and ideal fractionations differ is often solved in preparative and analytical fractionation. 

The conditions of real fractionation approach the ideal ones as the character of R 
approaches line 4 in Figure 3.15. 

In real fractionation, the function R has an inflection point at 
In r 

pt = -, 
U 

(39) 
where 

R = 0.5. (40) 
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Figure 3.15. Function Q(r ,a ,p )  (Equation 3.2-18) us p for r = 10 ( I ) ,  100 ( 2 ) ,  1000 (3). 
The values of u are adjusted so that each curve should have an inflection point at equal 
p values. For comparison, line 4 (ideal fractionation) is drawn (Huggins and Okamoto, 
1967) [Polymer Fractionation Ed. M.J.R.Cantow. Chapter 1. Copyright @ 1967 by Academic Press] 

The derivative at this point 

dR ln r  
E t = - - -  - 

dlnp 4 

is accepted as a measure of the width of distribution of the macromolecule length in a 
fraction or a resolution degree of fractionation. 

The function R approaches line 4 as r and u increase (see Figure 3.15). The polymer 
concentration in phase I1 increases with u (see Figure 13) due to a decrease in the volume 
of this phase VI, (i.e. due to an increase in r ) .  

increases are compatible. Large values of u correspond 
to increasing x, (Figure 3.17). u or the concentration ratio p i ~ ~ / p ; ~  (Equation 12) rises 
as the total polymer concentration decreases. Qualitatively, this follows from Figure 3.11. 
When the configurative point moves along the line O X  at low polymer concentrations, 
the utmost difference in phase volumes and in the P,/Pz ratio in both the phases (the 
fractionation effect) is observed (cf. the sections 0x211 and 0x21, 0x311 and 0x31 in 
Figure 3.11). So, fractionation is recommended to be carried out at low concentrations 
far from the critical one (Flory, 1953). 

Huggins and Okamoto (1967) have theoretically studied the efficiency of fractionation at 
some simplifications, namely, the initial polymer comprises two discrete fractions, phase I1 
is removed at every fractionation stage; x, is the same for both the phases. 

Koningsveld and Staverman (1968de), Koningsveld (1970a) have simulated analytical 
and preparative fractionation with the exponential and logarithmically normal MWD 
functions as examples, and they have shown that polymer fractionation by conventional 
methods (precipitation or extraction) is a very laborious and inaccurate procedure of 

Hence, the conditions of r and 
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Figure 3.16. Differential MMD function of the initial polymer f ( p )  and in the precipitate 
phase at ideal (fz1,id) and real fractionation (fzr) 
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Figure 3.17. D us x, as M + 00 according to 
Equation 3.2-13 (Scott, 1945, 1949a) [Reprinted with 
permission from: R.L.Scott. J .  Chem. Phys. 13 (1945) 
178-187. Copyright @ 1945 American Institute of Physics] 

determining the MWD of the initial polymer sample. Extraction has some advantage 
with respect to efficiency. 

As an alternative approach, Koningsveld (1970a) proposes a way to develop methods 
using critical phenomena in the P+LMWL system (see subsection 3.3.1). 

The fractionation problems within the framework of the second approximation of Flory- 
Huggins’ theory (see subsection 3.6.1) are reviewed by Kamide (1977). 

3.2.3. Spectroturbidimetric titration of polymer solutions as a method for 

Accumulating fractionation is one of the ways of polymer fractionation, where addition 
of a new portion of the precipitant is followed by determination of the total amount of 
the precipitate without removal of the precipitated fractions (Battista, 1967). 

analytical fractionation 



3.2.3. Spectroturbidimetric titration 317 

As a matter of fact, the degree of phase conversion is determined at different stages of 
fractionation. 

Turbidimetric titration (TT) of polymer solutions refers to  a version of amumulat- 
ing fractionation (Morey and Tamblyn, 1945; Claesson, 1955; Shatenshtein et al., 1964; 
Urwin, 1972; Elias, 1977) which implies “optical weighing” of the polymer converted into 
a colloidal-disperse insoluble state in the process of either step-by-step addition of a pre- 
cipitant (precipitating titration) or varying temperature (temperature titration) . The 
amount of polymer in the colloidal state (thc degree of phase conversion z) is judged from 
the effect of light scattering (measurement of the optical density (turbidity) or scattering 
intensity at a certain angle). 

T T  is attractive owing to a number of its advantages: simplicity of equipment, low time 
expenses, high productivity. Very dilute solutions are used to provide high efficiency of 
fractionation. Besides, small amounts of the sample are enough for analysis, which is of 
special importance for polymers of biological origin and while searching for new polymers. 

Thus, the ideas of the method are simple and attractive, but their realization is not as 
simple as that. 

Application of T T  to evaluate MWD means to  correctly solve two reverse problems. 
The first, optical problem consists in calculating a precipitation curve z = x(y) from 
the measured properties of scattered light; the second, thermodynamic problem must 
provide a means of converting this curve x = x(7) into the corresponding MWD function 
(y is the volume fraction of precipitant in the system). 

Within the framework of traditional TT, these reverse problems are solved (cxplicitly 
or implicitly) inadequately, especially the optical one. 

The main premise of traditional T T  is the proportionality between precipitate concen- 
tration M and turbidity r 

M = AT. (42) 

Howevcr, Equations 2.1-41,-101 imply that this simple formula holds true only if the 
particle size and relative refractive index arc not subject to change. This necessary con- 
dition is often violated. Introduction of corrections for these changes is not helpful, and 
the way of this introduction is not always correct. 

Theory and practice show even 1% of the precipitated polymer may cause a “typical 
precipitation curve T = r(y)” which falls outside any reasonable limits, and shows high 
values of turbidity and other details imitating MWD. 

Hence, another, maybe more significant, disadvantage of traditional T T  follows, namely, 
a lack of an objective criterion of completion, i.e. x = 100%. To think 2 = 100% is 
achieved when T = ~(y) reaches its limiting value is a gross error, which is discussed in 
detail elsewhere (Klenin and Shchyogolev, 1973; Shchyogolev and Klenin, 1974). 

Spectroturbidimetric t i t ra t ion (STT) of polymer solutions improves the sitiiation. 
It is a version of TT which enables one to solve correctly both the reverse problems 
at the cost of a slight complication of the experimental technique and the calculational 
procedure. STT implies measuring turbidity at several wavelengths (not at one), i.e. 
recording a turbidity spectrum. 

Then, the solution of the first reverse problem is given by Equation 2.1-101 with con- 
sideration of the possible changes in particle size and relative refractive index in the course 



318 3.2. Polynary systems 

of tit ration. 

degree of phase conversion 
The k / c  (where c is the initial solution concentration, g/dl) immediately defines the 

= 2. 
M - 
C 

(43) 

It follows from Equation 2.1-101 and Figure 2.18 that the proportionality between 
and T (Equation 42) really takes place in the case of sufficiently big particles ( n  < 1.5) 
which accounts for the success of the traditional TT in some cases (Hisekus, 1967; Urwin, 
1972; Elias, 1977). The researchers obviously succeeded in maintaining Equation 42 by 
a merely empirical way. However, STT has an advantage even in this case ( n  < 1.5) as 
n needs being estimated to ensure that it does not exceed 1.5 and Equation 42 is valid. 
Moreover, it is the absolute value of * (given by STT only) that is required to calculate 
the conversion degree x (Equation 43). 

The chief thing is that an objective and rigorous criterion of titralion completion ap- 
pears at 

x=lOO% (44) 

which enables 2 = z(y) to be quantitatively determined. 
Strictly speaking, only on achieving x = loo%, one may proceed to solve the second 

reverse problem, i.e. restoring the MWD function from the complete precipitation curve 

The practice of STT application to a number of systems (Klenin and Shchyogolev, 
1971a, 1972, 1973, 1979; Klenin et al., 1973f, 1974de, 1975b; Shchyogolev and Klenin, 
1973, 1974) has shown that the condition of Equation 44 can be met though it is a 
difficult task. 

Partial precipitation is caused by a number of reasons with two being of most impor- 
tance (of thermodynamic and colloidal-optical nature). 

c = "(7) .  

First, consider the thermodynamic one. 
By definition, the volume fractionation of a polymer in the system is 

where vP,l vP,lr are the volumes of the polymer in phases I and 11, respectively. 

whole system V = VI + VII is 
The volume concentration of the polymer in phase I1 referred to the volume of the 

Its substitution into Equation 45, followed by dividing both the nominator and denom- 
inator of the second summand by V' in view of Equation 15 leads to 

'p = cp;, + cpr(1 + r-l)-l.  (47) 

cp;r +? - ' pr .  (48) 

For dilute systems, which STT deals with, r >> 1, so it follows from Equation 43 that 
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or 

Naturally, it holds true for concentrations expressed in other units, eg. in g/dl 

E c - CI. (49) 

cFr = M, (50) 

Using the notation accepted in the turbidity spectrum method and STT, 

‘ P I  

cp 
z = l - - .  

Precipitation titration requires consideration of a decrease in c due to the added pre- 
cipitant by means of 

where co is the initial solution concentration. 
According to Equation 49, on the T-c (temperature STT) or y-c (precipitation STT) 

state diagram of the binary system monomolecular polymer+LMWL, the precipitated 
polymer concentration cTI is given by the segment of the line parallel to the abscissa 
axis between the current configurative point and the left-hand branch of the binodal CI 

(Figure 3.18). 
At the first stage of determining the MWD of a polymolecular polymer, it is reasonable 

to analyze the values of c ; ~  (or z) using the T-c or T-y state diagrams of binary 
systems. 

In the case of dilute solutions, thc polymer concentration cI corresponding to the left- 
hand branch of the binodal is often called a solubility of the polymer (Giesekus, 1967; 
Elias, 1977), which is determined with the use of “cloud points”. 

An empirical equation 

p = - ( A ~  + AM-Q)  l n c l +  BM-Q + B ~ ,  (54) 

where As, A ,  B,  Be, a are constants, has been proposed for a great number of systems 
(Giesekus, 1967; Elias, 1977). In the case of temperature STT, /3 = l/Te, Be = 1/6, and 
p = Ta, Bo = 0 for systems with UCST and LCST, respectively. 

In the case of precipitation titration, /3 = y, Bo = ye, and after Q = 0.5, AB = 0 
(Giesekus, 1967; Elias, 1977) which reduces Equation 54 to 

or 

(56) y = -a lncl  + b, 
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CI . lo3, g/dl 

Figure 3.18. State diagram (the left-hand branches of the binodal) of the systems 
PaMS+cyclohexane+octanol (solid lines 1-4) and PaMS+dioxane+octanol (dashed 
lines 1’-41 for M . 5 ( 1 ,  1 1 ,  10 (2, 23, 100 (3 ,  33. Lines 4 and 4’ are related 
to the 0 composition. Lines marked with “tT” show the trajectories of the configurative 
point during precipitation turbidimetric titration of solutions with the initial concentra- 
tion co = 5 .  and 8 .  g/dl (Ramazanov et al., 1982) 

where 
A a = - - -  a’ 
B 

b =  - + $ e .  JM 
From Equation 55 follows an equation for CI 

while the degree of phase conversion is given by Equations 53 and 59 

( 5 7 )  

(58) 
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Figure 3.18 presents tho state diagrams (the left-hand branches of the binodals) of two 
systems, PaMS+cyclohexane+octanol and PaMS+dioxane+octanol, approximated by 
Equation 55. The details of fitting are given below. Trajectories of the configurative point 
during precipitation TT of PaMS solutions with two initial concentrations are shown on 
the diagram. 

According to Equations 49 and 50, the segment h’L defines the concentration of the 
precipitated polymer cir at y = 0.25 and the initial concentration co = 5 . g/dl, the 
segment K M  is equal to cT1 for co = 8 g/dl. A comparison of these data shows 
the role of the polymer initial concentration for the experimentally obtainable maximal 
degree of phase conversion at STT. 

Figure 3.18 also illustrates the dependence of this degree on the polymer molecular 
mass. Eg. the STT trajectories do not intersect the binodals with M = 5,000 and 10.000 
(the system with dioxane) and the binodal with M = 5,000 (the one with cyclohexane). 
Therefore, monomolecular PaMS with such MW (and less) is not precipitated under these 
titration conditions (cTI = 0). 

In the first approximation, no precipitation of the fractions within this MW range could 
be expected in a polymolecular polymer sample. Comparison of the segments N R  and S D  
indicates that the increase in the precipitated content from 0.75 to 0.85 results in partial 
dissolution of the previously precipitated polymer in the system PaMS+cyclohexane+oc- 
tanol due to the decrease in the total polymer concentration. The effect of repeat disse 
lution is specific for precipitation T T  and is not observed in temperature titration. 

Thus, during precipitation STT, the concentration of the precipitated polymer cF1 (and, 
hence, the degree of phase conversion, Equation 51) as a function of y goes through a 
maximum (Figure 3.19). 

The maximal value x,,, is derived from the extremum condition applied to Equation 60 

The zmax vs - lgc  and MW dependence is shown in Figure 3.20 (Ramazanov et al., 
1982) which indicates the range of MW and c where complete precipitation of the polymer 
(z,,, = 100%) can be expected. 

At temperature STT (eg. a system with a UCST), its trajectories are lines parallel to 
the ordinate axis. In this case, the fractionation of the precipitated polymer rises with 
the initial solution concentration and the polymer MW (Figure 3.21). 

Figures 3.18 and 3.20 clarify the role of the peculiar features of thermodynamic inter- 
actions among the components in the P+LMWLl+LMWL2 system. 

Consider these interactions in Scott’s (1949a) approximation of common liquid where 
the contributions of separate component pairs to the entropy of mixing are assumed to 
be additive. If, in addition, the molar volumes of two liquids are assumed to be equal, 
an expression of the Equation 4 type for the chemical potential of mixing of a LMWL (a 
binary system) with the polymer will result with 

XI = x& - Y) + Y,,Y - Xl,Y(l - 7) = x,,72 + (xzz - x,, - X,,)Y + X I , ,  (62) 

where x,, are the parameters of component pair interactions: y,, (LMWLl+LMWL2), 
x,, (PSLMWLI), x,, (PSLMWL2). 
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Figure 3.19. Solubility curves (the left-hand branches of the spinodal) C I  given by Equa- 
tion 3.2-59 (I, 6-8), trajectories of a model TT (9, IO) with precipitation curves (2-5) 
for a system with the parameters: = 12 (I), 40 
(2-4, 6), 200 (5), 1,000 ( r ) ,  + 00 (8) at c o .  IO4 = 5 (2,  IO), 10 (3, 5, 9), 30 ( 4 )  g/dl 
(Klenin and Shchyogolev, 1979) 

= 0.1, A = 21.72, B = 70, M . 

Figure 3.20. Dependence of the max- 
imal fractionation of the precipitated 
monomolecular PaMS cfiimax/c = x,, 
on (- Ig c) (c  is the solution concentra- 
tion, g/dl) in the course of TT of cycle 
hexane (1-4) and dioxane ( 1  '-5') soh- 
tions of PaMS M - lo-' = 5 (1 ,  1 ')? 10 

(Ramazanov et al., 1982) 
(5  21, 15 (3, 31, 20 (4, 41, 30 (5') 

6 4 2 0 -Igc 

For the two-phase state of the system P+LMWLl+LMWL2, this approximation pre- 
sumes that the liquid composition in both the phases is the same, and the interaction 
parameter x1 is unambiguously ddined by Equation 62 to be solved with respect to 7 

At least, for mixtures with x13 5 0.5, the value "fe corresponding to the B conditions 
is derived by means of substituting x, = 0.5 into Equation 63, whence the precipitation 
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XI, 

0.8 

Figure 3.21. State 
diagram x, us lgvz 
of the binary system 
P+LMWL given 
by Flory-Huggins’ 
theory for p = 19.8 
(4, 59 (2),  100 (311 
200 (4, 1,000 (51, 
107,000 (6). The 
dashed lines are 
spinodals. The line 
“tr” is the trajectory 
of the configurative 
point at tempera- 
ture T T  (Klenin and 
Shchyogolev, 1979) 

-8 -6 -4 -2 0 

range 
Using Equation 63, the y axis (Figures 3.18 and 3.19) can be converted to the x, 

coordinate (Figure 3.22). The relation between x, and temperature is defined by Equa- 
tion 3.1-33 or 3.1-42 (see also subsection 3.1.1). At temperature STT, the experimentally 
obtainable temperature restricts the possibility of raising x,. In Figure 3.21, xl,max = 0.75 
is accepted. 

The examples of the x,(y) dependence at certain x,, (Figure 3.23) are in good ac- 
cordance with known experimental facts: lack of solubility in an exothermic mixture 
(xlz < 0) of‘ two solvents, or, vice versa, solubility in an endothermic (x12 > 0) mixture 
of non-solvents (curve 2) (Bekturov, 1975). 

A smooth dependence x, = x,(y) of the curve 3 type should be admitted as optimal 
for STT. The condition of increasing function is x: = 2yx,, + xZ3 - x13 - xI2 > 0 or 

The parameters of the pair interaction for any system LMWLl+LMWLB+P can be 

< y < 1 is obtained. 

(’7 - ‘ ) X I 2  + x 2 ,  > 

determined experimentally (see subsection 3.6.2) or estimated using 

V,i 2 x., = x, + -(hj - ai) , RT 
x, being the entropy component (see Equation 3.1-71). 

(Abdel-Azim and Huglin, 1984). 
In particular, x,, can be determined from scattering data for a solution of two LMWL 
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Figure 3.22. Theoretical curves of polymer precipitation during temperature (xlm = 0.75) 
(1-3) and precipitation STT (x13 = 0.48, xZ3 = 0.75, xI2 = 0.1) (4, 5), p = 150 (1, 29,200 
(3-5), CO. IO3 = 1.0 (I, 3), 2.9 (C), 8.7 ( 5 ) ,  and 10.0 (2) g/dl (Klenin and Shchyogolev, 
1979) 

Equation 2.4-8 enables ( d A p 2 / d x ~ ) ~ , p  and ( d A p , / d ~ 2 ) ~ , p  to be determined at different 
concentrations x2 (see also Equations 2.4-11,-9,-6). Graphical or numerical integration 
yields Apl and ApZ (see paragraph 3.6.2.4), whose combination gives (see Equation 1.1.1- 
51) 

AGm = XiApi + ~ z A p 2 .  

AGm,ex  = AGm - AGm,id = AG, - RT(x1 lnzl  + 2 2  lnzz). 

(65) 

(66) 

In view of Equation 1.1.3-15, calculate AG,,,,ex (Equation 1.1.3-28) 

Comparison of Equations 1.3-13 and 3.1-33 results in 

For example, depending on the tetraline molar fraction, the interaction parameter x,, 
of the mixture tetraline (l)+cyclohexane (2) thus obtained has the form 

(Abdel-Azim and Huglin, 1984). 
Hence, determination or estimation of x,, with subsequent plotting x, = x l (y )  (Equa- 

tion 62) can serve as a preliminary criterion of selection of liquids for STT. 
Let us try to substantiate the solubility equation 55 in terms of Flory-Huggins’ theory 

for binary systems. It is reasonable to consider just binary systems as Equation 55 is 
obtained on polymer fractions. 



3.2.3. Spectroturbidirnetric titration 325 

6 

Figure 3.23. Dependence of the general interaction parameter x, in the system 
P+LMWLl+LMWL2 on the volume fractionation y of LMWL2 at different interaction 
parameters of the binary systems P+LMWLl ( x , ~ ) ,  LMWLl+LMWL2 (x12), LMWLS+P 
( x Z 3 ) ,  viz, 0.2:-2:0.4 ( I ) ,  0 . 6 2 1  ( 2 ) ,  0.5:0.55:1.05 ( 3 ) ,  0.5:1:1 ( 4 ) ,  0.5:2:0.6 ( 5 ) ,  0.5:-20.6 
(6). The yo1 and ysZ:O compositions apply to curve 2 (Ramazanov et al., 1982) 

First of all, Equation 3.1-256 implies that in a certain concentration range, the depen- 
dence x, ws Ig v21 is approximated by lines (see Figure 3.21), the extrapolation of which 
to the ordinate axis lg z l z ~  -+ 0 gives the values xy linear relative to z-'I2 

0.55 x; = 0.5 + -. 
fi 

Talamini and Vidotto (1967), Napper (1969) analyzed the dependences x, = f(lgv211) 
and x: = f(z) using Equation 3.1-256. 

Plotting x, us lg w21 within v21 - 5 - . 5  . 10-1 for large z (say, z > 700) yields 
straight lines, which cut off the axis lg V ~ I  = 0 the value x: = 0.5. 

Talarnini and Vidotto (1967) first wrote Equation 3.1-256 in the form 

1 
.y, = D - E - ,  

z 
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where 
1 D =  

2 - V 2 I I  - V2I '  

Had it not been for the dependence of D and E on MW, at v2 = coast, Equation 70 

However, numerical calculations using Equations 71-72 (Talamini and Vidotto, 1967) 
would have described a straight line x, vs l / z .  

lead to 
K 

D = 0.5 + -p, (73) 

E = K'zO.~, (74) 

where K and K' are constants, and Equation 70 is transformed to 

If y is small and/or x l a  is also small, we have instead of Equation 62 

x1 27 + 
where 

2 = x,, - XI, - XI, ,  

which, with due account of Equation 75, gives 

0.5 - x, ,  K - K' +-. i G O . "  
7 =  

At the 9 point, x1 = 0.5 and, according to Equations 76 and 75, 

It follows from Equations 3.1-40,-41 that 

whose combination with Equation 75 leads to 

- 1 = 1 (1 + -) K - K' , 
TQ 9 dl20.6 

(77) 
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where Ta is the temperature of the phase boundary. 

tion 55 with 
If the difference in power of z (0.5 and 0.6) is neglected, Equation 79 matches Equa- 

K IC' 
B - AlncI M - -. 

x i  
Elias (1959, 1977) has proposed an equation of the Equation 56 type 

~ = - a I n c I + y e  (83) 

or 

y = -a'lnvzI +yo (84) 

to determine the 6 composition at a given temperature using cloud points. Extrapolation 
of the line y us - In CI to -In CI + 0 yields the value yo. 

As follows from the above analysis (cf. Equations 55 and 79), such a way of determining 
the 0 composition is possible provided that Equation 76 holds (small 7 and/or x,,), and 
M is high in order that 

in Equation 55 or 

in Equation 79. 

based on 
The temperature equivalent of this approach (Cornet and van Ballegooijen, 1966) is 

where K is the constant for a specific M (cf. Equations 81 and 82) with 

to be satisfied. 

the critical temperature) for several polymer fractions, the plot 
As opposed to Shullz-Flory's plot (Equation 3.1-246) with T, (Le. phase boundary at 

1 
- us lnv2r 
Ta 

is performed using cloud points (the phase boundary temperature T . )  for solutions with 
different concentrations of the polymer of one fraction. 

In the general case, the expression 7 = f(lncp1) can be obtained by combining Equa- 
tions 62, 31, and 12; this, however, produces an awkward formula which, however, can 
apply to the specific system. 
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It follows from the previous analysis that more complete polymer precipitation at STT 
can be promoted by raising the initial concentration, increasing the M of the polymer, 
and by selection of LML, in particular, to provide xi > 0, etc. 

Subsection 3.2.2 discussed the increase of fractionation efficiency on the polymer concen- 
tration decrease. In fact, this efficiency et is an extremum-containing function of polymer 
concentration, which follows from analysis of fractionation with a two-fraction polymer 
sample as a model (Huggins and Okamoto, 1967), but the region where et falls as c rises 
lies a t  very low concentrations not used in most fractionation methods, and this effect 
was neglected. 

STT employs a concentration range corresponding to the descending branch of et = f(c) 
and the higher concentration, the more the degree of phase conversion. However, raising 
the concentration is bounded by optical interference of particles of the precipitated poly- 
mer (secondary or multiple scattering), which decreases turbidity after a certain maximum 
(Klenin et al., 1975b; Klenin and Shchyogolev, 1979; Shchyogolev and Klenin, 1980). 

The effect of low-angle scattering leads to a decrease in the turbidity being measured 
when some of the scattered light is received by the colorimeter’s detector due to the finite 
aperture value. The bigger particles and relative refractive index, the more pronounced 
is this effect. 

We note in passing that the possibility of secondary or low-angle scattering is not 
considered in traditional TT at all. 

Underestimation of turbidity due to the secondary scattering, naturally, results in an un- 
derestimation of the calculated concentration of the precipitated polymer (Equation 2.1- 
101) 

n;i’ < A2. (86) 

Studies made on a number of systems LMLl+LML2+P and latices (Klenin and Shchyo- 
golev, 1979; Shchyogolev and Klenin, 1980) have shown @!,,.Jc to decrease as the con- 
centration of particles increases, and to be independent of the nature of a given system. 

The low concentration boundary of secondary scattering c; is defined by the instru- 
ment’s geometry and the cell length. 

For the FET turbidimeter with a standard 45 mm cell, the threshold concentration 
c ; , ~ ~ ~  = g/dl. At another cell length (given the instrument’s geometry remains the 
same) 

and, with respect to the initial solution concentration, 
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STT in the system PaMS+cyclohexane+octanol with the standard FET cell has 
resulted in (Ramazanov et al., 1982) 

110, 

where c* is the actual concentration of the precipitated polymer with allowance for dilution 
(Figure 3.24, curve 1). 

100 100 

60 60 

20 20 

5 4 c; = 10-3 2 -lgc* 

Figure 3.24. STT optimization diagram of PaMS solutions. Curves 1-3 and 1'-3 are 
the dependences of the maximal fraction of the precipitated polymer cflmaZ/c on Igc' 
(c* is the actual polymer concentration, g/dl, in the systems cyclohexane+octanol [l-q 
and dioxane+octanol [1'-37). M -  = 5 ( 1 ,  13, 10 (2, 27, 15 (3, 3'). Curves 1-111 
represent the measured maximal fraction of precipitated polymer ck,/c on - lg c* during 
the optical interaction among particles. The length of the cell is 10 = 4.5 ( I ) ,  2.9 (ZI), 
0.45 cm (114, the empty circles are experimental data for lo = 4.5 cm, the solid ones ~ 

for lo = 2.9cm (Ramazanov et al., 1982) 

Joint consideration of Equations 89 and 88 reveals that changes of lo displace the 
straight line given by Equation 89 parallel to the abscissa axis (-lgc') (Figure 3.24, 
lines I1 and 111). 

Optical distortions (Klenin and Shchyogolev, 1979; Shchyogolev and Klenin, 1980) were 
interpreted as an effect of secondary (multiple) scattering. Special analysis (Khlebtsov, 
1984) has shown such effects to be obviously caused by a iarge receiver aperture of serial 
instruments. This effect needs further investigations. 

Search for the conditions of the maximal z,,, is called an optimization of STT. 
It is worthwhile analyzing the factors which influence x,, on an optimization dia- 

gram (Klenin and Shchyogolev, 1979), an example of which is given in Figure 3.24. 
The position of the left-hand (thermodynamic) branch of the diagram is defined by the 

solution concentration, polymer M and the interaction parameters x,,. The position of 
the right-hand (optical) one is defined by the instrument's geometry and cell length. Thc 
system is considered as optimized if there exists a initial solution concentration range 
between these two branches where I,, = 100%. 
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Figure 3.25. Precipitation curves of PaMS with octanol ( M ,  . = 11, M, . = 
9.6) from dioxane ( 1 ,  2) and cyclohexane (3-5) solutions. The initial concentrations 
co = 0.010 ( 1 ,  4 ) ,  0.015 (2 ,  3, 5) g/dl, the cell length lo = 2.9 (1 ,  4, 5) and 4.5 cm (2, 3) 
(Ramazanov et al., 1982) 

An example of experimental realization of the diagram in Figure 3.24 is presented in 
Figure 3.25. One can understand the role of the initial concentration CO, cell length lo and 
thermodynamic features of the solvent and precipitant in obtaining a suitable precipitation 
curve at STT of PaMS solutions (Ramazanov et al., 1982). 

Comparison of curves 1 and 4 shows that, with other conditions being equal, the amount 
of precipitated polymer in the system PaMS+cyclohexane+octanol exceeds 2.6-fold 
that one in the system PaMS+dioxane+octanol. Comparison of curves 1 and 2 
(PaMS+dioxanc+octanol) and curves 4 and 5 (PaMS+cyclohexane+octanol) reveals the 
effect of a rise in the precipitation degree with polymer concentration. Comparison of 
curves 3 and 5 provides an example of elimination of the optical distortions by means of 
shortening the cell length. 

= 80, 
M,  . lop3 = 70) with octanol from cyclohexane (1) and dioxane (2) solutions. Here, 
precipitation from cyclohexane solutions is more preferable as the precipitation interval 
Ay in this system is almost twice wider, which causes better resolution of MWD details. 

Upon obtaining the complete precipitation curve, one can proceed to fulfil the second 
reverse problem, i.e. to convert this curve to the corresponding MWD function. Here, 
Equation 55 plays an important role, and we should pay attention to determining the 
constants of this equation. To this end, titration of several narrow fractions of the polymer 
with different M in the chosen system LMLl+LML2+P must be performed at several 
solution concentrations. An example of titration of one polymer fraction is given in 
Figure 3.27. 

The literature contains different recommendations as to how to choose a pair of y and 
CI to plot data using Equation 56: yo and CI = c(l - yo); y and CI = c(l - y112)/2; 

Figure 3.26 gives complete precipitation curves of a sample of PaMS (M,,, . 
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Figure 3.26. Precipitation curves for the systems PaMS (Mn = 7 + lo4 )+cyclohexane (I) 
(cg = 0.0038 g/dl, the cell length lo  = 2.9 cm) and PaMSSdioxane (2)  (co = 0.0060 g/dl, 
l g  = 1.8 cm) with octanol as the precipitant (Ramazanov et al., 1982) 

y’ and c(1 - y’), where yo and y correspond to  the beginning and the middle point of 
polymer precipitation, respectively, and y’ is the intersection point of the straight line 
approximating the linear segment of the precipitation curve with the y axis. We choose 
thc second version with the reasons to follow. 

The titration data of one fraction are used to  plot a straight line in the y us (- In CI) 

coordinates (Figure 3.28). The slope and the segment on the ordinate axis at I n c ~  = 0 
give 01 and b, respectively. This procedure is repeated for each fraction to determine a set 
of a and b. Then, constructions like those shown in Figure 3.29 enable one to determine 
the constants A, B, and ye (see Equations 57, 58, 55). 

It should be noted that the reproducibility of the precipitation curves z = z(y) is 
always better than that of the turbidity curves. The latter have a particularly poor 
reproducibility in parallel experiments at slower addition of the precipitant, which is used 
to eliminate relaxational phenomena and to reach a complete thermodynamic equilibrium 
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Figure 3.27. Precipitation curves of a PaMS sample with M, = 19.6 . lo3 from its 
cyclohexane solution with octanol as a precipitant. The concentrations are co = 0.033 
( I ) ,  0.012 (2) ,  and 0.005 g/dl (3)  (Ramazanov et al., 1982) 

(Klenin and Shchyogolev, 1971a; Klenin et al., 1973f, 1974d). 
The irreducibility of the turbidity curve, the sizes and numerical concentration of par- 

ticles is obviously caused by titration being performed in the metastable area of the state 
diagram as the spinodals are far from the T T  trajectory (see Figure 3.21). This explains 
the high sensitivity of the system structure to slight changes in titration conditions which 
are often uncontrollable in the traditional experimental techniquc. 

The better reproducibility of the precipitation curves z = z(y) is related to the cF1 
calculational algorithm being sensitive to uncontrollable changes in titration conditions 
and more stable to variations of anisodiametry and polydispersity at n < 2 (see subsec- 
tion 2.1.5). 

The algorithm of c;r calculation is also of little sensitivity to the relative refractive 
index of particles in the range n < 1; therefore, it seems reasonable to develop ways for 
controlling the particle size at  STT (an additional way of STT optimization). 

The data on particle sizes F A  = Fx( -y )  obtained in the course of TT allow one to elucidate 
the mechanism of appearance and growth of colloidal particles, which is of importance for 
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Figure 3.28. Estimation of the constants a and b in Equation 3.2-56. PaMS samples with 
M, . 
mixture (Ramazanov et al., 1983b) 

= 3310 ( I ) ,  98 (2), 54 ( 3 ) ,  42 (4, and 19.5 ( 5 )  in the cyclohexane+octanol 

STT optimization as well as from the viewpoint of general problems of colloidal chemistry. 
Some data on this subject have been reported in (Klenin and Shchyogolev, 1972, 1973; 
Klenin et al., 1973f, 1974d; Shchyogolev and Klenin, 1973; Shchyogolev et al., 1977b) but 
further investigations of colloidal particle genesis are of current concern. 

Papers on STT place emphasis on the fact that the value of the wave exponent n M 2 
remains during quite a long pcriod of titration of different systems. This is most likely due 
to the configurative point crossing the critical opalescence region in the course of titration 
with the value n = 2 being characteristic for it (see subsections 2.3.5, 2.4.2, and 3.3.1). 

In this region of the state diagram, there appears the effect of critical retardation of 
relaxational processes due to the small values of the diffusion cocacient D. 

Thus, the velocity of motion of the configurative point during titration proves to be 
rather high, and the critical concentration fluctuations with n M 2 are so frozen by critical 
retardation that, while crossing the binodal, they change, as a matter of fact, to colloidal 
particles with the same sizes corresponding to  n M 2 (Lebedeva et al., 1991). 

Critical retardation is obviously the cause of a relative stability of emulsion at the “bin- 
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Figure 3.29. De- 
termination of the 
constants A and B in 
Equation 3.2-55 (see 
also Equations 3.2- 
56 ...- 58) using the 
data of Figure 3.28 
(Ramazanov et al., 
198313) 
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odal top" in the systems paraffin+&hydroxyquinoline and tricosane+%hydroxyquinoline 
(Kochanova et al., 1973ab). 

Recently, the importance of allowing for the dispersion of the refractive indices of the 
disperse phase and dispersion medium has been shown for a number of systems for precise 
determination of the concentration of disperse phase particles and the particle size over 
a small size range (3 < n < 4) (Khlebtsov et al., 1991). 

We now turn to consideration of the way of converting the precipitation curve x = x(y) 
into the corresponding MWD function. 

The traditional TT version uses Morey-Tamblyn's (1945) and Claesson's (1955) ap- 
proaches based on the principle of independent precipitation of fractions which is, of 
course, a rather rough approximation. 

On the basis of approximating the fundamental Equations 13 and 19, some conver- 
sion procedures have been developed to take the interaction among polymer fractions 
into account (Rayner, 1969; Peaker and Rayner, 1970; Ramazanov et al., 1983b, 1984; 
Shchyogolev, 1983; Shchyogolev et al., 1985, 1987). 

According to Equation 12, 

'Pzz exP(--aP) = ' P I .  (90) 
Substitution of Equation 90 into Equation 38, valid for polymer-diluted systems, yields 

The approximation in Equations 38 and 91 consists in replacement of the polymolecular 
polymer solubility 'pz in Equation 91 by the monomolecular polymer one v 2 ~  (Scott, 1945; 
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Shchyogolev, 1983; Shchyogolev et al., 1983, 1985) which can be determined experimen- 
tally (see Figures 3.27-3.29) (Equation 59) or calculated using Equations 3.1-252.. .256. 

Hence, 

and (see Equation 37) 

x v  
The expediency of approximation 91 by Equation 92 has been confirmed by simulations 

(Shchyogolev, 1983; Shchyogolev et al., 1985) with precipitation curves of a polymolecular 
polymcr 2 = +,) to be plotted and fll(p) to be determined at different x. 

If the condition 

(94) 

(Rayner, 1969; Shchyogolev, 1983; Shchyogolev et d., 1985) is accepted, then real fraction- 
ation (curve A B D  in Figure 3.16) can be approximated by the ideal one (p tCD)  since the 
areas are roughly equal (DCpt  = D B A  or DCB x ABp,) (see Figure 3.16). This means 
the nonprecipitated part of the polymer (CBD)  in real fractionation is compensated for 
the overprecipitated (with respect to ideal fractionation’s predictions) one (A&*). The 
value pt corresponds to  the inflection point of the function O ( p )  (Equation 18) (see Fig- 
ure 3.15). 

The possibility of fixing 50% precipitation of a fraction during its titration to determine 
the constants in the solubility equation (see above) serves as the experimental basis of 
Equation 94. 

With Equation 93 involved, Equation 94 takes the form 

021 = XV (95) 

or, in g/dl and with due account of dilution with a solvent, 

CI = zco(1 - y). (96) 

Substituting the expression for CI (Equation 59) in Equation 96 and solving Equation 96 
with respect to M ,  we get 

B - Alnxco(l  - y)  M = [  
Y - Ye 

For ideal fractionation (see subsection 3.2.2) 

(97) 

00 Mt 

2 = / f(M)dM = 1 - /f(M)dM E 1 - W ( M t )  (98) 
Mt 0 
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is valid, where W ( M t )  is the integral MWD function, Mt is the current value of the 
polymer M .  

Equations 97 and 98 provide the basis for conversion of the precipitation curve z = z(y) 
into the integral MWD function W(A4). 

The abscissa axis y of the precipitation curve z = z(y) is subdivided into ranges 
(fractions) with fixed y; values. z; is found for each 7% and, according to Equation 98, 

w; = 1 -z; (99) 

is determined. 
The value of Wi is used to calculate Mt from Equation 97 for the given z; and 7;. The 

constants of Equation 55 ( A ,  B,  yo) have been determined beforehand, co is the initial 
solution concentration (g/dl). 
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Figure 3.30. Precipitation curves of a PcyMS sample with octanol from its cyclohexane 
solution (CO = 0.0038 g/dl, lo = 4.5 cm) (1) and the restored integral MWD function (2) 
(Ramazanov et al., 1983b) 

An example of the conversion is presented in Figure 3.30 for the PaMS+cyclohexane+oc- 
tanol system (Ramazanov et al., 1983b). 

To verify approximation 92, precipitation curves z = z(x,) obtained by simulation 
(Equations 20, 21 for the y function as f(p)) were used as “experimental” ones (Shchyo- 
golev, 1983; Shchyogolev et al., 1985). The solubility 021 as a function of p and x, was 
calculated by Equation 3.1-256. 

Figure 3.31 shows integral MWD functions obtained by conversion of a simulated model 
curve z = z(x,) using approximation 92 and Equations 97 and 98 in comparison with 
the “true” MWD functions introduced into calculations of z = z(x,). Good agreement 
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Figure 3.31. Integral MWD functions restored from the results of a simulative STT 
at 9 = lop5 for polymolecular polymers with p ,  = 1,000 (1-3) and 5,000 ( 4 )  with 
p u l p ,  = 1.05 ( I ) ,  1.25 ( 2 ) ,  2.0 (3) ,  and 5 ( 4 )  in comparison with the “true” MWD 
functions (dashed lines) (Shchyogolev, 1983) 

between these MWD functions attests to the expediency of approximation 92 in the 
problem of restoring MWD functions from STT data. 

Khlebtsov (1984) has proposed a more rigorous procedure of its restoring. He replaced 
the function Z ( M )  complementary to W ( M )  

Z ( M )  = 1 - W ( M )  (100) 

Il(M) = 4Y(M)). (101) 

by an iterative form Z, in which the first iteration is represented by 

Equations 100 and 101 coincide with Equation 99 above and the second iteration is 

where x in the integral is taken at the point 7’ corresponding to M’ by Equation 96. 
The series I,, converges rather quickly, so there is often no need for a third iteration. 
Thus, STT as an analytical method for restoring the MWD function of polymers is 

promising. 
A solubility equation of a polymolecular polymer (pr has been proposed based on ap- 

proximation 93 (Shchyogolev, 1983; Shchyogolev et al., 1983, 1985), which serves as an 
alternative to the principle of independent fraction precipitation. 

By definition, the differential MWD function in phase I is 

f r ( M )  dM = pr  dM. (103) 
On the other hand, in view of Equation 93 with p to be replaced by M ,  we get 
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It follows from the last two equations that 

With mixtures of two polymer homologues (20; = 0.5) with LML (PI+P?+LML) ( p w  = 
1,000, ‘p = lov3, p w / p ,  to vary) as an example, mathematical analysis (Shchyogolev, 
1983) has shown a substantial fall in the component P2 solubility (the smaller p )  in 
the ternary Pl+P2+LML mixture as compared with the binary P2+LML one, which is 
in agreement with a more rigorous (but a more bulky as well) theoretical analysis and 
experiment (Cornet, 1968). 

3.3. Composition fluctuations, light scattering and 
diffusion 

3.3.1. Mean-statistical fluctuations 
Region of solution stability 

Light scattering 

Debye and Bueche (1950) have employed Einstein’s (1910) expression for the turbidity of 
a two-component solution to calculate the turbidity of a monomolecular polymer solution 
over the whole concentration range (c in g/cm3) (see Equations 2.1-32, 2.4-7,-24) 

a C  

TO being the turbidity induced by density fluctuations (the solvent turbidity) while the 
second summand is due to the concentration fluctuations 

2 .=-(E), 32.rr3n2 
3 X 3 V A  

where n is the refractive index of the solution (cf. Equations 2.4-22,-24, 2.1-32). Using 
the expressions for Ap, (Equation 3.1-50) and for osmotic pressure (Equation 1.2-27), 
we obtain an expression for the concentration-fluctuation-caused turbidity 

H M e z  

O - 1 + (2 - 1)vz 
ZV2(1 - .2) 

7 (3) 7 = T ‘ - T  - z 

- 2x, 

where p2 is the polymer density. 
The maximum T,, corresponds to 
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0 0.5 
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100, x, = 0 Figure 3.32. Turbidity of a polymer solution. z = 100, x, = 0.45 ( 1 ) ;  z = 
(2) ;  z = 1 ,  x, = 0.45 ( 3 ) .  The vertical dashed lines mark the position of vZmax = vZc 
(Debye and Bueche, 1950) [Reprinted with permission from: P.Debye, A.M.Bueche. J .  Chem. Phys. 
18 (1950) 1423 -1425. Copyright @ 1960 American Institute of Physics] 

i.e. to the critical concentration vZc (Equation 3.1-241). The absolute value of T depends 
on x, and z according to Equation 3 (Figure 3.32). 

Here x, has the same value as the function of concentration fluctuations l/f (Equa- 
tions 2.4-9.. . 11) of LMW solutions (cf. Figures 2.36 and 3.32). Debye and Bueche (1950) 
proposed to use vZc for molecular weight determination by Equation 4, but this suggestion 
has not found practical use. 

Experimental data, in general, confirm Equation 3, but there are relatively few papers 
on this subject (Tager et a]., 196413, 1968; Andreyeva et al., 1970; Hyde, 1972). 

The functional dependence of turbidity in polymer systems is also based on Einstein’s 
equation (Equations 2.4-24, 2.1-32; Table 2.3), but calculation of the mean square fluc- 
tuation of refractive index (An)2 in 

327r3n2 - 
j - = -  v(An)* 

3x8 
- 

or that of dielectric constant (At)z in 

87r3 ~ 

T = -v(At)’ 
3 4  

( 5 )  

(cf. Table 2.3) is a more difficult task.  
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Here we denote the refractive index of solution by the letter n as pi means the chemical 
potential of the ith component in solution. 

Calculation - of (An)2 (Gross, 1940; Brinkman and Hermans, 1949; Stockmayer, 1950) 
and ( A C ) ~  (Kirkwood and Goldberg, 1950) is performed using statistical physics methods, 
most often using Gibbs' grand canonical ensemble. Eg. if Ni is the number of moles of 
the ith component, then (Brinkman and Hermans, 1949) 

where A F  = FijANiANj, ni = 
i j  

Zernike (reported in: Brinkman .and Hermans, 1949) was the first to calculate (An)2 
for a polymer system. Since then, this question has been addressed in a number of 
papers (Brinkman and Hermans, 1949; Kirkwood and Goldberg, 1950; Stockmayer, 1950; 
Casassa and Eisenberg, 1960; Vrij and Overbeek, 1962; Scholte, 1970b, 1971; Nagasawa 
and Takahashi, 1972; Vrij and van den Esker, 1972; Vrij, 1974, 1978; Yerukhimovich, 
1979), in particular, to build the theory of light scattering from polyelectrolyte solutions 
in aqueous solutions of LMW electrolytcs (Casassa and Eisenberg, 1960; Stigter, 1960; 
Vrij and Overbeek, 1962; Nagasawa and Takahashi, 1972). 

In the general case of a (v + 1)-component system ( i  = O , l , .  . . v) (Stockmayer, 1950) 

H'V 5 5 +i+jAij 

f (8) 
i=O 3=O r =  

laij I 
where laijl is a determinant with its elements 

A .  - __ d ' a i j l  is the cofactor of a;j ,  resulting from deletion of the ith row and the j t h  
d U i j  

23 - 

column 

Ai,/laijl is identical to the inverse matrix A (Korn and Korn, 1968) 
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It is seen from comparison of Equation 9 and Equation 3.2-2 that the spinodal condition 
coincides with the determinant lujjl being equal to zero. Thus, according to Equation 8, 
T + m on the spinodal, which attests to the unsuitability of Equation 8 near the spinodal 
as (An.)2 was calculated in the absence of the correlation of composition fluctuation in 
elementary volumes v .  The expression, valid near the spinodal as well, will be given below 
(Equation 35). 

An expression for Rayleigh's ratio for polymolecular polymer solution results from Equa- 
tion 8 (see the conversion formulae in  Table 2.3) (Scholte, 1970b, 1971) 

, where AG, is the increment of the Gibbs potential of mixing in 
a2AG, 

with a ' .  - ___ 
'3 aw;aw, . ,  

the volume v, w, is polymer concentration in weight fractions. This formula neglects 
intramolecular interference, i.e. valid for moderate molecular weights only. Otherwise, 
extrapolation 29 + 0 (Figure 2.8) is required to eliminate this effect. 

Equation 8 can be represented in the form traditional for light scattering methods 

where 

w is the total polymer concentration. 

polymer polymolecularity. 

M and MWD than that predicted by the above formula (Elias et al., 1975). 

manifests itself, polymolecularity leads to a deformation of the radiation diagram 

Hence, the value of the second virial coefficient depends on the degree and character of 

Experiments with toluene solutions of PcrMS showed a stronger dependence of A2 on 

In the case of high molecular weights, when the effect of intermolecular interference 

T q w ( M ) h f P ( d ,  M )  d M  

7 q w ( W M d h f  

T i @ )  = > 

0 

where q w ( M )  is the differential MWD function. 
This formula enables the z-average macromolecular sizes to be determined from the 

radiation diagram (Zimm, 1948; Stacey, 1956; Tanford, 1961; Tsyian Zhen-yuan, 1962; 
Rafikov et al., 1963, 1978; Shatenshtein et al., 1964; Tsvetkov et al., 1964; Bresler and 
Yerusalimski, 1965; Morawetz, 1965; Kerker, 1969; Huglin, 1972; Eskin, 1973). 

with due account of polymolecularity, intra- and 
intermolecular interference, the spinodal proximity, and appropriate dependence of the 
interaction parameter y has been derived by Vrij (1974, 1978) and will be discussed later. 

An expression for Rayleigh's ratio 
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Diffusion 

As the diffusion coefficient depends on the hydrodynamic and thermodynamic factors 
(Equation 2.4-43), its behaviour in a wide concentration range significantly differs for 
solutions in a good or poor solvent. 

The mobility of macromolecules monotonically diminishes as the concentration rises. 
Far from the liquid-liquid phase separation region (in a good solvent), dpz/dv2 mono- 
tonically increases with the polymer concentration v2 (see Figure 3.2c, the curves for 
x, = 0.25);hence, the concentratlon dependence D = D(w2) (or ll = D(c2)) goes through 
a maximum at moderate concentrations (Figure 3.33). 

Figure 3.33. Concentration dependence 
of the diffusion coefficient D in the 
polystyrene+ethylbenzene system at 20 
( I ) ,  30 (2),  40 (3), 50 (4) ,  and 60°C (5). 
x; is the segment mole fraction of poly- 
mer, i.e. s; = z122/(nl + n2), where 12.1 
and n2 are the number of moles of the sol- 
vent and polymer, respectively, z is the 
degree of polymerization (Rehage et al., 
1970) [G.Fkhage, O.Emst, J.Fuhrmann. Disc. 
Faraday Soc. 49 (1970) 208-221. Copyright @ 
1970 by the Royal Society of Chemistry] 
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Indeed, combination of Equation 2.4-43 (with a replacement pf = ~ ; / N A )  and the 
Gibbs-Durgham one (Equation 1.1.2-49) leads to 

(11) 
XI  aPl D = --.= c2 am -- x2 aCr2 - - 

N ~ f i  dc2 N A f 2  ax2 N A f 2  3x2. 
As the molecular weight of the polymer Mz >> MI, then 

m2 

If we multiple both the nominator and denominator of the last fraction by the solvent 
and the solvent volume density el, we get the molar volume of the solvent Mlpl = 
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mlel = Vl, which is approximately equal to the volume of the solvent for dilute solutions 
Vl E V, and 

mzMle1 mzV1 - ~ CZ% 

m1Mm MzV Mz’ 
x 2  E ~ - 

Whence 

Differentiating Equation 1.2-27 with respect to cz,  we have 

aT - I aPl 
acz V, a c z ’  
- - 

Then 
2 1  Mz d~ 
N A f 2  dc2 

D =  --. 

The concentration dependence of the friction coefficient of macromolecules f z  is ap- 
proximated by 

f2 = . f o z ( l  + Bcz + . . .) (13) 

(Tsvetkov et al., 1964). - 

It is often assumed that x1 M w1 = 1 - vz = 1 - czV2 as well. 
If only two terms in the virial expansion of T are left (Equation 1.3-37), then 

As we see, the product of the ascending and descending functions of c2, D = f ( c2 )  
must have an extremum (see Figure 3.33). 

As the phase separation region gets nearer, dpz/dvz decreases (see Figure 3.2c, the 
curves for x ,  = 0.5), therefore, in a polymer solution in a poor solvent D = D(c2) passes 
through a minimum corresponding to the critical concentration (Figure 3.34). Since the 
mobility of macromolecules inevitably diminishes with rising concentration (Equation 13), 
this factor must overcompensate for the thermodynamic one at high concentrations; as a 
result,, tshe curves D = D(c2) (see Figure 3.34) should be expected to have a maximum 
at high concentrations cz (Rehage et al., 1970). 

New ideas on the mechanism of the diffusion mobility of macromolecules in solution 
and in the condensed state have been put forward within the framework of the scaling 
approach (see section 4.5 (de Gennes, 1968, 1976a, 1979; Gotlib et al., 1986)). 

Dynamic light scattering provides new capabilities of experimental studies of the mo- 
bility of macromolecules at different levels of relaxation times (see subsection 3.3.2). 
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Figure 3.34. Concentration dependence 
of the diffusion coefficient D in the 
polystyrene+cyclohexane system at 28 
(I), 30 (e), 40°C (3) ( u )  and the state 
diagram of this system ( b )  (Rehage et 
al., 1970) [Reprinted with permission from: 
G.Rehage, O.Ernst, J.Fuhrmann. Disc. Fara- 
day SOC. 49 (1970) 208-221. Copyright @ 
1970 by the Royal Society of Chemistry] 

Critical opalescence 
The relationships given in subsection 2.4.3 for critical opalescence of solutions hold good 

for polymer solutions as well with a modification of the quantities # and R as w2 should 
be the volume of a monomeric unit and the potential energy functions .cij(r) concern 
interactions among the monomeric units and LMWL molecules. When z monomeric 
units are Gaussianly distributed about their centre of gravity (Debye, 1959), 

where a is the distribution mode. It follows from Equation 3.1-149 that 

Equations 2.4-18.. .20, 15, 16 give the Debye length 1 (Equation 2.4-20) (Debye et al., 
1960b; Eskin, 1973) as 

2A2 - 
R2 , 2 611 1 =- 

A, + A,"' + 

where A1 = bll - 612, Az = 62, - 612. 
The corresponding estimations (Debye et al., 1960ab) lead to 
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whence it follows that 

12 F.  
For solutions of macromolecules, w -ose size is commensurable with , internal interfer- 

ence contributes to the scattering asymmetry as well. Then (Debye et al., 1962b) 

2 . 2 9  
A 2  

Here p is the refractive index, s = -sin - (see Equations 2.1-50,-84) or according to 

(Vrij and van den Esker, 1972) 

3x2 

Kc(  1 + cos2 2 9 )  d 
Rk,, 

As the critical point is approached T + Tc at 9 = pc (or c = cc) ,  it follows from 
Equation 20 that (Debye et al., 1962b) 

where D is a quantity depending on the system P+LMWL and including instrumental 
corrections; AT = T - T,. 

Debye et al. (1962b) have suggested representing Equation 22 as 

(23) 
d 
2 

I;' = A + Bsin2 -. 

The plot I;' us sin2(t9/2) constructed from the indicatrix 18 at different temperatures 
T (or AT) enables T,, F, and 1* to be determined simultaneously from the B/A or A/B 
ratios. The critical temperature T, is found by extrapolation 

A 
B 
- = J ( T )  -+ 0. 

If we introduce a function 
B 

s = -AT, 
A 

then, according to Equation 22, 
- 

8.rr2 1' 16n2 R2 
s = -.  -T, + ~. -AT, 

3 A2 3 A2 

whence it follows that in the s us AT plot, the initial ordinate so and the slope define l 2  
and respectively 
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As R2 N M for Gaussian chains, according to Equation 19, 

1' - M.  (29 1 
Analysis of Equations 20-22 shows that critical opalescence in polymer solutions is 

observed over a wider temperature range than in solutions of LMW compounds. For a 
given, sufficiently high, and reliably fixed asymmetry 1 0 ~ / 1 ~ ~ 0 ~  = 2 at X = 3,000 8, and 
T, = 300 grad, Equation 22 gives for the polymers of the vinyl row (Eskin, 1973) 

Polymerization (R')' 2, T - T,, 71 
56 0.3 

These estimations show the asymmetry of the critical opalescence for polymers with 
p - 1,000 is observed over a range of several degrees while AT is about . K in 
solutions of LMW components for I00/Z1800 = 2. On the other hand, such a wide extension 
of the critical opalescence of polymer solutions along the temperature scale significantly 
hinders identification of the binodal (the boundary of the phase separation region) in 
contrast to LMW mixtures, where the scattered light intensity rises so sharply (by the 
temperature scale) that the way of recording this effect turns out to play no significant 
part. 

Studies of the macromolecular structure in the precritical region (Debye et al, 1960ab, 
1962ab; Eskin and Magarik, 1960; Skazka et al., 1960; Skazka and Nikitin, 1963; Es- 
kin and Nesterov, 1965ab, 1966ab, 1967ab; Eskin and Serdyuk, 1969; Eskin, 1973) have 
shown Equation 29 to  fail sometimes. The proportionality l 2  - M was fixed in the poly- 
methylsiloxarie+tetraline (Eskin and Nesterov, 1965b), poly-p-vinylnaphthalene (P-p- 
VN)+toluene+decaline, P-p-VN+benzyl alcohol, P-P-VN+phenylethyl alcohol (Eskin 
and Nesterov, 1965a, 196710; Eskin, 1973) systems. In the poly-P-naphthylmethacrylate 
(P-P-NM)+toluene, P-P-NM+tetraline, P-P-NM+phenylethyl alcohol, P-P-NM+benzyl 
alcohol (Eskin and Nesterov, 1966a), polybutylmethacrylate+isopropanol (Eskin and 
Nesterov, 1967; Eskin, 1973), polystyrene+cyclohexane (Debye et al., 1962b) systems, 
the l2 us M dependence is weaker. 

In contrast to Equation 19, 1 turns out to be significantly smaller than (R")'/' (Debye 
et al., 1962b; Eskin and Nesterov, 1966a; Eskin, 1973). 

Measurements in the precritical region and calculations from Equation 26 have shown 
a significant decrease in coil size in comparison with the sizes of the coils at the 0 tem- 
perature and infinite dilution ( c  -+ 0) (Debye et al., 1960b, 1962ab; Eskin and Nesterov, 
1966ab, 1967a; Eskin, 1973). 

This circumstance caused a discussion. Attention was paid to the way of determining 
the critical concentration from the asymmetry maximum 1450/11350 = f(y2) at T > T, 
(Debye et al., 1960b, 196213). Several researchers (Rehage et al., 1965; Rehage and Kon- 
ingsveld, 1968; Koningsveld, 1970b; Borchard and h h a g e ,  1971) has shown that the 



3.3. I .  Mean-s t at is tical fliict iiations 347 

asymmetry ~ r ~ a x i r r ~ u ~ n  is observed at a concrutration lower than the critical one drter- 
mined independently (eg. using the volumeto-volume ratio at phase equilibrium). Vrij 
and van den Esker (1972), Vrij (1974), as well as the abovementioned authors, relate the 
maximum of light scattering asymmetry to the precipitation threshold concentration pPt 
(the spinodal’s maximum, see Figure 3.35). The actual polymolecularity of polymer 

Figure 3.35. Spinodal calculated from Equation 33-44, p ,  = lo4. The straight line 
corresponds to the scattering asymmetry maximum z = &,45/&,135 and connects the 
spinodal’s maximum with the 0 point (Vrij and van den Esker, 1972) [Reprinted with prrmis 
sion from A Vrij, M W J. van den Esker J Chem Soc Faraday Trans 68 (1972) 513-525 Copyright 
@ 1972 by the Royal Society of Chemistry] 

fractions shifts the location of qc to the right along the boundary of the phase separation 
region (see Equation 3.2 10, Figures 3.12-3.14). As this location is dependent on the M,- 
to-M, ratio (Equation 3.2-lo), this shift may be observed at a rather small ratio M,/Mn 
as well. Indeed, Rehage et al. (1965), Rehage and Koningsveld (1968) have reported on 
a 2.4-fold difference between pc and ppt  in the polystyrene+cyclohexane system though 
M,/M,  = 1.07 only (but M Z / M ,  = 1.4 !). Besides, even at small M w / M n  and M z / M w ,  
the difference between (pc and ppt  increases due to the strong dependence of the interac- 
tion parameter y on polyrner concentration (see the remark in the proof in Chu’s (1970) 
review). 

As the method for determining the 0 temperature and thermodynamic parameters from 
?‘, of polymer solutions has gained acceptance (Shultz-Flory’s method, see Equation 3.1- 
246), the question naturally arises as to  the degree of correctness of the determined 
parameters in the case of replacing T, by Tpt, since it was Tp, and ppt that were measured 
in most cases: i.e. the location of the intensity maximum of light scattering in the region 
of critical opalescence. Meanwhile, Flory-Shultz’ construction (Shultz and Flory, 1952, 
1953ab) is valid, strictly speaking, only for binary systems where T, = TPt and (pc = vpt. 
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Even if TPt and 'ppt are measured on traditionally good polymer fractions ( M , / M ,  5 
1.05.. . 1. l ) ,  artifacts might appear owing to a high sensitivity of Tpt and ppt to the MWD 
momenta, which are usually not fixed. That is why Koningsveld and Staverman's (196%) 
analysis of applicability of Equation 3.1-246 to quasibinary systems is of importance. It 
involves the following temperature dependence of interaction parameter 

go 2 x ,  = go,1 + -. T 

Then, for the critical value, 

Substitution of Equation 31 to Equation 3.1-242 leads to 

0.5 - go,1 T,-1 = ______ p-'/' + 0.5~- '  + 
g0,2 90,2 

or 

Qo 2 
X,,& = go,1 + +. 7, 

~ , - l  = 8-1 + 
90,2 

(33) 

(cf. Equation 3.1-246). From the ordinate and slope of the line 

TT1 vs (p-'l2 + 0.51)-') , 

Q, go,1, and 90.2 or 8 ,  $1, I C ~  can be determined (see subsection 3.1.1, Equations 3.1- 
42.. .46). 

On the other hand, Shultz (1953) has derived a relationship between TPt and the MWD 
parameters for the cxponential MWD functions 

where Q = 1 - 0.25 (1 - 0.184q-'/') q-', q = b / ( b  - l ) ,  b = pw/p , .  If b = 1, it reduces to 
Equation 32. 

As seen from Equation 34, if Tpt stands instead of T,, the Q value found by extrapolation 
p -+ 0;) on the construction 

will be correct if only pw is used and there is no difference in the Q factor of the polymer 
samples (i.e. all the samples possess the experimental MWDs of the same width). 

Figure 3.36 shows a very slight difference in slope and the complete coincidence of LJ 
for model samples with different b's. Yet, in the case of the exponential MWD, the CPC 
and binodals with p = pw do not differ significantly, and it was important to verify the 
correctness of Shultz-Flory's construction for other MWD kind as well (Koningsveld and 
St averman, 1968~).  
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Figure 3.36. Determination of the 6’ temperature in the polystyrene+cyclohexane system 
using Shultz-Flory’s method with b = 1, Q = 1 (a  binary mixture, TPt = T,) (1); b = 
1.5 ( 2 ) ,  and b = 2 (3) for an exponential MWD (Koningsveld and Staverman, 1968c) 
[R.Koningsveld, h.J.Stavernlan. J. Polyrn. Sci. A-2 6 (1968) 349-366. Copyright @ 1968 by Wiley. 
Reprinted by permission of John Wiley & Sons, Inc.] 

Figure 3.37 presents Shultz-Flory’s simulations for the exponential amd logarithmically 
normal MU’Ds of different width. All the lines are extrapolated to = 0.5 for p ,  -+ x, 
i.e. the value k1 = 0.5 results if the fractions are equal in width of the same distribution. 
When b < 1.25, even the kind of distribution (of the two considered) does not matter. 
Whether a difference is observed in the MWD kinds of the fractions (samples) can be, to 
a certain extent, judged by the CPC shape, and the relative locations of the CPCs must 
not show irregularities. .4n intersection, for example, would directly point to a difference 
in the MWD kinds. In this case, the Shultz-Flory’s construction remains linear, but the 
ordinate intercept does not define the 6’ temperature. 

Koningsveld and Staverman (1968~) have also calculated the ratios pc/ppt and x , , , / x  
as functions of b = p w / p ,  (Figure 3.38). The xl,c/xl,pt ratios corresponds to Tpt/Tc. It 
follows from these data that polymolecularity shifts the precipitation threshold along the 
concentration axis stronger than along the temperature axis with this shift substantially 
depending on the kind of MWD function, especially, at b > 1.25. We note in passing 
that this effect may provide a way of determining b with a better accuracy than do the 
traditional met hods. 

The presented analysis shows that the significant difference in pe calculated by Flory 
(Equation 3.1-241) and experimentally obtained ( ‘ppt ,  in fact), revealed in papers on 
critical opalescence (Eskin, 1973, page 307, table 7.21, may be attributed to the differ- 
ence between p ,  and p,, (Vrij and van den Esker, 1972). This effect of the difference 
between theoretical and experimental pC’s also depends on the possible concentration 
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Figure 3.37. Shultz-Flory's simu- 
lations for the exponential (solid 
lines) and logarithmically normal 
MWD functions with the M w / M ,  
ratios marked at the lines (Kon- 
ingsveld and Staverman, 1968c) 
[R.Koningsveld, A .  J .St averman. J . 
Polym. Sci. A-2 6 (1968) 349-366. 
Copyright @ 1968 by Wiley. Reprinted 
by permission of John Wiley 0 Sons, 
Inc.] 

,-y + 1,-1 
2 w  

0 0.02 0.04 

dependence of the order parameter ( see  subsection 3.6.1), which requires special analy- 
sis. The corresponding estimations for the polystyrene+cyclohexane system are given in 
subsection 3.6.1. 

Eskin and Nesterov (196613, 1967b), Eskin (1973) have proposed a method to study 
the encrgy of polymer molecular cohesion based on critical opalescence in the P+LMWL 
system, in particular, on a careful study of the dependence 1' = f(F) (Equation 17). 
The obtained quantities of the molar cohesion energy of a number of polymers are in good 
agreement with the data yielded by other methods (Eskin, 1973, table 7.3). 

Since then, attempts have been made to improve and modify Debye's (1959) theory 
of critical opalescence. Vrij and van den Esker (1972) have accounted for the influence 
of local concentration gradients on the entropy term of the free energy F in their con- 
sideration of light scattering from moderately-concentrated polymer solutions in terms of 
Silberberg's (1952) model (recall that Debye allowed for their influence on the entropy 
term only). To calculate the scattering intensity Iff, they used the Fourier transformation 
of the concentration fluctuations and Brillouin (1922)-Debye's (1959) formalism 

with R2 relating to  the macromolecular size at a given concentration c. 
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Figure 3.38. pclppt and as functions of the 
parameter b = M,/M, calculated for the exponential 
(1,  2) and logarithmically normal (3 ,  4 )  MWD functions 
for M,,, = 131,700 (1 ,  3) and 26,340 (2 ,  4)  (Koningsveld 
and Staverman, 1968~) [R.Koningsveld, A.J.Staverman. J.  
Polym. Sci. A-2 6 (1968) 349-366. Copyright @ 1968 by Wiley. 
Reprinted by permission of John Wiley & Sons, Inc.] 
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This equation, in the general case, significantly differs from Debye’s one (Equation 21), 
but at c -+ 0 both reduce to 

Kc(1 + cos2 79)Ri,1, = M-l 

where E is the mean square radius of gyration of the macromolecules at c = 0, and the 
expression in the square brackets is equal to E‘-’(”) for coils at low scattering angles 19. 

For finite concentrations of solutions, Equation 35 leads to 

Kc(1 + cos2 l9)Ri,lg = M-l (37) 
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If E does not changc with concentration c,  it reduces to Debye-Zimm's equation (Zimm, 
1948). 

On the spinodal, - ( - ) = 0, and the scattering is defined by the second term in 
the right-hand side (Equation 35) with its strong dependence on 19 (critical opalescence). 
Taking just the same form of the enthalpy summand in the Gibbs potential as did Debye 

dc RT 

(where $2 is a constant with x, = R/2kT, cf. Equations 3.1-30 and 3-1-33), Vrij and 
van den Esker (1972) arrive at an equation for the square Debye length 

or, in view of Equation 3.1-241, 

-T 
Tc 

z2 = 2n2 - (1 + p'l2) -' 
Thus, according to these authors, I' turns out to be p'i2/2 times less than that given 
by Debye's theory, which shows better agreement with experimental data. Moreover, 
according to Equation 40, 

12 N M112. (41) 

Results in agreement with this equation have been obtained for a number of systems. In 
particular, for the polybutylmethacrylate+benzene+heptane system, Equation 41 works 
well (Eskin, 1973) while for the polystyrene+cyclohexane system (Debye et al., 1960ab, 
1962ab; Chu, 1970) 

6' = 0.91M,0.57. (42) 

Relationship 41 follows from the scaling approach as well (de Gennes, 1968) (see sec- 

For a polymolecular system, Vrij and van den Esker (1972) have derived 
tion 4.4). 

wi being the volume of the component molecules. 
In the accepted model, the spinodal equation has the form 

d2h 
(w1'Po)-' + (w2,w(P)-' + 

whence the maximum on the spinodal corresponds to the polymer concentration 
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with 

Equation 43 calculates the location of the maximum of the asymmetry coefficierit 
z = Rk,450/Rk ,1350.  At a fixed temperature T ,  the maximum of z, corresponds to the 
expression 

where cp,,,, is the polymer concentration at the maximum of asymmetry (see Figure 3.35). 
The asymmetry maximum zm gets more cxpressed as T approaches the spinodal; how- 

ever, one should keep in mind that in polynary systems, the boundary of the phase separa- 
tion region goes above the spinodal maximum and touches the spinodal on its right-hand 
branch at the critical point (see Figure 3.14). This means that particles of a new phase 
may appear in the system when the configurative point approaches the spinodal near its 
maximal value. 

Thus, according to Debye, the critical concentration proves to be the concentration of 
the maximum z, which lics on the line connecting the spinodal maximum with lhe 8 
temperature on the ordinate axis (see Figure 3.35). In view of this circumstance, Vrij and 
van der Esker (1972) interpret Debye’s construction like 

(48) 
t? 

CI;’ = A + Bsin2- 
2 

in another way, using 

where C is an instrumental constant. 

experiment and that of the spinodal maximum 
The quantity AT is given the meaning of the difference between the temperature of 

AT = T - Tm,sp. 

Then (cf. Equation 25), 

167r2 
+ 4- 

At AT = 0, 
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where 

- T  1/2 -1 l 2  = 2R2-(1 + p ,  ) 
T m , w  

* 

The slope of the plot (s  - so)/T yields the quantity 

(54) 

which can unlikely be compared with experiment for the moment. 

and determined 
out that the value 

Vrij and van den Esker (1972) used the experimental data of Debye et al. (1960b, 1962b) 
at T = Tm,ap (at the spinodal maximum) from Equation 54. It turned 

(F/Mw)'/a = 3.12 lo-' cm . mol'/' . g-'/a = 3.12 nm mol'/'g-'/2 

is constant within 0.1. IO6 5 M ,  5 3 .  IO6 and even somewhat more than at the 0 point at 
c + 0 (- 2.8nm.mo11/a .g-'la) (Notley and Debye, 1955). In their calculations, Vrij and 
van den Esker accepted the critical concentrations reported by Debye as (P~,.,~. Replacing 
(1 + p i 9 - l  by ( P ~ , ~ ~  in Equation 54 according to Equation 45, they calculated and, 
then, ( e / M w ) ' I a  1: 2.27nm. mol''' . g-'12. 

The disagreement between the values 3.12 and 2.27 points to the fact that Equation 45 
is incorrect owing to the neglect of the concentration dependence of the interaction pa- 
rameter. The chief result of Vrij (1974) is in the fact that near the spinodd maximum, 
macromolecules have the statistical coil conformation with sizes slightly different from 
those in the 8 state at c + 0 (at least, for the polystyrene+cyclohexane system). Gen- 
erally, however, this may not be the case (Vrij and van den Esker, 1972). 

With allowance for the concentration dependence of x (Scholte, 1971) (see subsec- 
tion 3.6.2): Vrij (1974) derives (F/M,)'/' = (2.27 f 0.1) nm - g-'/' and explains 
the slightly overestimated value, as compared with the value at the 0 temperature and 
c + 0, by polymolecularity of Debye's samples. The value M,/M,  w 1.5 would eliminate 
this difference. 

Vrij (1974) deduces his basic equation 35 in another way, using the correlation function 
formalism. 

Tager et al. (1976a) have determined the sizes of polystyrene molecules in cyclohexane 
at the critical concentration near both the UCST (T, = 33"C, c, = 2.05 g/dl) and LCST 
(T, = 215OC, c, = 4.3 g/dl), from Debye's equation 26 ((E)'/' = 130 8, at 34°C and 
(E)'/2 = 110 8, at 215°C) and from Vrij and van den Esker's equation = 430 a 
from Equation 35 and (F)'Ia = 320 8, from Equation 52 at 34OC). The R, sizes estimated 
from Vrij and van den Esker's theory are close to the unperturbed ones at c 4 0: = 
460 A. 

The correlation of concentration fluctuations in the P+LMWL system (increase in the 
long-range correlation distance &) near the phase separation region finds use in other 
methods for investigation of the structure of solutions, i.e. flow birefringence (Eskin and 
Magarik, 1960; Frisman and Mao Sui, 1961ab; Rudtov, 1985a), viscosity of solutions 
(Frisman and Mao Sui, 1961ab; Debye et al., 1963; Tager et al., 1964a), scattered light 
depolarization (Skazka et al., 1960). 
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The increase in the long-range correlation distance & significantly strengthens the ef- 
fect of shape in birefringence while the segmental anisotropy of macromolecules remains 
constant up to polymer precipitation (Frisman and Mao Sui, 1961ab). The precritical cor- 
relations of the concentration fluctuations does not, however, affect Kerr’s effect (electrical 
birefringence) in polymer solutions (Frisman and M m  Sui, 1YGlab). 

3.3.2. Brownian motion of macromolecules in solution. Inelastic (dynamic) 

More rigorous consideration of light scattering phenomenon by colloidal or polymer 
solutions should account for the time effects due to the Brownian motion of their structural 
elements. 

In Rayleigh-Debye’s approximation (subsection 2.1 .a), the density correlation function 
(the dynamic form factor) S ( 6  t )  = ( p ( 6  t )  . p*(q‘, 0)) (cf. Equations 2.3-38,-39) acts 
as form factor (Debye’s function) (Equation 2.1-64). 

light scattering 

Then. 

(56) 

(see Equation 2.3-30), which is also calculated for variously shaped particles (balls, pivots, 
Gaussian coils, etc.), in view of the dynamics of their motion. For colloidal particles 
(viruses, latices), with no account for internal interference, 

S($, t )  = S(f70)exp(-Dq2t) (57) 

(cf. Equations 2.3-48 and 2.4-51)’ and the corresponding energy spectrum of scattering 
(see Equations 2.3-26,-25) 

(cf. Equation 2.3-52). The diffusion coefficient D defines the mean relaxation time of 
change in a particle’s location, 

7,. = ( D y 2 ) - l  (59) 

Aw, = Dq2 (60) 

(cf. Equations 2.3-23,-48, and 57) and the scattering bandwidth 

1 6 ~ ’  . # . 
(cf. Equation 2.4-53). The slope of 7;’ or A w ,  us q’ = 4k’ sin’ !! = - sin’ - gives the 
self-diffusion coefficient of colloidal particles owing to the Brownian motion. From this 
coefficient, the hydrodynamic radius of particles RH is determined using Stokes-Einstein’s 
equation 2.4-44 

2 A2 2 

where 70 is the viscosity of the dispersion medium. 
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In the case of polymer solutions, a macromolecule is modelled (Kargin and Slonimski, 
1945, 1949; Gotlib and Volkenstein, 1953; Prince and Rouse, 1953; Zimm, 1956) by (N+1) 
beads, with the isotropic polarizability a, connected to  each other by N segments with the 
root-mean square length (1Z)”2 (like %prings’’ which realize the restoring force of entropy 
nature, which arises when the beads, during their Brownian motion, diverge from each 
other at a distance different from the statistically most probable one). The distribution 
of the distances between the beads is accepted Gaussian. Every bead hydrodynamically 
interacts with the solvent through the friction coefficient C and, besides, is subject to the 
Brownian motion of the solvent molecules. 

Consideration of this problem (Kargin and Slonimski, 1945, 1949; Gotlib and Volken- 
stein, 1953; Prince and Rouse, 1953; Zimm, 1956; Askadski, 1973; Vinogradov and Malkin, 
1977; de Gennes, 1979; Koenig, 1979) leads to a pattern of discrete kinds of macromolec- 
ular motion (relaxational modes) with a set of relaxational times 

with k = 1, 2,. . . , N defines each mode. 

shrinks (de Gennes, 1968). 

point Fat the instant t is introduced (Gotlib et al., 1986) 

The first mode can be regarded as a pulsation when a coil alternately stretches and 

To calculate S(<, t )  of a macromolecule, the microscopic density of segments at the 

p(F,It) = z 6 ( F -  I f k ( t ) ) ,  
k 

where h(z) is Dirac’s 6 function, ?k(t) is the radius vector of the bth segment at the instant 
t ;  summation is performed over all the N segments of the macromolecule. 

The Fourier transform p(F, t )  in the momentum space is 

p(q‘,t) = /d?exP(dfip(F,t) = xexP[i?k(t)] .  
k 

Then, the Fourier transform of the density correlation function takes the form 

The angular parentheses ‘(. . .)’ mean averaging over all the possible conformations of the 
macromolecule at the instant t and t = 0, i.e. double averaging. 

The first averaging is performed with the distribution function 

where e {?k(k(t)} is the 3iV-dimensional vector describing the macromolecular conforma- 
tion. 

is the conditional probability of the transition from the 

fixed initial conformation c{O} at t = 0 into the conformation (?{&(t)} for a period 
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t ,  and satisfies Kirkwood-Riseman’s diffusional equation a$/& = D$ with the initial 
condit,ion 

4 , = 0  = 6 [C - c (011 7 

D being an operator of a special type. 

initial instant t = 0: C {<(O)} with the Gaussian chain model. 

and Pecora, 1876)’ 

The second averagi_ng is performed over all the possible chain conformations at the 

In the absence of external forccs and hydrodynamic interactions among the beads (Berne 

where 

2 cosnk( i /N - 112) for even k 
Qik = (N) { sin 7rk ( i / N  - 1/2) for odd k ’ 

- 
R2 is the mean square radius of gyration of the macromolecule. 

This expression has been derived for so-called long slow wavelength modes with k << N .  
On expansion of the exponent in Equation 63 into a series and calculation of the coef- 

ficients (Berne and Pecora, 1976), we get 

S(cj‘,?‘,) = S0(u)exp(-Dq2t) + S2(u)exp [- (Dq2 + :) t ]  +. . .  , 

where 

and 

erf y is the error function of y: 

The coefficient &(u)  determines the contribution to a spectrum depending on the trans- 
lational diffusion coefficient of the coil as a whole only. The coefficient S ~ ( U )  determines 
thc first, most significant summand depending on the intramolecular motion with the 
mode relaxational time with ko = 1; SI is absent in Equation 61 as S1 << So, and 
SI << Sz. Substitution o f t  = 0 into Equation 64 leads to Debye’s function P ( t 9 , E )  for 
Gaussian coils: 
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S;(u) 
Figure 3.39. Relative integral intensity 
of light scattered by Gaussian coils as a 
function of fi = qR, S is the total inte- 
gral intensity, SO is the component due to 
the coil as a whole, Sz is the first largest 
component due to internal relaxational 
time, S h  = Ly - (SO + sz) (Berne and Pec- 
ora, 1976) [B.J.Berne, R.Pecora Dynamic Light 
Scattering with Application to Chemistry, Biol- 
ogy, and Physics. Copyright @ 1976 by Wiley. 
Reprinted by permission of John Wiley & Sons, 
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Figure 3.39 contains s(u), So(u), &(u),  and sh = s - So - sz plotted against u. 
The quantities Si(.) are the components of the integral scattering intensity. For small 
u's, S FZ So, and the time correlation function is defined by the translational diffusion 
coefficient only. When u 2 3, the effect of time decay in the fluctuations is substantially 
dependent on the intramolecular relaxation time. 

Thus, at low molecular masses and q 4 0 (see Equation 65), the scattering spectrum of 
polymer solutions is a simple Lorentzian. As molecular mass increases, the intramolecular 
motion complicates the spectrum. S(@, w )  turns out to be the sum of several Lorentzians. 

Dynamic scattering occurs due to the relaxation of the concentration fluctuations of 
polymer segments with the scale commensurable with q-' (see subsection 2.1.2). So, the 
relative contribution of the diffusion mobility of the macromoleciiles and their internal 
modes of motion depends on the wave vector q. 

In this connection, three different modes of dynamic scattering by solutions of macro- 
molecules, for which R << 9-l and R >> q-',R M q-l ,  are spoken of. 

In the mode 

Rq << 1, (67) 
a macromolecule behaves as a particle with no internal modes of motion: Equations 57 
and 58 hold good for the correlation function S({, t )  and scattering spectrum S({,w). 

As q and R increase, the internal modes of motion of a macromolecular coil gain in 
more and more importance: at 

Rq x 1 (68) 
the diffusional mode is commensurable with the longest wavelength mode with the relax- 
ation time 7 1  (see Equation 64). In the mode 

Rq >> 1, (69) 
the subsequent modes of internal mobility get involved according to Equation 63. 

See section 4.5 for more information on the influence of bulk effects and hydrodynamic 
interactions on the mobility modes of macromolecules within the framework of scaling 
constructions. 
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To analyze the complex form of experimental S ( 6  t )  (the superposition of exponential 
functions 57) and S(q', w )  (the superposition of Lorentzians 58), special procedures using 
the normalized functions of time correlation have been developed (Jamieson and 
McDonnell, 1979). 

If 111(0)12 is taken out of the parentheses in the right-hand side of Equation 2.3-35, we 
get (see Equation 2.3-32) 

where 

is the normalized time correlation function of the electric field of a scattered wave. In 
view of Equations 2.3-30,-37, 2.4-56,-50, and 57, 

gl(t)  = exp(-rt) = exp(-Dq*t). ( 72) 

( 7 3 )  

Including the details of the measuring technique, we finally obtain 

I2(41t) = A (1 + bIL71(q,t)lZ) , 
where A is the background photocurrent of a photoelectrical multiplier, b is the spatial 
coherence factor allowing for the violation of scattered light coherence due to the finite 
volume of the scattering space (usually b x 1). 

Taking the logarithm of Equation 73, with due account of Equation 72, we derive 

ln[IZ(q,t) -A] = lnAb+2InIgl(q,t)l = InAb-2Dq2t, (74) 

whence it follows that the plot 

In [12(q, t )  - A] us t 

is a line with its slope 2Dq2 given the polymer is strictly monomolecular. 

as 
For an actual polymer system, the expression for g l ( t )  (cf. Equation 72) must be written 

m 

/ g l ( t ) l  = /G(I')rpr2 d r  (75) 

j ? G ( r ) d r  = 1. ( 76) 

0 

with the normalization 

0 

Here G(r )  is the distribution function to characterize the fall rate of structural reor- 
ganizations' fluctuations. Generally, the Laplace inverse transformation (Equation 75) is 
required to determine G(r), but the function Igl(t)l is suitable for this operation if only 
determined with a high accuracy, not achievable even by the up-to-date methods. 
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Several versions of how to extract information on the properties of the macromolecules 
from an experimentally measured (see Equation 73) normalization function g1 ( t )  have 
been proposed. 

In the cumulant method (Koppel, 1972; Pusey, 1974), the function lngl(t) is ex- 
panded into its Maclaurin series in powers o f t  at t + 0 and is written as 

where K , ( r )  are the cumulants (semiinversions) of order m of the vector r = 
(rl ,  r2,. . . , I?,) (Shiryaev, 1984). Such a cumulant characterizes random variables re- 
lated to the high-order moment. 

To get the explicit form of the first-order cumulant, the function e-rt is written as 

00 

where r = /G(r)J?f l  is the first-order moment of the vector r. Then, it is substituted 

to Equation 75 and taken the logarithm of: 
0 

Expanding this logarithm into a Maclaurin series, we obtain 

where pm are the central moments of the distribution G(r )  

p m  = JSr - r)mG(r)  dr. 
0 

It follows from comparison between Equation 77 and 81 that the cumulants of the first 
three orders coincide with the central moments, and 

IC4 = p4 - 3& (83) 

etc. 
The first cumulant 

00 

G = F = /rG(r)dr 
0 
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defines toha average weight diffusion coefficient (in the mode qR << 1): 

The function G(r)  in experiment corresponds to the scattered light intensity (cf. Equa- 
tions 56, 57, 72, and 75) which, in turn, is proportional to ciMi (for the ith fraction). 
Therefore, in the discrete description, Equation 84 can be written as 

and 

is thc z-avcrage diffusion coefficient - cf. the z-average molecular weight 

Experimentally, the first cumulant is determined as the slope of lngl(t) at t 4 0 (see 
Equation 81), i.e. 

The second cumulant EC2 characterizes the width of distribution (dispersion) G(I'), the 

With the help of an equation of Mark-Kuhn-Howink's type 
third IC3 and fourth X4 ones are responsible for the asymmetry of G(r) distribution. 

M = K ~ D - ~ ,  

the function G(r)  is converted into the MWD differential function. 
The same procedure can be applied to the cumulants or moments G(r).  With Stokes- 

Einstein's formula, the z-average hydrodynamic radius of the macromolecules is deter- 
mined from the z-average diffusion coefficient 

(cf. Equation 61). 
For many kinds of distribution G(r) ,  the terms of the series (Equation 81) rapidly 

diminish with an increase in their order, and lngl(t) can be approximated by the first 
two-four terms. 
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The complexity (and disadvantage) of such processing of the experimental data is that 
the order of the polynomial is unknown beforehand while the modern equipment of dy- 
namic scattering is not capable of determining cumulants above the third order with 
sufficient accuracy. 

In the diagrammatic method of approximation (Gulari et al., 1979), Igl(t)l is 
represented as 

M r,+Ar/z 

jG1 r,-Ar/z 
Ig,(iAt)l = G(rj) 1 exp [-r(iAt)] d r  

with the normalization 

G(I'j)Ar = 1, 
M 

j=1 

where M is the number of histogram bars, AI' = (I'ma - rmin)/M is the width of 
each step, rmax and rmin are the upper and lower limits of the region where r varies, 
l?j = rmin + ( j  - 1/2)Ar, At is the delay time, i is the channel number of the correlator 
(see subsection 2.3.3). The output signal takes the form (see Equation 73) 

I2(iAt) Z (90) 

where ~j = G(I'j). Then, the least squares method minimizes x2 with respect to each aj 

a 

where q is the experimental error of Iz(iAt), Izm and 12 are the calculated (adjusted) and 
experimental values, respectively. The values ~j = G(rj); I?,,,=, rmin, and M are corrected 
on every cycle until 12, differs from I2 by a minimal quantity within the calculation 
accuracy. 

The regularization methods (Provencher et al., 1978; Rraginskaya and Klyubin, 1986; 
Chu, 1985) are more rigorous and based on the general regularization principles of solving 
reverse ill-posed problems, elaborated by Tikhonov (see, eg., Tikhonov, 1973; Tikhonov 
and Arsenin, 1974). Equation 75 is Fredholm's first-kind integral equation typical for the 
reverse problems of experimental methods for investigation of the structure of a substance: 

with the core K ( r , t )  = e-rt and the desired function Z(I'). Determination of Z(I') 
by the standard method (the Laplace reverse transformation of Equation 92) is impos- 
sible because of the fact that the necessary experimental accuracy in measuring y(t) is 
unattainable. 
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In the regularization methods, Equation 92 is replaced by a system of linear algebraic 
equations 

N 

a;kZ(l?k) = y(tl), i = 1,2, .  . . , M ,  
k=l 

(93) 

where M is the number of the correlator's channels, uik  = exp(-rkti). 
Or, in operator form, 

A 2  = y. (94) 

Z = A-'y (95) 

The only solution of Equation 94 in the classical sense 

does not exist as the determinant of the system 93 rapidly diminishes with the matrix A 
dimension (A-' + m) when the components of the vector y: (y l ,  yz,. . . , ym) are defined 
with a finite degree of accuracy. An approximate solution of system 95 only can be spoken 
of. 

The regularization method consists in finding an approximate solution of system 95 sta- 
ble to small variations in the components y1, yz,. . . , y ~ .  As a rule, additional information 
on the system and special numerical methods are used to this end. 

Experiments (Kramer and Frederick, 1972; Huang and Frederick, 1974) on polystyrene 
solutions within 8.7 . 10' < M < 5 .  lo7 in the 0 solvent confirm, in general, the main 
conclusion of the theory (Berne and Pecora, 1976). Indeed, during simple data processing, 
when the spectrum shape is assumed to be Lorentzian, for polymer solutions (including 
proteins) with a moderately high molecular mass to satisfy qh' << 1, a good agreement 
between D calculated from Aw, (Equation 60) and the results of independent experiments 
has been achieved (Dubin et al., 1967; Cummins and Pike; 1974; Skazka, 1975; Marshall, 
1978). 

In the systems polystyrene+cycloliexaIie (Geissler and Hecht, 1976), polystyrene-tn- 
butylacetate (Hecht and Geissler, 1977), PDMS ( M  = 130,000)+toluene (Patterson, 
1981), PIB ( M  = 35,000)+cyclohexane (Patterson, 1981), an extremum-containing (with 
a maximum) dependence Dz(c )  has been obtained, as with the traditional method of 
measuring D in polymer solutions in a good solvent (Rehage et al., 1970) (see Figure 3.33). 

In agreement with (Rehage et al., 1970) as well (see Figure 3.34), in (Lempert and 
Wang, 1980, 1981) a minimum on the dependence D, = Dz(c )  at c+ = 22% was found in 
polystyrene solutions ( M ,  = 20,000, M,/M, = 1.8) in cyclohexane within 0.. .5O"C by 
dynamic light scattering. At the same concentration c,, the scattered light intensity is 
maximal (cf. Figures 2.36 and 2.37). 

In a number of papers (eg. Jamieson et al., 1980; Burchard and Eisele, 1984; Chu, 
1985), measurements of gl(t)  in a wide concentration range show two diffusional modes 
(Figures 3.40 and 3.41). Special analysis proves that these modes are of a diffusional 
character which do not associate with intramolecular relaxation of the macromolecules. 

The diffusion coefficient (curve 3, Figure 3.41) is calculated from the first cumulant IC1 
(Equations 84, 85, 87) at q + 0 (to exclude the contribution of the internal motion modes) 
and corresponds to the interdiffusion coefficient which follows from the relationships of 
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1 .oo 
0.75 

0.50 

0.25 

0 

s1(t) 

10-5 1 0 - ~  io-2 io-' 
t ,  s 

Figure 3.40. Dynamic light scattering by 
aqueous solutions of polyvinylpyrrolidone 
with relative concentrations c/c* of 0.1 (I), 
0.9 (2),  3 ( 3 ) ,  4.5 (4, 5.9 (5), where c* is 
the coil overlap concentration, C* = l/[rj] = 
0.00716 g/cm3. M, = 560,000, .9 = 90" (Bur- 
chard and Eisele, 1984) [Reprinted with perrnis- 
sion from: W.Burchard, M.Eisele. Pure and Appl. 
Chern. 56 (1984) 1379-1390. Copyright @ 1984 by 
the American Chemical Society] 
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Figure 3.41. Concentration dependence of 
the diffusion coefficient D, normalized by 
Do 2 = D, at c -+ 0 for polyvinylpyrroli- 
done in aqueous solutions from Figure 3.40's 
data. Fast ( 1 )  and slow (2) modes. Curve 3 
is the interdiffusion coefficient from the first 
cumulant IC1 at q + 0 (Burchard and 
Eisele, 1984) [Reprinted with permission from: 
W.Burchard, M.Eisele. Pure and Appl. Chem. 56 
(1984) 1379-1390. Copyright @ 1984 by the Ameri- 
can Chemical Society] 
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nonequilibrium thermodynamics (Equations 2.441 and 14) (cf. Figure 3.33). This co- 
efficient is also called the cooperative diffusion coefficient. At low concentrations, it 
coincides with the self-diffusion coefficient of the fast mode's macromolecules Dz, f .  

The mechanism of the slow mode is currently the subject of discussion. According to 
one version, the slow mode diffusion coefficient DZ,# (Figure 3.41, curve 2) corresponds 
to reptation motion of an individual macromolecule between entanglements, which form 
a certain pipe inside which the macromolecule creeps (de Gennes, 1968, 1971, 1976a, 
1979). The number of entanglements increases with concentration, which reduces the 
reptation mobility of macromolecules (for details see subsection 4.1.3). According to 
another version, the slow mode is due to some clusters of macromolecules (Burchard and 
Eisele, 1984; Chu, 1985), whose mechanism of formation still remain enigmatic. 

In other papers (Chu and Nose, 1979) the diffusion between the two diffusional modes 
seems not so significant, and the coil overlap concentration c. serves as the concentration 
threshold of their manifestation (Adam and Delsanti, 1977). When c < c,, the macro- 
molecules behave as independent particles, and the characteristic size of the heterogeneous 
area is L - RH (the slow mode, Chu and Nose, 1979). When c > c,, L N 6, where 6 is 
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the distance between entanglements in polymer chains (the fast mode). 
According to de Gennes (1979), a blob, rather than a macromolecule, is the independent 

dynamic structural element in semidilute solutions, so the interdiffusion coefficient D, 
coincides with the blob self-diffusion coefficient &. 

If a blob is considered as an non-draining (impermeable) coil of the radius [, where [ 
is the screening length of the excluded volume (subsection 3.1.1) and hydrodynamic (!) 
interactions among segments, then 

The dependence [ (c)  is found from scaling constructions, whence follows the character 
of the concentration dependence of the diffusion coefficient (see section 4.5). 

The properties of crosslinked gels are considered in detail in section 3.5. Here we note 
the analogy of the dynamic properties of concentration fluctuations in semidilute and 
concentrated solutions with the screening length { and in polymer networks with the 
same distance E between entanglements. 

From the equation for polymer network motion to broaden concentration fluctuations 
of the longitudinal mode with the vector f (Candau et al., 1982), one obtain 

uq( t )  = exp --q2t , ( a  1 (97) 

where M is the longitudinal modulus, f is the friction coefficient of a monomeric unit, c 
is the density of monomeric units (see section 3.5 for details). 

Comparison of Equations 97 and 57 shows that 

M M  _ -  
f - 3 = O ,  

and M/f = M / c f  can be regarded as the interdiffusion coefficient in a polymer gel. 
Further analysis (Candau et al., 1982) leads to the relationship 

(99) 

where is the distance between entanglements in a gel, which is in full accordance with 
Equation 96 (see section 4.5, Equation 4.5-22 for detail). 

Unlike a crosslinked gel, in semidilute and concentrated solutions, entanglements with 
the distance { arise for a certain characteristic period, which were denoted by de Gennes 
(1971) as T,.. Then, provided that 

r = Dq2 > T;', (100) 

the solution must exhibit the dynamic properties of a gel, which is what was proved 
experimentally (Geissler and Hecht, 1976; Hecht and Geissler, 1977). 

Tanaka et al. (1973), Munch et al. (1976) have shown that in crosslinked gels, the 
dynamic scattering spectrum has the Lorentzian form with the relaxation time 
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where D obeys Equation 98. 
In solutions of epoxy resin based on bigphenol A and glycerol (M = 6,500) in ethyleng- 

lycol acetate and in the gel obtained from these compounds by crosslinking by polypropy- 
leneglycol with amino endgroups, the concentration dependence D(c) remains the same 
up to c = 65% (Patterson, 1981). 

Now let us consider some results from experiments on dynamic light scattering, related 
l o  the internal mode relaxation of the macromolecular motion. 

Within 0 5 qR 5 3, the two exponents in Equation 64 provide a 96% contribution to 
the spectrum magnitude S(q,w). 

Tsunashita et al. (1983a) studied dynamic light scattering by polystyrene solutions in 
tmnsdecaline at 25°C for scattering angles .9 from 10 to 150°C, i.e. within 0.24 < qR, < 
2.70, M,,, = 5.5 .  lo6, Ri = 5.5 . lo-" cm'. 

The histogram method led to a bimodal character of g l ( t )  N S(q,t)  (Equation 71) at 
8 > 30"C, which can be attributed to the combination with the diffusional mode width 
D, = r1/q2 and the relaxation process rZ = Dzq2 + 2/rI according to Equation 64. 

Such an interpretation is confirmed by the independence of r1/q2 on q2 (Figure 3.42, 
line l ) ,  which enables the purely diffusional mode to be distinguished from the internal 

F, . io3 

2 -  

(rz - F I )  Figure 3.42. Diffusional mode l?,/ sin2 8 / 2  
(1) and intramolecular relaxation ( r 2  - rl) = 
2/.r, (2) as functions of sin2 8/2. Polystyrene 
solution in tmnsdecaline, T = 25"C, 
c = 2.15 . g/cm2 (Tsunashima et 
al., 1983a)[Reprinted with permission from Macrc- 
molecules 16 (1983) 584-589. Copyright @ 1983 
American Chemical Society] 

10-3 

motion relaxation of a macromolecule. The difference I', - f1 = 2/71 (Figure 3.42, curve 2) 
does not depend on 9 at small 8, but when 8 > 90°C (q2Ri > 5), it sharply rises, which 
suggests an increase in the contribution of the subsequent modes of internal mobility. By 
extrapolation c + 0, values 0," = 1.84 . s were obtained. 

The experimental value of TI is compared with the theoretical one (Tsunashima et al., 
cm2/s and 71 = 0.908 . 
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1083a; Gotlib et al., 1986) 

where B is a constant, different for different models of chain motion: B = 0.822 for Rause’s 
free-draining chain, B = 1.184 for a chain with the preliminary averaged Ozeen tensor 
corresponding to the hydrodynamic interaction among the chain segments, B = 0.574 for 
a chain, whose hydrodynamic interaction is considered by Ozeen’s tensor. Tsunashima et 
al. (1983a) reported B = 1.06f0.03, which is in good agreement with the value B = 1.184. 

In the mode Rq M 1, the first cumulant is 

l i l  = O,q2(1 + CRgq2 + . . .). (103) 
The quantity C depends on the topology, rigidity of a molecular chain, and polydis- 

persity, and is a weak function of the solvent quality and the method of allowing for the 
hydrodynamic interaction. 

Analysis of the dependence of C on the details of molecular structure still attracts 
research attention (Schmidt and Stockmayer, 1984; Stockmayer and Hammouda, 1984). 

In the mode Rq >> 1 and 1, << 1, for the first cumulant 

holds, where b depends on the method of allowing for the hydrodynamic interaction in a 
molecular chain. Eg. the complete calculation of Ozeen’s tensor leads to b = 1/16 while 
in the case of its preliminary averaging, b = 1/6n. Experimental data show a better 
fit to the more rough model with preliminary averaging, as in the case of relaxation 
time T~ (Equation 102). Different considerations exist on this subject (Stockmayer and 
Hammouda, 1984; Gotlib et al., 1986), and the question is still under study (Han and 
Akcasu, 1981; Tsunashima et al., 1983b; Balabanov et al., 1987). 

Inelastic light scattering was applied to study the behaviour of D and other character- 
istic functions near the spinodal (White et al., 1966; Chu, 1967, 1969, 1970; Lao and Chu, 
1975; Chu et al., 1980). 

The dynamic properties of macromolecules in the critical opalescence region have been 
found to share common properties with the binary systems of LMW compounds (Chu et 
al., 1980). 

The restriction of the hydrodynamic approximation in inelastic scattering near the 
spinodal was spoken of the final remarks to subsection 2.4.4. 

It should be specially emphasized that studying dynamic light scattering near the spin- 
odal in one-component liquids and solutions is a rather difficult problem, both theoret- 
ically and experimentally; now these problems are being investigated (Swinney, 1974). 
True, the method of dynamic scattering is not simple in the non-critical region as well, 
and specifies strict requirements to data processing and comparison with the correspond- 
ing theoretical approaches. The body of data concerning of the P+LMWL system from 
dynamic light scattering is rapidly growing. The report on dynamic scattering by poly- 
mers, colloids, and gels (St&panek and KoGk, 1984) contains 502 references to papers 
published before summer 1983. This stream of investigations must lead to substantially 
new information on the macromolecular properties in the P+LMWL system. 
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3.4. Random coil-globule transition 
The main properties of a macromolecule in solution are reflected in the model intro- 

ducing a chain of N Kuhn’s segments of length A each. As a result of Brownian motion, 
segments, far along the chain, may come close with their interaction to be described by a 
pair potential like that shown in Figures 1.40 or 2.34b. This kind of interaction is often 
called an excluded volume or long-range interaction. The quantity A characterizes 
the hindered rotation of monomeric units around valent bonds (short-range interactions) 
and, therefore, defines the degree of rigidity of a molecular chain. 

The pair interaction potential models the interaction among the molecules in any sub- 
stance and is a superposition of van der Waals’ (intermolecular) forccs of repulsion and 
attraction of different nature, namely, dipole, inductive, and disperse ones. 

The potential like that shown in Figures 1.40 and 2.34b is a premise for the first- 
kind phase transition to occur in substance (condensation-evaporation, crystallization- 
melting). 

The peculiarity of a macromolecule as a system containing a huge number of elements N 
(with a rather adequate extrapolation N + co) is in the structural elements being con- 
nected to a chain, which leads to characteristic features of the subsystem (and the system 
as a whole) but cannot suppress the basic properties due to the attraction and repulsion 
forces. 

For the macromolecule’s segments in LMWL medium, the interaction potential property 
changes (renormalizes) to consider the influence of LMWL molecules. 

It follows from the aforesaid that, when T > 4 (for definiteness, take systems with 
an UCST), the repulsion forces between chain-distant segments predominate over the 
attraction ones. 

For a system of a huge number of LMW component (disconnected segments), such a 
situation means the existence of vapour with a lower density in comparison with the liquid 
density. 

In the case of linked segments, the coil conformation with a low ( ~ 1 % )  segment density 
(concentration) in the coil is realized under these conditions. 

Extension of this analogy to the temperature range T < 0 leads to a conclusion of 
inevitable “condensation” of the linked segments to form a “drop” (globule) with its 
segment density exceeding that in a coil up to the density of the condensed polymer. 

When the total concentration of polymer substance in the system is small, the predomi- 
nance of the attraction forces may cause globulization of a coil (the coil-globule transition), 
i.e. to the existence of a dispersion of molecular globules (a “molecular latex”). 

A globule is the state of a polymer macromolecule which has a certain ther- 
modynamically probable space structure, i.e. where density A uctuations are 
small in comparison with the density itself, and their correlation radius is 
much less than the size of the whole macromolecule. On the contrary, a coil is 
the state of a macromolecule with no certain spatial structure. In this state, 
density fluctuations and density are of the same order of magnitude, and their 
correlation radius and the macromolecular size are also of the same order of 
magnitude (Lifshitz et al., 1979) 
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The definition of thcse two conformations (as two states of the subsystem) through 
density fluctuations leads to very important consequences to be applied to a development 
of adequate theoretical approaches (Lifshitz, 1968; Lifshitz et al., 1979). Eg. in the coil 
range, density (concentration) fluctuations of the segments are of importance for the state 
of the subsystem (and the system), which is similar to the state of a substance near con- 
tinuous phase transitions. It is significant that this analogy is realized for macromolecules 
in a good solvent, i.e. far from the critical state of the P+LMWL system. In view of 
this circumstance, development of theories for the P+LMWL systems in a given area of 
the state diagram is characterized by applying a wide set of ideas and methods of the 
phase transition theories in systems of different classes (see Chapters 4 and 5 ) .  On the 
other hand, the methods of the mean (self-consistent) field theories are quite effective to 
describe the globular state. 

Stockmayer (1960) was the first to draw attention to the possibility for a coil to globu- 
lize, with reference to Langmuir who predicted swinging of hydrocarbon chains in rarefied 
gas into a densely globule due to the intramolecular attraction forces. 

Moreover, Stockmayer has established that Flory’s equation 3.1-1 15 

a5 - a3 = c z  (1) 

has no real roots at z < z* M -0.14 while there are two roots at z > z*, of which the 
biggest and the smallest correspond to the conformation of a coil and to  a substantially 
shrunk coil (a globule), respectively. 

Quantitatively, this problem was approached by Ptitsyn and Eizner (1965), on the basis 
of virial expansion, and by Eizner (1969), in the mean field approximation with Flory’s 
theory. During motion of the configuration point, the change in the free energy of a coil 
is 

AF AF, AFei gD 3 
kT kT kT cy3 2 

- + - = - + -(..2 - 1) - 1 ~ ~ 3 ,  

where A F  is the difference between the free energies at the end and the beginning of the 
configuration point trajectory, g is a parameter of the chain model ( g  = 1 for a cloud of 
segments whose density diminishes from the centre according to the Gaussian distribution, 
g E 0.95 for a sphere uniformly filled with segments), 

where R M ,  
(Figure 3.43). 
yields Flory’s equation in the form 

are the partial molar volumes of a monomeric unit and of a LMWL molecule 

The extrema1 values of CY are found from the condition -7 = 0, that 
d AF 

d a  kl‘ 

CY5 - a3 = gD. (4) 

At the B point ( D  = 0), this equation has the only root Q = 1 (Figure 3.43, curve 1). 
When T > 0 ( D  > 0) ,  the summand 9 D / a 3  shifts the minimum to the right (Figure 3.43, 
curve 2). Within -0.186 < gD < 0, Equation 4 has two roots, with the biggest one cor- 
responding to the minimum of AF and the smallest to the maximum of AE’ (Figure 3.43, 
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1 

A F  
kT 
- 

0 

-1 
! 

Figure 3.43. Dependence of AFfkT (Equation 3.4-2) on CY according to Flory-Eizner’s 
theory for gD = 0 ( I ) ,  0.4 (2) ,  -0.05 ( 3 ) ,  -0.3 ( 4 )  (Eizner, 1969) 

curve 3). Curve 3 shows the existence of the metastable state of a coil (at a close to 1) and 
its stable state (at CY -+ 0) responding to the ultimately shrunk coil. When gD < -0.186, 
the metastable state is absent (Figure 3.43, curve 4). Tending of A F  -+ --03 at a t 0 
reflects neglect of the volume of segments. On introduction of a finite volume of seg- 
ments (Eizner, 1969), the character of the curve AF/kT (the existence of two minima, 
Figure 3.44) shows that the coil-globule transition is that of the first order (cf. section 1.5, 
Figure 1.17). This transition is more expressed for less flexible chains. 

As the concentration rises, the boundaries of the transition temperature range slightly 
shift towards the poor and good solvent for flexible and rigid chains (with a large segment 
A ) ,  respectively (Eizner, 1972). 

At the next step, de Gennes (1975) and Sanchez (1979) have considered ternary in- 
teractions in the state equation of a molecular chain and derived an equation (Sanchez, 
1979; Chu et al., 1987) 
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Figure 3.44. Dependence of AFIkT on a with re- 
gard for the volume of segments. N ( v ) 2 , ~ / &  = 
16, ( & M / K ) ~ / ~ ( V ~ M / A ~ )  = 0.0614, CY,;, = 
0.178, (3/4~)(18/5)~'~(~'/~~5)(1/2 - x , ) J N  = 
-0.1 (I), -0.15 (2), -0.2 ( 9 )  (Eizner, 1969) 

where v and w are the second and third virial coefficients (the binary and ternary cluster 
integrals), respectively (see the end of section 1.8, and subsection 3.1.1). 

For v, approximation 3.1-315 is accepted, so that near the 0 temperature, v - A3r. 
The parameter w is regarded to be temperature-independent. 

According to Equation 5,  a turns out to be proportional to  TIN'/^) when a << 1, 
i.e. R N N ' f 3 .  

Sun et al. (1980), Swislow et al. (1980) have modified Sanchez' (l97Y) formula and 
obtained 

-113 

AG 
2kT N(l - C Y ; )  = --Q2 R + ln(1- QR) t @ R ,  

7 @ R  - .  

where QR is the volume fraction of segments in a macromolecule with a radius of gyra- 
tion R and the number of segments N ,  AG is the change in the Gibbs potential. Expansion 
of the logarithmic term into a tweterrn series with replacing AG by AH - T AS leads to 

where 
-AH/k 

1 - AS/k 
e =  ( 7 )  

(cf. Equations 3.1-38,-39,-41), 

u G 1 - ASJk (8) 

(cf. Equation 3.139).  
Analysis of Equation 6 shows (Sanchez, 1969) that in the limiting case N -+ 00, the 

coil-globule transition is a continuous one with Tt = T, = 8 .  The first derivative of the 
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order parameter (here @ R )  with respect to tcmperature undergoes a second-order break 
of continuity (tending for m). For a finite chain, Tt < 6 ,  and aiPR/dT has a first-order 
break. 

While trying to observe the coil-globule transition experimentally, researchers faced a 
difficulty. On the one hand, high molecular mass provides a more significant effect of 
changes in the macromolecule sizes (Figure 3.45), but the temperature gap between the 

(YR 

Figure 3.45. The theoretical 
curves are plotted according to Equation 3.4-6 with o = 4, N = 9.06 . . M,,,, and 
M,,, = 2.9 . lo3 (f), 1.0 . lo5 (9, and 2.6 . lo7 (3) .  The experimental values (circles) 
relate to the polystyrene+cyclohexane system with M,,, = 2.9 . lo3 (1) (Nierlich et al., 
1978), M, = 2.6. lo7 (3)  (Sun et al., 1980) [Reprinted with permission from: S.-TSun, J.Nishio, 
GSwislow, T.Tanaka. J. Chem. Phys. 73 (1980) 5971-5975. Copyright @ 1980 American Institute of 
Physics] 

6 point and the binodal is narrow (see Figures 3.9 and 3.21), where the transition occurs. 
On the other hand, in solutions of LMW polymers, this range is wider, but the effect of 
changes in the macromolecular sizes is insignificant. 

Moreover, when macromolecules are relatively small, the choice of methods to determine 
their sizes is quite limited. 

Here, the neutron scattering method is of importance. The wavelength of neutron 
radiation is a few A, and, even for LMW polymers, the sizes of coils are larger than 
the wavelength of radiation; moreover, Irn - 11 << 1 is satisfied, so Rayleigh-Debye’s 
approximation can be applied, i.e. the standard Debye-Zimm data processing procedure, 
despite large relative sizes of scattering particles. The first attempts to observe the coil- 
globule transition were made with this very method on the polystyrene+cyclohexane 
system (Nierlich, 1978). 

Dependence of the coil swelling coefficient (YR on T/O. 
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Measurements of the temperature dependence of macromolecular sizes of a vcry high- 
molecular-weight polystyrene sample (M, = 44.4 - lo6) in cyclohexane within the range of 
polymer concentration 0.002. . .0.02 g/dl by means of classical light scattering (Slagowski 
et al., 1976) has revealed a significant change in the coil swelling coefficient a, though, as 
Swislow et al. (1980) think, the above authors observes the initial stage of the coil-globule 
transition only. 

The most convincing experimental demonstration of this transition was made on the 
systems polystyrene+cyclohexanc (Sun et al., 1980; Swislow et al., 1980) ( M ,  = 2.6. I O 7 ;  
M,/M,, = 1.3; 0.03 < c < 3pg/cm3) and PAA+water+acetone ( M ,  = 5 . .  . 6  . lo6; 
c < 10pg/cm3) (Nishio et al., 1979) by means of dynamic light scattering with measuring 
the diffusion coefficient and hydrodynamic radius of a coil RH (Equation 3.3-61), and the 
mean radius of gyration R in the approximation of Gaussian segment distribution in the 
chain. These results show good agreement of experimental data with the predictions of 
Sanchez-Tanaka's theory (Sanchez, 1979; Sun et al., 1980) (see Figure 3.45). 

A similar agrcemcnt was found in the polystyrene+dioctylphthalate system ( M ,  = 
2-106; M,/M, = 1.3; 1-10-4 < c < 8.10-* g/cm3) studied by means of dynamic and elastic 
light scattering (Sthpanek et al., 1982). The authors emphasize that high viscosity of the 
solvent hinders the process of macromolecular aggregation and expands the concentration 
range where the coil-globule transition is observed. In this connection, experiments on 
the PAA+water+acetone are remarkable (Kishio et al., 1979; Baranovskaya et al., 1982; 
Klenina and Lebedeva, 1987). 

Baranovskaya et al. (1982) have established a sharp (300-fold) decrease in the macro- 
molecule volume (while the molecular mass remains constant) in the branched PAA 
( M ,  = 30 . 106)+water+acetone system at the volume fraction of acetone y = 0.35 
by means of classical light scattering. 

These authors, as well as Nishio et al. (1979), do not report the boundary of the 
liquid-liquid phase separation region and the 6 composition in the PAA+water+acetone 
system. This might possibly be due to the system being "inclined" to oversaturation at 
high molecular masses, which hinders obtaining the boundary curve of phase separation 
(Klenina and Lebedeva, 1987). 

Special experiments (Klenina and Lebedeva, 1987) have shown a great irreproducibility 
of cloud points when PAA aqueous solutions are titrated with acetone and the invalidity 
of the standard solubility equation 3.2-55, which manifested in higher cloud points y 
for high-molecular PAA samples than for the low-molecular ones. Solutions of high- 
molecular fractions could not often be titrated, i.e. remained transparent at a sufficiently 
high content of acetone y + 1. However, in hours or days, the systems spontaneously 
grew turbid. These facts attest to the system being "inclined" to oversaturation owing to 
some kinetic difficulties in new phase particle formation. 

Klenina and Lebedeva (1987) has finally succeeded in finding a method (even two were 
proposed) of obtaining the equilibrium values of the cloud points in this system. The first 
method envisages adding acetone in excess amounts, waiting for phase separation, and 
performing back titration, i.e. turbidity was measured on adding water. The value of y at 
which IT t 0 was accepted as the boundary of the phase separation region. This method 
gave well-reproducible results. Moreover, such well-reproducible y were obtained with 
direct turbidimetric titration as well as with the back one provided that a small amount 



374 3.4. Random coil-globule transition 

of NaCl (5. < c, < 2 .  M) was added. 
Special experiments have established no influence of small amounts of NaCl on the 

location of the boundary of the phase separation region. The role of NaCl is in elim- 
ination of kinetic hindrances and letting new-phase particles form. The mechanism of 
such an action is not clear as yet, but work in this direction is promising. We note that 
with an equal volume of the second phase (an equal concentration of the precipitated 
polymer), the sizes of the new-phase particles have been found to depend on the NaCl 
concentration, which points to a new way of optimization of STT of polymer solutions 
(see subsection 3.2.3). 

< v21 < 
Klenina and Lebedeva (1987) determined the 8 composition of the water+acetone 

mixture by Elias’ method (see Equation 3.2-83): ye = 0.32, which was confirmed by light 
scattering (d2 = 0). 

Comparison of the value Ye = 0.32 and the location of the boundary curve of the phase 
separation region on a quasibinary section (Klenina and Lebedeva, 1987), on the one hand, 
and the experimental conditions in (Nishio et al., 1979; Baranovskaya et al., 1982), on the 
other hand, suggests that the coil-globule transition is observed not only when y > ye, 
but also when y exceeds the value y of the boundary curve, i.e. in the liquid-liquid phase 
separation region. A similar situation was found for the PAA+water+methanol system 
(S.Klenin et al., 198313; Klenina and Lebedeva, 1987) as well. 

Recall that the thermodynamically equilibrium coil-globule transition must occur be- 
tween the 8 temperature (the 8 composition) and the boundary curve of the phase sepa- 
ration region. Hence, it was observed (Nishio et al., 1979; Baranovskaya et al., 1982) in 
the metastable region of the liquid-liquid phase transition and with an essential oversat- 
uration with respect to the coil-globule transition. Technically, such a tendency of the 
system to oversaturation enhances the possibility to observe the coil-globule transition 
with respect to the concentration scale of polymer and precipitant. This may serve as an 
explanation why the most significant effects of the coil-globule transition have been found 
in systems with oversaturation (in a “foreign field”, see section 1.5). 

The coil-globule transition proceeding under conditions of oversaturation counts in 
favour of its being close to the first-order transition. 

Chu et al. (1987), Park et al. (1987) report the results of a study of the coil-globule 
transition in the systems polystyrene+cyclohexane, polystyrene+methylacetate, and 
polystyrene+methylacetate+l% antioxidant by both elastic and dynamic light scattering 
on a number of polymer samples. It has been established that in the polystyrene+cyclohexar 
system, the globular mode of molecular chains ( a ; l ~ ( M : / ~  = const ) settles within the 

range I T I M ; ~ ~  > 30 (up to N 50) with CZ;ITIM/~ N 20. 
The same polymer samples under the same experimental conditions showed no globular 

mode for the hydrodynamic radius RH. 
Within the range 0 < ITIM;/’ < 10, the 8 mode was revealed with a~ N 1, so the 

globular mode must exist within 10 < ITIM;/’ < 30. 
For the systems polystyrene+met hylacet ate and polystyrene+met hylacetate+ 1 % an- 

tioxidant, coil globulization was observed near both thc UCST (Figure 3.46a) and LCST 
(Figure 3.46b). The collapsed mode for the radius of gyration R in these systems was ob- 
served in a rather extended range of ~ T ( M : / ~ ,  while for the hydrodynamic radius RH, the 

On establishing the boundary of the phase separation region within 
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Figure 3.46. a us I T M ~ / ~  for the system polystyrene+methylacetate+l% antioxidant near 
the UCST (OLICST = 43°C) ( a )  and LCST ( ~ L C S T  = 114°C) ( b )  from elastic light scattering 
data ( ( Y R )  (a ,  curve 1 and b )  and dynamic light scattering data ( ( Y H )  (a ,  curve 2). The 
straight lines have slopes -0.3160.03 ( a )  and -0.32f0.02 ( b )  (Chu et al., 1987)[kprinted 
with permission from Macromoleculcs 20 (1987) 2833-2840. Copyright @ 1987 American Chemical 
Society] 

globular state in the polystyrene+methylacetate systems was not observed; in the system 
polystyrene+methylacetate+l% antioxidant, chains nearly reach the globular mode near 
the UCST (see Figure 3.4613). 

Strictly speaking, the authors have revealed two modes of the globular state, namely, 
one that is more crumbly and one that is more compact. The second mode is, for some 
unknown reason, named metastable by the authors, though they drove the configuration 
point along one direction only, towards the poorer solvent. It would be more reasonable 
to classify the crumbly globular state with the metastable states, according to the above 
observations. 

Lifshitz (1968) has developed a new formalism of polymer theory, based on the mathe- 
matical analogy between the state equation of a molecular coil with Schrodinger's equation 
of a quantum mechanical particle placed in an external potential field. This analogy was 
mentioned in section 3.1 when speaking of Edwards' solution of the conformational prob- 
lem of a molecular coil in a good solvent with the help of the solutions of the diffusion 
equations for Green's functions in the self-consistent field approximation. 

The coil conformation in a good solvent is characterized by a low density of segments, 
and fluctuations of segment density (as the order parameter of the system) must play 
a large role. Indeed, in the self-consistent field approximation, Edwards, actually, has 
arrived at results similar to Flory's approximation (see Equation 3.1-216). 

Not so with the globular state of a molecular chain where segment density fluctuations 
must not play any role. Therefore, the self-consistent field method can be applied in the 
globular state region on a more solid basis. 

Using the Schrodinger stationary equation formalism in the SCF approximation. a 
number of investigations of the globular state of macromolecules have been carried out 
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(Lifshitz, 1968; Lifshitz and Grosberg, 1973, 1975; Lifshitz et al., 1978, 1979; Grosberg, 
1979, 1980abc; Kuznetsov and Khokhlov, 1981; Grosberg and Khokhlov, 1989). 

This problem is considered by Khokhlov (1985) in detail. 
In the bulk approximation, i.e. neglecting any surface effects, an expression has been 

obtained for the numerical concentration of chain units in a globule 

B no = -- 
2c (9) 

where B and C are the second and third virial coefficients in the expansion of the osmotic 
pressure T of a “disconnected segments’’ solution 

n = k T p ( l + p B + p 2 C + - - . ) ,  (10) 

where p is the number of macromolecules per unit volume. 
To correct for segments being linked, the virial coefficients are renormalized so that they 

should relate to longer chain fragments than A. Khokhlov (1985) calls such fragments 
“quasimonomers” while “monomers” are chain fragments of length A .  Recall that the 
function h(z)  reflects segments being linked in a chain in the classical theories of polymer 
solutions (see Equation 3.1-146). 

Taking 

C N A  

M 
p = -  

into account and comparing the virial expansions in Equations 1.3-37 and 10, we get a 
relationship between the virial coefficients in these expansions 

i.e. (cf. Equation 1.3-40) 

P R = -, 
2 

which coincides with the definitions of /3 and B through the pair interaction potential 
(see Equation 3.1-120 and formula 5.9 in (Khokhlov, 1985)). 

The same approximation gives the difference between the free energies of a globule and 
an unperturbed coil without excluded-volume effects 

where N is the number of units in a macromolecule, and the globule radius is 
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It follows from Equation 15 that the condition AF = 0 corresponds to the coil-globule 
transition, i.e. the transition temperature Tt coincides with the l9 temperature, where 
dz = 0 and B = 0. 

Near the l9 temperature, the virial coefficients are approximated as 

T-l9 
T 

B(T)  E b- = b ~ ,  

C ( T )  = C(0) > 0, (18) 

where b and C(6) are constants. 
In view of Equation 17, we obtain from Equation 15 

A F  N - T ~ ,  (19) 

i.e. the coil-globule transition turns out to be a continuous one (one minimum of the 
potential, see section 1.5). 

Consideration of the surface effects gives (Khokhlov, 1985) 

where 

Qualitative analysis of Equation 20 does not change the character of phase transition 
and points to the existence of pretransition swelling phenomena when a macromolecule 
is in the globular phase, so that at the transition point, the local unit concentration in a 
globule is already sufficiently low. 

More rigorous analysis of simulations based on the globule theory (Grosberg and Kuz- 
netsov, 1984ab) shows the validity of Equation 19 away from the transition point (at 
q 5 -200) while near this point 

which is characteristic for a first-order phase transition. 
Here 

1.e. 

q N r and rt N qt = -10.4. 

The condition of globulization A F  < 0 is satisfied when 

--oc) < q < qt 11 -10.4. 
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The radial distribution of quasimonomer density in a globule strongly depends on q and 
varies from a sharp step at q -+ --oo to a fuzzy profile at q = qt = -10.4. 

It follows from the theory that the q-dependence of the coil expansion factor a = 

(R") '/' / (g "' is defined by one parameter only, namely, &?/A3, whose decrease is 
accompanied by a sharp change in the segment density profile. For comparison with 
experiment, the theory envisages two parameters to be determined from the best fit to 
the experimental data: &?/A3 and ( N / M ) 1 / 2 b A 3  or q/rM1I2. 

Figure 3.47. Dependence of the 
macromolecular expansion fac- 
tor on the relative distance from 
the 0 point rl = (T  - 0,)/01 
(e1 = 308.5 K) for polystyrene 
in cyclohexane ( 1 )  (Sun et al., 
1980) [Reprinted with permission 
from: S.-T.Sun, J.Nishio, G.Swislow, 
T.Tanaka. J. Chem. Phys. 73 
(1980) 5971-5975. Copyright @ 
1980 American Institute of Physics] 
and rz = (T  - OZ) /02  (0, = 
295.1 K) for polystyrene in 
dioctylphthalate ( 2 )  (Stkpanek 
et al., 1982) [Reprinted with per- 
mission from: Macromolecules 15 
(1982) 1214. Copyright @ Ameri- 
can Chemical Society], and the cor- 

0.2 responding theoretical curves 
with the abscissa q (Grosberg 
and Kuznetsov, 198413) 

0.41 -TJ , 

-40 -10 0 

-0.03 -0.02 -0.01 0 71  
I I I I 

-0.3 -0.2 -0.1 0 7 2  

Presented in Figure 3.47 are experimental values of the coil expansion factor of polystyrene 
macromolecules ( M ,  = 2.6.10') in cyclohexane (Sun et al., 1980) and polystyrene ( M ,  = 
2.106) in dioctylphthalate (Stkpanek et al., 1982). Curves 1 and 2 are drawn for &?/A3 N 

0.12; (N/LW)'/~~/A~ N 0.029; (q / rM' l2  = 0.33) (to the polystyrene+cyclohexane system) 
and for &?/A3 N 0.09; (N/M)' / 'b /A3 N 0.009; (q/rM'/'  N 0.12) (to the polystyrene+di- 
octylphthalate system). As can be seen, for the chosen values of &?/A3, there is good 
agreement between theory and experiment. 

Due to the predominance of the attraction forces among polymer segments at T < 19, 
of special interest is the question of globule stability (Lifshitz, 1968; Lifshitz et al., 1979) 
within the framework of the general problem of stability (more precisely, instability) of 
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colloidal systems (Shchukin et al., 1982). 
Globule coagulation leads to a gain in free energy due to a decrease in the globule- 

solvent i n t e r f a  area (- aRil) ,  but it is accompanied by a loss in the entropy term of 
free energy, N kT ln(nd/c) on a macromolecular basis, where ngl/c is the volume fraction 
of globules in the system. On this basis, Lifshitz et al. (1979) have obtained the globule 
stability conditions as 

or, including the temperature dependence of 0 and Equations 16 and 17, 

where v is the volume of a segment, c is the average concentration of segments in solution. 
Similar mnsiderations to establish the stability conditions of general-type colloidal sys- 

tems have been made by Rebinder (1958), Shchukin and Rebinder (1958), Pertsov et al. 
(1964), Rebinder and Fux (1973), Shchukin et al. (1982). 

In this connection, it seems reasonable to refer once again to the studies on the systems 
PAA+water+acetone and PAA+water+methanol (Nishio et al., 1979; Baranovskaya et 
al., 1982; S.Klenin et al., 198313; Klenina and Lebedeva, 1987). 

The possibility itself to study globules under conditions of substantial oversaturation 
attests to their sufficiently high kinetic stability. The invariance of globule size (lack 
of aggregation) was observed up to y M 0.75 (Nishio et al., 1973) (ya M 0.32.. .0.33) 
(Klenina and Lebedeva, 1987). 

In the PAA+water+methanol system, single globules were observed at a relatively 
high polymer concentration (c 5 0.01 g/dl) (S.Klenin et al., 1983b). 

Globule stability is obviously evidenced by a delay in phase separation during acetone 
titration of aqueous solutions of PAA high-molecular samples (c  M 2.. . 6  . g/dl) up 
to y 0.8.. .0.9. However, as mentioned earlier, long storage of precipitant-rich systems 
makes them more and more turbid, i.e. globule dispersion, as a typical colloidal system, 
is characterized by kinetic (aggregative) stability rather than the thermodynamic one. 
It should be noted that the stability of dispersion macromolecular globules has not been 
subjected to special experiments. 

The literature reports failure in experimental observation of the coil-globule transition 
as well. Eg. Bauer and Ullman (1980) measured RH of polystyrene macromolecules in 
cyclohexane ( M  = 5 . lo". .4.4 . lo7 with a narrow MWD, within a concentration range 
0.150. . . 0.001%) by means of photon correlation spectroscopy (dynamic light scattering). 
When T < 8, RH linearly diminishes with lowering temperature, and no coil-globule 
transition was detected. 

In all the above cases, the coil-globule transition proceeds in a very dilute polymer 
solution below the 8 point when attraction predominates with pair contacts of segments, 
but repulsion remains at ternary contacts: 13 < 0, C > 0 (Equations 17, 18). 

Another kind of globulization must be observed when repulsion predominates with pair 
contacts (B > O),  and attraction is due to higher-multiple contacts (C < 0) (Grosberg 
and Panchenko, 1987). Such a situation may occur in rigid-chain polymers (Kuznetsov 
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and Khokhlov, 1981; Khokhlov and Semyonov, 1985), macromolecules with mesogeneous 
groups (Grosberg, 1980c), and in heteropolymers. 

The structure of globule organization in this case comprises two phase regions, namely, 
a solid core and fluctuating looplike fragments forming a secalled globule trimming 
(Lifshitz, 1968; Lifshitz and Grosberg, 1973, 1975; Kuznetsov and Khokhlov, 1981). 

The vapour pressure P,. over a liquid drop of a radius r (the system of “disconnected 
segments”) is known to exceed that over a flat surface P, of the same liquid, which is 
reflected in Thomson’s (Kelvin’s) equation 

P, 2uv In- = - 
P, RTr’ 

where Q is the surface tension coefficient at the liquid-vapour interface, V is the molar 
volume. 

A globule with a trimming is an analogue of such a situation in the system of linked 
segments (in a macromolecule), as longitudinal links do not allow segments to leave the 
globule (drop) at a long distance. 

Grosberg and Panchenko (1987) present a state diagram of a molecular chain where 
the regions of the existence of coils and globules with different trimmings are marked. 

Unlikely the previous calculations of AF of the coil-globule transition, where the Gaus- 
sian distribution of segments in a macromolecule was assumed (eg. see Equation 2), Rir- 
shtein and Pryamitsyn (1987) have applied Fixman’s (1962) distribution function d i d  
for the range R << Re 

The increment of the free energy of mixing AF, was approximated by a virial expansion 

where BI, is the kth virial coefficient of the segment interactions. 
If we confine ourselves to two virial coefficients 

B3 3 c > 0, 

then for r < 0, a < 1 the authors get 

where y generalizes the numerical factor in the exponent of Equation 29. 
Minimization of AF with respect to (Y yields an equation 

(y 3 -cy=- 3N1f2br  +-(L-l) c 
2yA3 2A6y a3 
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Figure 3.48. Dcpcndence of the free energy increment AF and coil expansion factor (Y on 
the parameter rB*N112, where B* = b/A3y at C = c/2A6y = 1 (I), lo-' ( 2 ) ,  and 
(3)  (Birshtein and Pryamitsyn, 1987) 

The right-hand sides of Equations 33 and 34 are represented in such a form that AF = 0 
and a = 1 at r = 0. 

In Figure 3.48, the dependences AF = f (7)  (Equation 33) and CY = f ( ~ )  (Equation 34) 
are plotted for three values of C = c/2A6y. It is seen that the temperature region 
of significant AF and (Y variations becomes narrower as N1I2b/A3 increases and C I A 6  

diminishes. 
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To analyze the behaviour of a, Birshtein and Pryamitsyn (1987) represent Equation 34 
as 

-@1(Q) = -%(BT) + @3(% C), (35) 

where 

B = bN'/2/A3-y, C = c/2A6-yy. 

At T = 0, (Y = 1, (91 = (92 = (93 = 0. 
At r < 0, Q < 1, @ 1 , @ 2 , @ 3  > 0. 
The function (91 is associated with the entropy losses of AF,t on shrinking the chain; 

and (92 characterize the t w e  (attraction) and three-particle (repulsion) interactions 
among the segments. 

and @3 infinitely rise while (91 goes through a 
maximum and then vanishes at cy + 0. The possibility to realize two modes with different 
@ I ,  @2, and (93 ratios follows. 

At mode I, 171 < 1701, (91 2 9 2  >> 3 3 ,  i.e. chain compression due to the pair interactions 
is hindered by entropy obstacles to compression. At mode 11, (71 > !TO(,  (92 (93 >> Q1, 

i.e. coil compression is hindered by threeparticle interactions among the segments. The 
crossover point ro is defined by the condition a1 = (93. The characteristic of a globular 
structure at mode I1 results from the equality Q2 = @3, i.e. 

As 1r1 increases and Q decreases, 

From the condition (91 N (93 and Equations 36 and 38, the characteristic quantities of 
the crossover result : 

Thus, these quantities are defined by two combined parameters B and C with z = Br, 
where z is the excluded volume parameter from the twmparameter theory. As is seen 
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from Equations 40 and 42, ro - AT - E’, i.e. as N and b/A3 increases, the crossover 
points shifts to  the 8 point, and the transition becomes more sharp. 

The ternary interaction parameter C, which does not manifest itself in the range r > 0, 
plays a significant role in the coil-globule transition. It follows from Equations 34 and 35 
that at C N 1, the values of ip3 are commensurable with even at a - 1 ( c y ( r 0 )  - 1). 
As C decreases, the limiting contraction degree l/a rises and a(ro) diminishes. As a 
result, the dependence a(r )  becomes steeper, the crossover point ro approaches the 6’ 
point ( r  = 0), and the range AT becomes narrower (see Equations 40 and 42). In the 
case of C 5 there emerges a narrow region where cz jumps on the curves a = f ( B r )  
(see Figure 3.48). It is seen from Equation 37 that this jump relates to the nonmonotonic 
character of @ I .  

The contraction effect reaches a maximum in the absence of ternary interactions (C -+ 
0 ) ,  diminishes with increase of C, and vanishes at C > 

The largest changes of (Y = f ( B r )  are observed at I T (  < 1~01, i.e. in mode I. 
The results of these considerations agree, in general, with the bulk approximation of 

Lifshitz-Khokhlov-Grosberg’s theory (6. Equations 37 and 38 with Equations 15 and 16), 
but there are differences in details. In particular, according to  Birshtein-Pryamitsyn’s 
(1987) theory, the coil-globule transition remains continuous to considerably less values 
of c. 

To be compared with experimental data, Equation 34 is written as 

CY3 - CY 7- 
-- - B- + c. 
(y-”l a - 3  -1  (43) 

Indeed, if experimental results (Sun et al., 1980; Stkpanek et al., 1982) are plotted in 
the coordinates 

(y3 - a  TN”’ 
*-3-  1 cy-3- 1 us -, (44) 

straight lines appear, whose slope is defined by the parameter B* = b/yA3 while their 
intercept at the ordinate axis is by C = c/2yA6. 

In the case of the polystyrene+cyclohexane system (Sun et al., 1980), plotting 44 leads 
to values R* N 0.56, C 21 0.03 (Birshtein and Pryamitsyn, 1987); in the case of the 
polystyrene+dioctylphthalate system (Sthpanek et al., 1982), B* N 0.15, C E 0.008. 

Thus, the value of C in these systems is rather small to  provide a sharp coil-globule 
transition. The value of C for polystyrene in different solvents varies with B*, so that 
B*/C ratio remains approximately invariant. 

Within the framework of Birshtein-Pryamitsyn’s theory, experimental results corre- 
spond to a continuous coil-globule transition at the found values of C, while process- 
ing the same experimental data according to the theoretical relationships (Grosberg and 
Khokhlov, 1984ab) (see Figure 3.47) assumes a jump in the chain sizes. 

Data processing on the coil-globule transition within the framework of the existing 
theories (see also the end of section 5.5)  does obviously provide a real way to evaluate 
ternary interactions in the P+LMWL systems. 

Attempts are described in the literature to extend the specific features of the coil-globule 
transition to a number of problems of polymer material science up to the description how 
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films are formed from solutions in solvents of different thermodynamic quality, to explain 
the mechanism of plastification, etc. 

According to Matveyev and Askadski (1986), when two globules with trimmings collide, 
the trimmings overlap to form a “coupled globule”. If the size of such a globule is commen- 
surable with those of the source globules, “there emerges an element of supramolecular 
structure (SMP) of the ellipsoid type”. 

When the formed SMP interact with each other or with macromolecular glob- 
ules, new binding globules arise that lead to the formation of superrnacre 
molecules built of the globule macromolecules (Matveyev and Askadski, 1986). 

Thus, in their scheme of polymer material formation, the authors discuss a part of 
the state diagram of amorphous separation, very well apart from the actual situation 
during film (and other things) formation, and this part is treated as a certain universal 
key regardless of the state diagram of a specific system. Then the authors “talk a lot 
of kinetics” of the process of morphological structures getting complex.. .up to. . . (see 
above). In this “verbal portrait” of kinetics, there is no place for such a parameter as 
“time”. What does kinetics without time mean? In particular, from what it follows 
that the contact time at the collision of two trimmed globules suffices to form a binding 
globule, even if the possibility of this act is granted? 

Meanwhile, the above discussion of macromolecule globulization under conditions of 
deep oversaturation implied a relative stability of globules, which enables them to exist 
days and weeks colliding billions and billions times. Finally, why, “due to the diffusion mo- 
tion”, do the structural elements arrange along the same axis to form “elongated SMPs”? 
Moreover, fibrillar to justify such an exotic mechanism of structural element formation, 
the rejection of the classical, elaborated, and justified mechanism of growth (coagulation 
by Smolukhovski, Ostwald’s ripening, in particular, in Lifshitz-Slyozov’s modification, 
etc.) needs a motivation. 

Thus, the extension of the specific features of the coil-globule transition to the problems 
of film formation and plastification seems incorrect. 

The most success of the theory of the coil-globule transition should be expected in 
investigative methods involving very dilute polymer solutions. 

Besides, the theory of globular state and the coil-globule transition finds use in under- 
standing the functional properties of protein molecules and in analyzing their role at the 
early prebiological evolution of living matter (Grosberg and Shakhnovich, 1986). 
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3.5. Phase equilibrium in the crosslinked polymer + 
low-molecular-weight liquid system 

If, during polymerization, a certain amount of a multifunctional monomer (a crosslink- 
ing agent) is added to the system, a crosslinked (network) polymer appears. Many 
linear polymers are crosslinked by vulcanization and radiation. Polymer microcrystallites 
can serve as linking knots as well. 

Regardless of the way of obtaining, the system network polymer (NP)+LMWL, where 
the polymer forms a spatial network-crosslinked structure, will also be called a gel. 

Such systems play a large role in a diversity of technological processes of polymer 
production and exploitation (Papkov, 1974). A polymer is often crosslinked to give high- 
elastic properties to the polymer-based article. Sometimes, conversely, spontaneously 
arisen crosslinkings hinder processing or exploitation of polymer solutions. 

Great attention is paid to gelation in preparing foodstuffs. Besides traditional fruit 
jellies, aspic jelly, fish jelly, and calves' foot jelly, the network polymer structure with a 
liquid component has been used to create novel food products (protein caviar, artificial 
meat, etc.) (Tolstoguzov, 1978; Elias, 1987). 

Making contact lenses from gels to correct myopia, long sight, and other defects of 
eye refraction is turning into a special branch of medical industry (Wichterle and Lim, 
1960). We note in passing that both the eye crystalline lens and the vitreous body are 
natural gels. Disturbances in their physiologically normal structure are associated with 
serious eye illnesses. The dimness of the crystalline lens (cataract) is due to'a process, 
during which the degree of its heterogeneity increases, which, in turn, is owing to phase 
separation (microsyneresis, crystallization ?). Contraction of the vitreous body may lead 
to peeling of the retina (Tanaka et al., 1973). 

These examples attest to the importance of studying NP+LMWL systems, in particular, 
phase separation processes in such systems. 

3.5.1. High-elastic properties of gels 
Elastic properties, characteristic for an isotropic solid polymer body, are a specific 

feature of gels. There exist and find practical use anisotropic gels resembling the structure 
of liquid crystals, but this subsection will discuss isotropic gels only. 

Under external forces, a solid body is deformed, i.e. changes its shape and/or volume. 
The location of every point of the body is defined by a radius-vector r'with its components 
2 1  = 2, x2 = y, 23 = z.  

As a result of deformation, the radius-vector takes some value F', so that 

I 
(1) 

- 7 1 -  u = r - r or u; = xi - 2;. 

The quantity ii is called a deformation vector (or a shift vector). The specifying 
of this vector as a function of xi defines the body deformation completely. In the general 
case, deformation is characterized by a deformation tensor with its components (in the 
case of small deformations) 
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(Feynman et al., 1964; Landau and Lifshitz, 1987). 

In an undeformed body, the location of its molecules corresponds to the 
state of its thermal equilibrium. A11 its parts are in mechanical equilibrium 
with each other. This means that if a certain space inside the body is selected, 
the resultant force from the other parts is equal to zero. 

Under deformation, the location of molecules changes, and the body leaves 
the initial equilibrium state. As a result, forces arise trying to return the 
body to its equilibrium state. These internal forces arising from deformation 
are called internal stresses. If the body is not deformed, there are no internal 
stresses in it (Landau and Lifshitz, 1987). 

Set aside a certain space in the body with a resultant force on it 

F' denoting the force acting on a unit volume. 
Each of the three components J E dV of the resultant force (concerning all the internal 

stresses) can be transformed to a surface integral (Landau and Lifshitz, 1987). It fol- 
lows from the general field theory that, in this case, the components of Fi must be the 
divergences of a certain second-rank tensor, i.e. 

The tensor cr;k is called a stress tensor. 
The component is the ith component of the force acting on a unit surface perpen- 

dicular to the z k  axis. Thus, a unit surface, perpendicular to the x axis, is affected by a 
normal (with respect to it) (directed along the x axis) force a,, and tangential (directed 
along the y and z axes) forces a,, and a=,. 

At equilibrium, the forces of internal stresses are mutually compensated for in every 
space element, and F; = 0, i.e. 

which is the equilibrium equation of a deformed body. 
For such a body, the Gibbs fundamental equation 1.1.1-1 takes the form 

( 5 )  dU = T dS + U ; k  dU;k, 

and, correspondingly (cf. Equations 1.1.1-20 and 1.1.1-26), 

dF = -S dT 4- d u i k ,  

whence 
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Uik = - 

Hereinafter. summation over indices ‘l’, ‘2’, ‘3’ is assumed in the right-hand sides. 
The free energy of a deformed body is 

387 

(9) 

The constants X and p axe called Lamb's coefficients. 
The relative volume variation under deformation is defined by the sum of the diagonal 

components 

AV = u i i .  (11) 

Ileformations, when the body’s volume remains constant and only its shape changes, 
are called shear  (Figure 3.49a). Deformations, when the volume rather than the shape, 
changes are called uniform compression (Figure 3.49b). The tensor of such a deforma- 
tion is expressed through 

u i k  = const . b $ k .  (12) 

Any deformation can be represented by the sum of deformations of simple shear and 
uniform compression 

Then, the first term in the right-hand side gives a simple shear as the sum of its diagonal 
terms is equal to zero (Si; = 3) while the second term defines uniform compression. 

If the sums of the squared components of the first and second terms in the right-hand 
side (Equation 13) are chosen as two independent second-power scalars, the free energy is 

where A’ and p are called a compressional modulus and a shear  modulus, respec- 
tively. 

Comparison between Equations 14 and 8 expresses the stress tensor through the defor- 
mation tensor 

(15) 
1 

g i k  = I (Ul I6 ik  + 2P ( u i k  - 5 h i k u l l )  . 

It follows, in particular, that 

~ i i  = ~ K u , , .  (16) 

If u i i  from F4uation 16 is substituted to Equation 15 and Equation 15 is resolved with 
respect to u i k ,  the deformation tensor will be expressed through the stress tensor 
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Figure 3.49. Different kinds of a cube’s deformation (the edge Loz = Lor = Loz): a simple 
shear ( a ) ,  a uniform compression ( b ) ,  a one-side tension ( c ) .  A one-side compression of a 
cylinder (4. To the left - at the initial instant of stress application ( t  = 0), to the right 
- at the final state ( t  -+ 00) 
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Upon uniform compression of a body (Figure 3.49b), the stress tensor is 

P 
K 

ui* = --. 
As u;; and P are small quantities, this equation can be written in the differential form 

According to Equation 17, the deformation tensor U;k is a h e a r  function of the stress 
tensor C7ik (Hooke’s law). 

On s imple  tens ion  of a body (a pivot), the forces are applied to the pivot’s ends and 
stretch them towards different directions (eg. along the axis 2). In this case, uzz = P ,  
and it follows from Equation 17 that 

(22) 

The component u,, defines the relative elongation of the pivot along the axis z. The 
coefficient by P is called a tension coefficient while the inverse quantity is referred to 
as a tension modulus (or the Young modulus) E 

P 
uzz = - E’  

where 

9Kp E=- 
3 K + p L ’  

The ratio of the lateral compression (u,, or uyy) to the longitudinal tension is called 
the Poisson coefficient 

(25) u x x  

‘112.2 

_ -  - -u, 

with 
1 3 K - 2 ~  

(T=- . -  

2 3 K + p  

The relative increase in the pivot’s volume upon tension (Landau and Lifshitz, 1987) is 

P 
Uii = 2’ 
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and the free energy is 

The deformation moduli of a body are related to each other by the following equations 

E 
3(1 - 2 ~ ) ’  

K =  

E p = -  
2(1 + 0)’ 

(1 - 2a)(l  + 0)‘ 

Ea 
A =  

Gibbs fundamental equation 1.1.1-1 for a pivot upon tension can be written as 

dU = T d S  - P d V  + f dL, 

.f being the applied force, L the length of the sample. 
Correspondingly, 

dF = -PdV - SdT + f dL, 

whence it follows (cf. Equation 1.1.1-27.. .29) khat 

f = (g) 
T,V 

or, as F = U - TS,  

(32) 

(33) 

(34) 

There exist a wide range of materials (metals, minerals, and other LMW compounds) 
for which the energy component of the force in Equation 35 predominates over the entropy 
component while for polymers the situation is vice versa. 

For the model of a network with an equal length of the network chains, the Gaussian 
character of segment distribution between the crosslinks, and the affinity principle (sim- 
ilarity of geometry changes for a network chain and for the whole sample), the entropy 
change of the sample under deformation is expressed by (Flory, 1950, 1953; Volkenshtein, 
1975; Bartenev and Zelenev, 1983; Khokhlov, 1985) 

(36) 
ve R 

2 
AS,[ = -- [A: + A i  + A i  - 3 - ln(X1X2X,)] , 

where v, is the effective number of network chains (crosslinked units) (moles), Xi is the 
relative deformation of the sample along the three coordinate axes (X i  = &/Lo;); LO; 
and Li are the sample’s lengths before and after deformation. The axes are denoted by 
figures: I, y, z + 1, 2, 3 (see Figure 3.49). The functionality of a branch point , or 
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functionality of the crosslinks f ,  i.e. the number of chains originating from a junction 
is equal to f = 4 in this case. 

From the condition of volume conservation 

X1XzX3 = 1. ( 3 7 )  

In the particular case of simple tension along the axis z, 

-112 
A3 =x,  A1 = x z  = A , 

2 ASe, = -fly, (A2 + x - 3) 
2 

For ideal rubbers and gels 

and Equation 35 is written as 

T,V 

Applying Equation 39, we have 

T,V = -Rue (A - $,) . 

(39) 

(43) 

Substituting this into Equation 41 and dividing it by the cross-section of the sample 
( % / L o  or V/LO), we obtain for stress 

RTv, 
V 

(43) 

In the case of a simple shear (see Figure 3.49a), A1 = A, A2 = l / A ,  A3 = 1, and the 
entropy change per unit volume is 

1 
AS.+, = -* (Az + - 2 )  . 

2 v  
(44) 

The simple shear deformation y (see Figure 3.49a) is equivalent to tension along the 
axis s(l), XI = X and compression along the axis y(2), X = -1/X (Feynman et al., 1964), 
1.e. 

1 
x y = A - - ,  (45) 

then 
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For shear stress, 
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is valid (Treloar, 1958) and, in view of Equation 46, 

RTu, 
T$ = - v y* 

Thus, 

where 
RTu, p = -  

V 
is the shear modulus of the network. 

For the NP+LMWL system (Flory, 1953) where a network sample with a volume & 
swells to a volume V ,  the polymer volume concentration is expressed as v2 = &/V. 
Volume is assumed not to change under deformation, and 

Ai's correspond to changes in the sample's sizes at deformation and swelling. Besides, for 
isotropic swelling, 

and, in view of Equation 51, 

1 

v2 

x z  = A3 = (v2A1)-'/2 = ~ 

~ 1 1 2  113' 

Substitution of the obtained A; to Equation 36 yields 

Then, Equation 43 with Lo replaced by LO,,, gives for a gel (Flory, 1953) 

RTu, 

(54) 
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Experiments confirm, in general, the above relationships for polymer network deforma- 
tions, which show a significant difference from the elastic behaviour of LMW compound 
samples (Treloar, 1970). In particular, for polymer networks, Hooke’s law is valid for 
shear only (Equation 49) and fails upon one-axis tension (Equation 43) and under other 
kinds of deformation. 

By virtue of the body’s volume being invariant under deformation, Poisson’s coefficient 
(Equation 25) for dry networks o w 0.5, and (see Equation 30) the Young modulus is 

E = 3p. (58)  

It is remarkable that both tension (Equation 43) and shear (Equation 49) are defined 
by the same modulus, which can be treated as the universal modulus of polymer network 
elasticity, proportional to temperature. 

The ability of polymer networks for large reversible deformations under a small load 
is due to a small value of the modulus. For example, for crosslinked rubber, the Young 
modulus is E N 0.8 kG/mm2 while for steel it is E N 2 .  lo4 kG/mm2 (Sedov, 1983). 

At the same time, the compressional modulus K of polymer networks is of the same 
order of magnitude than that of water (Treloar, 1970). This is associated with the fact 
that compressibility is due to the manifestation of intermolecular forces which are not 
specific for polymers; compressibility is by no means related to  the network properties 
which manifest themselves under deformation. 

Thus, polymer networks as well as LMW compounds are classified with practically 
incompressible matter, and the variations of their volume on tension and other kinds of 
deformation can be neglected (Treloar, 1970). 

When an elastic wave (sound) with a wavelength substantially shorter that the sam- 
ple’s sizes propagates, a longitudinal modulus M appears, which may be imagined as 
the action of tension or compression of a thin flat infinite sample along the other axes 
(Ferry, 1961) (Figure 3.49d,3). In this case, both the shape and volume of the sample 
change. The stress/deformation ratio u/y gives the longitudinal modulus M related to 
the compressional and shear moduliis by 

(59) 
4 
3 

M =  K + - p .  

For polymer networks, h‘ >> p,  and A4 reflects, on the whole, compressibility. Indeed, 
under deformation of polymer networks, the enerm component partially shows itself, 
some other deviations from the Gaussian network model have also been discussed. These 
phenomena are discussed in the special literature (Birshtein and Ptitsyn, 1964; DuSek 
and Prins, 1969). 

3.5.2. State equations 

the system AG changes, the variation comprising two parts 
If a network polymer is brought into a contact with a LMWL, the Gibbs potential in 

AG = AG, + AG,, (60) 

(cf. Equation 3.1-111). 
The first summand is the change of G due to the mixing of LMWL with polymer 

(see Equation 3.1-31), while the second one AG,l reflects the change in the network 
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entropy under molecular branch deformation due to LMWL molecules penetrating into 
the polymer network as well as due to an applied external stress. Neglecting the energy 
component, 

AG,r = -T AS,,, (61) 

(62) 

and, in view of Equation 36, 

u RT 
2 AG,, = -!-- [A; + X i  + - 3 - 1n(X1X2X3)] . 

This equation holds true for sparse networks (with a low concentration of crosslinks). 
In the absence of the external forces, swelling proceeds isotropically, and 

In the absence of the external stress, the change of the LMWL's chemical potential in 
a swollen gel is expressed (Flory, 1953) through 

for a tetrafunctional network with f = 4. In a more general case, 

v2) + v2 + x,v; + vo (vi/' - ?)] . (65)  

The absence of the multiplier (1 - z- ' )  before v2 in Equations 64 and 65 in comparison 
with Equation 3.1-50 is owing to the fact that the network polymer should be regarded 
as a giant macromolecule with z + m. 

The component concentrations in gel are often expressed in so-called ground mole 
fractions 

mt - 

(66) x; = ml Mi m 2 ,  x; = 1 -xi, -+- 
Ml M2 

where ml and MI are the overall mass and molecular weights of the LMWL, m2 is the 
weight of the polymer, MZ is the molar weight of polymer chains between crosslinks. 
The temperature independence of xT is their advantage. MZ is often used to express the 
effective number of chains per unit volume in a dry polymer 

In this case, with certain detalixation of the model, 
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where z is the number of lattice sites in one polymer branch (see Equation 3.1-l), the 
s t ruc tu ra l  fac tor  A expresses the network functionality 

For the volume fac tor  B,  Dusek and Prins (1969), and Rehage (1977) propose values 
from 0 to 1. The memory fac tor  (Dusek and Prins, 1969) is 

where h2 is the mean square end-bend  distance of network chains (without external 
load), is the mean square distance between the ends of free (not fixed) chains with 
1\/1 = A 4 2  surrounded by similar chains (in the unperturbed 8 state). 

If crosslinking is performed in a dry polymer (rubber vulcanization, radiation, etc.), 
then q 1. Crosslinking of chains in solution is a different thing (Dusek and Prins, 
1969). 

Introduction of the constants A and B is associated with an uncertainty in the definition 
of the network structure, and different versions of theory assign them different values. 

The state equation of a swollen network is also written as 

and the chemical potential of a crosslinked polymer per segment is 

(DuBek and Patterson, 1968), where q = l /vz  = V/Vo is the volume degree of network 
swelling, v = u,/V, is the volume concentration of network chains. 

The swollen polymer network is in equilibrium with individual LMWL provided that 

Apl = Aplsw = 0, T ,  P = const, (73) 

where the subscript 's' means equilibrium swelling. 

and solving it with respect to XI,, (or qs,), we obtain a state equation for gel 
Substituting the expression for Apl from Equations 64, 65, 68, or 72 into Equation 73 

Z L ,  = f (T) .  (74) 

The plot of this dependence in the T us zTS,,, (or z;~,,,) coordinates is called a swelling 
curve,  which is the state diagram for the NPSLMWL system. Its slope shows the 
character of the gel behaviour with temperature: swelling or compression. The slope can 
be determined from rather general considerations (Rehage, 1964a). 

Write the condition of gel-LMWL phase equilibrium as 

dpi = dpo 

(cf. Equation 1.2-30). 

(75) 
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In partial derivatives, under P = const, it takes the form 

or, in view of Equations 1.1.1-21,-23,-35, 

whence 

where 

ASlsw = S I s w  - s o l .  

It follows from the equilibrium condition (Equation 73) that 

AH,, 
AplJw = AHlm - T AS,,,, = 0 and ASlsw = - T '  

Substituting Equation 80 to Equation 78 yields 

where AHlaw is the dilution enthalpy on saturation: 

AHl,, = H ~ ( Z ~ ~ , )  - Box, T ,  P = const, (82) 

is the partial molar enthalpy of LMWL in saturated gel, Bol is the molar en- 
thalpy of LMWL. 

According to the accepted model, the crosslinks are points in the structural respect, so 
the NP+LMWL in its swollen state is a single phase. As in the onephase (stable and 
metastable) region 

(*) T,P > o ,  

then the slope of the swelling curve is defined by the sign of ARlsw. For very good 
solvents, AfilSw < 0 (an exothermic mixture), and the gel contracts with rising tem- 
perature according to Equation 81 (Figure 3.50). For poor solvents, AHlsw > 0 (an 
endothermic mixture), and increasing temperature leads to an additional gel swelling 
(Figure 3.51). For an athermic mixture, AHl3, = 0, and the saturation concentration 
x ; ~ ,  is temperatureindependent. 
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Figure 3.50. Swelling curves of network 
polystyrene in chlorobenzene (x, = 0.441 at 
T = 50°C). The average polymerization de- 
gree of branches is z = 463 ( I ) ,  524 (2) ,  833 
(3) ,  1030 (a) ,  1170 (5) ,  2520 (6), 3580 (7) (Re- 
hage, 1964b, 1977) [Reprinted with permission from: 
G.Rehage. Berichte der BunsengeHelsehaft Phys. Cherri. 
81 (1977) 969-979. Copyright @ 1977 by Steinkopft Pub- 
lishers Damstedt] 

0.03 0.07 

Figure 3.51. Swelling curves of nct- 
work polystyrene in cyclohexane (x, = 
0.590. . .0.704 depending on polymer concen- 
tration, T = 50°C). The average polymer- 
ization degree of branches is z = 191 (I), 
437 (2) ,  667 (3) ,  855 ( 4 ) ,  1080 (5) (Re- 
hage, 1964b, 1977) [Reprinted with permission 
from: G.Rehage. Berichte der Bunsengeselsehaft 
Phys. Chem. 81 (1977) 96S979.  Copyright @ 1977 
by Steinkopft Publishers Danistedt] 

0 '  I I I I 
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Experimental results show the sign at (azt.;,,/aT) to be really defined by the sign at 
ABlsz,., i.e. the one-phase system condition (Equation 83) is fulfilled. 

If the swelling curve intersects the glass temperature of the P+LMWL system, it shows 
a bend (Rehage, 1964c, 1977). 

If there is a liquid-liquid phase separation region in a certain temperature range (eg. 
with a UCST), then the swelling curve of the NPSLMWL system on the state diagram 
goes to the right of the phase separation region (Figure 3.52). 

If, for some reason, the density of crosslinks v increases with time, a part of LMWL 
molecules transfers from the gel to the pure liquid phase (gel syneresis, plasticizer 
sweating) (see Figure 3.52). 
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Figure 3.52. Phase separation region of the 
system (linear polystyrene)+cyclohexane for a 
finite molecular mass of polystyrene (I) ,  at 
M -+ 00 (2), (C are critical points, dashed 
lines are spinodals). Swelling curves of (net- 
work polystyrene)+cyclohexane with an increas- 
ing density of crosslinks VI < vz < v3 (3-5) (Re- 
hage, 1977) [Reprinted with permission from: G.Rehage. 
Berichte der Bunsengeselsehaft Phys. Chem. 81 (1977) 
969-979. Copyright @ 1977 by Steinkopft Publishers 
Damstedt] 

P 

For equilibrium swelling (saturation) of gel with LMWL, it follows from Equations 73 
and 64 that 

In the case of a low degree of crosslinking, when M2 2 lo5, in a good solvent vi!" >> vz,. 
By neglecting the term with wZs in the right-hand side and the higher terms of logarithm 
expansion in the left-hand side, with qs = vG1 Equation 84 transforms to the form: 

(Flory, 1953). 
See section 6.2 for how to determine the temperature dependence x, = x , ( T )  for the 

(network PVA)+water system from swelling data. 
The further improvement of the theory of NP+LMWL systems (Flory and Tatara, 

1975) followed the path of modifying expressions for AGel and AG, in Equation 60. 
To get a better fit of the theoretical analytical expressions to experimental data on the 

elasticity problem of real network polymers, Mooney (1940) and Rivlin (1948abcd) have 
proposed an additional term to the potential AG,, 

AG,, = c1 (zI - 3 - In ziI2) + A G ~ ~  (86) 

(87) 

with 

AG,, = C2(121:' - 3) = Cz(A;' + A,' + A,2 - 3), 

where C1 = ueRT/2 (see Equation 62), C2 is a parameter depending on the network 
structure and temperature, I; are the deformation invariants (Sedov, 1983) 

11 = A: + A; + A:, 
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(88) 

Formula 87 is based on no molecular model, it is just an empirical adjusting expression. 
Further modification following the same path leads to the expression (Flory and Tatara, 
1975) 

where m is an adjustable parameter. 

concentration independence of x,. 

is written in view of Equation 54 as 

Another modification of AG, in Equation 60 is associated with cancellation of the 

In the case of a simple single-axis deformation of the sample, the total potential change 

AG = RT(ni lnv l+  n 2  lnv2 + xnlv2) + C1(Xz + 2v;'X-' - 3) (90) 

+ C z ( v , " ~ - ~  + 2v;-"X - 3) + 2C3 In v2, 

whcre C3 = C1/2 (for a tetrafunctional network). Then (Flory and Tatara, 1975) 

where B = 2Cl%,,/V,RT, x = x + nlv;'dx/anl. 
As a result of experiments on the (network PDMS)+benzene system (Flory and Tatara, 

1975), it was established that the adjustable parameter m = 1/2. Then, for swelling in 
the absence of an external force, including Equations 63 and 73, the equation 

(92) 

holds good. 

imental data according to Equation 92, matches that of the (linear PDMS)+benzene 
system (see subsection 3.6.2, Figure 3.79). 

In the NP+LMWL system (a good solvent), the molecular branches are repelled from 
each other due to the long-range interactions (cf. subsection 3.1.1), but the crosslinks 
bring them into contact. The situation that arises is similar to the overlap threshold on 
the dilute/semidilute solution interface provided that the length of the macromolecules 
in them is equal to that of the gel branch in the same solvent. 

Thus, the segment concentration in gel must correspond to that in the coil overlap 
threshold, c = c* (see Equations 3.1-22 and 3.1-142), 

The concentration dependence of the interaction parameter X, obtained from exper- 

c = k( f)c* = k( f)N-4f5p-3/5A-6f5, (93) 
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where C* is the crossover between dilute and semidilute concentrations, k is a first-order 
factor, depending on the functionality f of a branch point and gel preparation conditions. 

Relationship 93 expresses Flory’s c* theorem of gels (Flory, 1953; de Gennes, 1979). 
This is the very reason why, in gel, the end-bend distance [ of a network chain is 
established equal to  the screening length { in semidilute solutions of linear macromolecules 
(cf. section 3.3). 

As in the case of a single chain, a good quality of the gel state equations in the mean 
field approximation (Equations 64, 65, 68, 72, 92) is explained by compensation of the 
errors corresponding to the neglect of fluctuation correlation of segment concentration in 
AG, and the Gaussian character of the branch distribution in AG,, (see Equation 60). 

3.5.3. Phase separation in gels 
In some particular cases (large values of x and v), the Apl us q-’ (or vz) dependence 

has two maxima (correspondingly, two minima on Ap2 us q-’) (DuSek and Patterson, 
1968; Dusek and Prins, 1969). 

Such a shape of the curves ApI (and Apz) points to the possibility of existence of 
two phases of a network polymer with different conformations of network chains. In 
equilibrium, the condition 

APlIn = Apllln, 

Ap2xn = Apmn, T ,  P = const (94) 

must be satisfied, where the subscripts ‘n’ denote the network and its different states (‘I’ 
and ‘11’) differing in the network chain conformation. 

Little is known on the morphological realization of this separation kind. Most likely, 
the separation proceeds in small volumes of the system and leads to a great heterogeneity 
in the gel structure. Such a separation is called microsyneresis. 

While x (temperature) continuously changes, conditions 94 give rise to a phase tran- 
sition, which sharply changes the network chain conformation, which, in turn, leads to  a 
significant decrease (or increase) in the gel volume - a secalled collapse (or overswelling, 
superswelling) of gels. 

Of special interest is the case of P # 0 (when polymer is placed into a fixed volume 
accessible to LMWL molecules). Then, the equality between the chemical potentials of 
LMWL in the network and outside it is due to the LMWL transport into the network, 
which causes a pressure increase in the gel by 

(95) 7r = P - Po, 

where PO is the initial pressure in the gel and the pressure of LMWL in equilibrium with 
the gel (Surdutovich et al., 1972). 

In this case, the situation is similar to a solvent and a solution separated with a semiper- 
meable membrane (see subsection 1.2.2). 

Considerations similar to those given in subsection 1.2.2 yield 
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and, together with Equation 64 (as an example), 

(Tanaka, 1979). 

(Tanaka, 1978, 1979). 
The KJRT us v2 dependence, in the general case, has the form shown in Figure 3.53a 

- 
RT 

0 

h 

Figure 3.53. Dependence of the gel 
osmotic pressure on 2'2 ( u )  and the 
state diagram of the NP+LMWL 
system at T = 0 ( b ) .  ARDZJM 
is the swelling curve. IECFJ is 
the coexistence curve of two states 
of gel, KGCHL is the curve at 
which (&r/dvz) = 0 (Tanaka, 1979) 
[Reprinted from. Polymer 20 (1979) 
1404-1412. Copyright @ 1979 with kind 
permission of Elsevier Science - NL, Sara 
Burgerhartstraat 25, 1055 KV Arnster- 
dam. The Netherlands] 

n 

b 
By analogy with the state diagrams of other systems (onecomponent liquid-vapour, see 

Figure 1.4; binary systems liquid-liquid, LMW compounds, see Figure 1.5; P+LMWL. 
see Figures 3.2, 3.3, and 3.9), Figure 3.53b shows the following curves in the T os 02 coor- 
dinates: the coexistence curve of two gel states I E C F J ,  the curve at which ( d r / d v z )  = 0 
(KGCHL)  close to the spinodal (see subsection 3.5.4), and the swelling curve I D B A .  The 
curve ARDIJM (see Figure 3,53b) defines the equilibrium isotherm of the NP+LMWL 
system at li = 0, i.e. under conditions of free swelling (or contraction) of the polymer net- 
work. This curve is a model one, for example, for the experimental swelling-contraction 
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curve obtained on the network PAA+water+acetone system (Tanaka, 1979) (Figure 3.54, 
curve 1).  It is seen from this figure that an abrupt change in the gel volume is really 

Figure 3.54. Swelling curves for 
T, "C the (network PAA)+water+acetone 

system. @I@* is the volumelinitial 
polymer concentration ratio. Con- 
ditions for gel synthesis: 5 g of 
acrylamide and 0.133 g of N ,  N'- 
methylenebis-acrylamide were dis- 
solved in 100 ml water, 40 mg 
of ammonium persulphate acting as 
the polymerization initiator, 40 p1 
tetramethylethylenediamine in 25 ml 
of gel acting as the reaction regula- 
tor. Curve 1: the gel ripened for 
30 days; 42% of acetone is contained 
in the LMWL mixture. Curve 2: the 

-20 - gel ripened for 3 days; the LMWL 
mixture contains 40% of acetone. 
The ratios @/a* < 1 and > 1 corre- 
spond to swelling and contraction of 
the source gel, respectively (Tanaka, 
1979) [Reprinted from: Polymer 20 (1979) 
1404-1412. Copyright @ 1979 with kind 
permission of Elsevier Science - NL, Sara 
Burgerhartstraat 25, 1055 KV Amsterdam, 
The Nertherlands] 

' 0 2 4 6 

@/ab 

observed at a certain temperature. Such a conformational transition of the gel molecular 
branches is similar to the coil-globule transition in a dilute solution (see section 3.4). 

The internal structure of another gel sample (Figure 3.54, curve 2) does not correspond 
to the loop T us 0 2  dependence, and its swelling curve shows no break. 

At the temperatures and concentrations enclosed by the curve ZECFJ (see Figure 3.53b), 
the coexistence conditions of two gel states with different chain conformations in a closed 
space are realized. Eg. for T = 7'2, the value of T is determined by the ordinate of the 
straight line EF drawn on the isotherm Tz (see Figure 3.53a) according to Maxwell's rule 
(Equation 1.243). 

Thus, in the NP+LMWL system, two important parameters, x and the crosslinks 
concentration Y, play a chief role in phase separation: their increase promotes separation 
(see Equations 64, 65, 68, 72, 92, 97). Therefore phase separation in gels may occur in 
the presence of that LMWL which is a very good solvent for the corresponding linear 
polymer. 

Moreover, in the course of the initiated phase separation, a local volume reduction 
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takes place, which leads to an increase in the crosslinks concentration and, further, to 
changes in the microphase separation process. The final pattern of phase separation will, 
therefore, depend on the kinetics of the process and the appearing morphology when 
surface phenomena begin to manifest themselves (Flory, 1960; DuSek, 1967, 1971; Dusek 
and Patterson, 1968; DuSek and Prins, 1969). 

NC NC 

LMWL LMWI, C 
U b 

Figure 3.55. Phase separation during crosslinking of linear polymer branches of a very 
large MW in solution. Flory-Huggins’ interaction parameter x ,  = 0.45, NC is the segment 
concentration in the network’s molecular branches, C is the segment concentration at the 
crosslinks. ‘a’ is the configurative point’s trajectory in the course of crosslinking; ‘b’ 
is the cloud-point curve (the boundary of the phase separation region), ‘c’ is the phase 
coexistence curve at different stages of polymer chain crosslinking ( a ) .  Phase separation 
in the process of 3 0  copolymerization in an inert solvent. The interaction parameter 
of NP+(monomer+diluent) x ,  = 0.45, ‘a’ is the configurative point’s trajectory during 
copolymerization, N C ,  C ,  b, c are as in p. a ( b )  (DuSek, 1971) [Reprinted with permission 
from: K.DuEiek. Chem. zvesti 25 (1971) 184-189. Copyright @ 1971 Slovak Academic Press Ltd.] 

Shown in Figure 3.55 are the results obtained by DuSek (1971) for some model systems, 
where phase separation occurs in the process of crosslinking of linear macromolecules with 
a very large M in solution (Figure 3.55a) and in the process of 3 0  copolymerization of 
two monomers with two ( N C )  and three ( C )  active centres (Figure 3.5513). 

In the first case, crosslinking proceeds at a constant LMWL concentration, i.e. the 
configurative point moves along the straight line a parallel to the NC-C side of the 
composition triangle. The system remains homogeneous until the configurative point in- 
tersects the solid curve b (the boundary of the phase separation region ), an analogue of 
the cloud-point curve in the P+LMWL system (cf. Figures 3.11-3.13). The dashed lines 
c are the phase coexistence curve (cf. Figures 3.11-3.13 as well). As the crosslinking pro- 
gresses, the volume of the network phase and the sizes of branches decrease, which causes 
a transmission of the point corresponding to the concentrated phase, to the coexistence 
curves (see the empty circles in Figure 3.55a). 

As the individual LMWL is in equilibrium with gel, the tie lines originate from the 
LMWL corner of the triangle. 
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Figure 3.55b represents a system comprising, at the initial instant, a monomer and an 
inert diluent (LMWL) which are thermodynamically equivalent to each other except for 
the ability for polymerization; so, one parameter x, = 0.45 characterizes the interaction 
in the NP+(LMWL+monomer) system. 

At the initial instant of time, the polymer is absent, and the configurative point starts its 
motion from the LMWL corner, goes along the curve a ,  which reflects polymer formation 
and the increase of the crosslinked segments polymer fraction (C) (Dubek, 1971). As is 
seen from Figure 3.55b, phase separation proceeds at low degrees of conversion and leads 
to a heterogeneous gel structure. If, at some polymerization stage, the gel is separated 
from the LMWL and, further, the LMWL is evaporated from the whole sample volume, 
a porous material will appear with the porosity character (in particular, the pore sizes) 
defined by the conditions and duration of phase separation. 

Indeed, with copolymerization of styrene with divinylbenzene as an example, DuSek 
(1971) has attained a good agreement between the turbidity and porosity of dried gel and 
the theoretical boundary of the phase separation region as functions of divinylbenzene 
concent rat ion. 

Obviously, v-induced phase separation of gels with microcrystallites as the crosslinks 
must occur during their storage due to the increasing number of crystallization nuclei. 

Mechanical stresses applied to gel samples shift the phase transition region (DuSek and 
Patterson, 1968; DuSek and Prins, 1.969; Khokhlov, 1980ab). 

Under conditions of uniaxial tension with a relative deformation X (Dusek and Patter- 
son, 1968), 

and the tangential stress is 

i- = - (A - z), 1 
V 

(99) 

where X is the deformed (swollen)/undeformed (dried) sample length ratio. 
Relationships 98 and 94 lead to the state diagram shown in Figure 3.56. 
Tension of a sample is equivalent to a decrease in pressure and promotes phase transition 

(cf. Figure 3.53a) (DuSek and Patterson, 1968; DuSek and Prins, 1969; Khokhlov, 1980a). 
Compression, on the contrary, corresponds to an increase in pressure and prevents phase 
transition (DuSek and Patterson, 1968; DuSek and Prins, 1969). 

Singularities (first-order continuity breaks) must be observed on the T vs X dependences 
(DuBek and Patterson, 1968; Khokhlov, 1980b). 

The influence of stress on the shifting of the collapse-swelling phase transition was 
observed experimentally (Starodubtsev et al., 1985ab) on polyacrylamide gels in the wa- 
ter+precipitant mixture at constantly changing tension strength (Starodubtsev et al., 
1985b) and at a varying mixture composition at a constant compression (Starodubtsev et 
al., 1985a). 

Under compression, the collapse-swelling transition occurs at a lower precipitant content 
(dioxane and methanol), but these data can hardly be compared with Figure 3.56, as 
the transition from the volume fraction of precipitant to x, may turn to be difficult 
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Figure 3.56. State diagram of the TP+LMWL 
system under conditions of uniaxial tension 
up to the values of relative deformation q / A :  
0.050 ( I ) ,  0.025 ( 2 ) ,  0.02348 ( 3 ) ,  0.02106 (d ) ,  
0.01746 ( 5 ) ,  0.0133 (6) (Dukk and Patterson, 
1968) [Reprinted with permission from K Ilusek, 
D Patterson. J .  Polym. Sci A 2 G (1968) 1209 1216 
Gopyright @ 19683 
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(see subsection 3.2.3), especially in water-containing (aqueous) systems, where specific 
interactiom may occm. 

Hritton et al. (1979) have shown that either compression or swelling of gel may occur in 
the NP+LMWL systems with specific interactions under stress. The specific interactions 
have been fixed and very carefully analyzed on the basis of the theory with the  model of 
Gaussian network chains with the (network PVA)+water system as an example, upon 
tension. 

3.5.4. Solution-gel transition 

an approach has become popular based on the percolation problem. 
To describe the process of 3D polymerization of a polyfiinctional monomer in solution, 

First, consider bond percolation. 
Let every site of Ising’s lattice (see Figure 1.23) contain one structural element. There 

exists a bond between the neighbouring structural elements with a probability Pb. The 
character of bonds may be various: electrical conduction, elastic force, infection transfer, 
etc. Eg. Figure 3.57 shows a rectangular 16 x 16 lattice with randomly arising bonds 
with the probability pb = 0.2; 0.4; 0.6, and 0.8 (Stanley et al., 1984). 

Sets of linked structural elements are called clusters whose mean size increases with 
I’b (see Figure 3.57). 

At a certain value Pb.=, the upper and lower sides of the lattice are connected by bonded 
elements. A certain property is said to percolate from one side to the other. If the bonds 
define electrical conduction along them, and a power source is hooked up, the current 
traverses the lattice. If we expand the lattice itself, then the size of the cluster, through 
which percolation proceeds, also increases, and this cluster is called an infinite cluster. 
The value I’b,c is referred to as the percolation threshold . ?;ear it, the cluster size is 
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Figure 3.57. Bond percolation problem with the probability for bonds to arise between 
the neighbouring structural elements F‘b = 0.2 ( a ) ,  0.4 ( 6 ) ,  0.6 ( c ) ,  and 0.8 ((a> (Stanley 
et al., 1980) [Reprinted with permission from: Dynamics of Synergetic Systems: P m .  Int. Symp. on 
Synergetics, Bullfeld, Germany, September 24-29, 1979 Ed. M.Haken. Copyright @ 1980 by Springer- 
Ver 1 ag] 

described by 

where u is a critical index which coincides, by its physical meaning, with that of the 
fluctuation correlation length of the order parameter in critical phenomena (see Table 1.2). 

At Pb > &, in the system modelled by the lattice, a property appears, which was 
absent at Pb < Pb,=, eg. electrical conduction. If elastic links between the structural 
elements are meant as bonds, at Pb > Pb., the system starts to show macroscopic elasticity. 

The number of all the bonds in the infinite cluster (and the quantitative expression of 
the system property) rises as 
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where /3 is a critical index analogous to that of the order parameter in critical phenomena 
(see Table 1.2). 

Table 3.2 
Critical index values in the problem of bond percolation (Obukhov, 1985) 

I Critical I Space dimensionality, d 1 
I .  

index I 2 3 6 
0 I 5/36 0.45 1 I v I 4/3 0.88 1/2 

Table 3.2 collects the index values of the problem of bond percolation, calculated for 
lattices of different space dimensions d (Obukhov, 1985). 

Another typical problem of percolation theory is the problem of node percolation. As- 
sume that atoms of two kinds are randomly placed in Ising’s lattice (see Figure 1.23c), 
where the black nodes are occupied by atoms with a permanent magnetic moment while 
the white ones are occupied by non-magnetic (diluent) atoms. 

Obviously, at a high concentration of the magnetic atoms (z x l), they form an infinite 
cluster. On the contrary, at z << 1 the clusters of magnetic atoms are composed of small 
numbers of atoms, and the lattice 

At a certain concentration of magnetic atoms z = z,, the cluster becomes infinite, and 
at x > x, the lattice acquires a spontaneous magnetization M .  Relationships similar to 
Equations 100 and 101 will hold good for this problem as well 

a whole possesses no magnetic moment. 

t = Ehlx - &I-”, (102) 

The given examples show a close analogy between the approach of percolation theory 
and the problems of critical phenomena theory. 

However, the critical indices of the correlation length v and of the order parameter 0 
in the percolation problem (equal for both bond and node percolation) take the values 
characteristic for the mean field approximation: ,B = I and v = 0.5 for six-dimensional 
space d* = 6 (cf. $” = 4 for critical phenomena in Figure 2.44). 

The solution-gel transition is modelled by the percolation problem, which combines 
 iod de and bond percolations. 

Let white nodes (molecules of a polyfunctional monomer) and black nodes (solvent 
molecules) be randomly placed in Ising’s lattice (see Figure 1.23~). The bonds between 
the white nodes appear (polymerization) with a probability Pb depending on temperature 
and other conditions. 

The formation of an infinite cluster from bonded white nodes means the solution (of 
macromolecules)-gel transition with the appearance of a new macroscopic property (elas- 
ticity) as every isolated bond possesses elasticity. 

Let the probability of any node being white be the concentration of monomer molecules 
P, = x, and the probability of a bond between two neighbouring monomers be Pb. Gel is 
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formed in those configurative points of the state diagram of “bond and node” percolation 
where the infinite cluster from connected white nodes (polymer molecules) exists. 

By definition, 0 2 P,, I 1 and 0 5 5 1 (Figure 3.58). 

pb 
Fi ure 3.58 
pofymerization of a polyfunctional monomer in solution (Stanley et al., 1980; Efros, 1982j 
[Reprinted with permission from: Dynamics of Synergetic Systems: Proc. Int. Symp. on Synergetics, 
Bullfeld, Germany, September 24-29, 1979 Ed. M.Haken. Copyright @ by Springer-Verlag] 

Problem of bond and node percolation: a model of gel formation durin 

If Pb = 1, the infinite cluster appears at any P,, above the percolation threshold Pn,c of 
the node problem, i.e. 

Pn,c I Pn I 1. 

pb,c 5 pb 5 1 

(104) 

(105) 

If P, = 1 (all the nodes are occupied by the monomer molecules), 

must be satisfied for the infinite cluster to appear, where 4 . c  is the percolation threshold 
in the bond problem. 

The function Pn,min = f ( s )  is the boundary curve of the solution-gel transition (see 
Figure 3.58), 

Formally speaking, the reaction of polymerization seems most effective at T + 00, and 
on the T us v2 state diagram (Figure 3.59), the asymptote T -+ 00 corresponds to w2, 
responding to P,,,,. At lower w2 < vZ,,, the curve A of the solution-gel transition has a 
positive first derivative. The specific shape of the curve A depends on the model’s details. 
This curve ends on the binodal curve of the twephase gel state due to the elasticity forces 
of the network chains and the interaction between polymer and LMWL (see above). The 
numerical values of ~ z f , ~  have been determined for different types of lattice. It has also 
been established that the inequality v : , ~  < V Z , ~  holds true (de Gennes, 1979). 

When the configurative point moves at a certain v2 = const within the range v ; , ~  < 
vz < Q,,, and temperature decreases, the solution-gel transition proceeds at the point Q 
with the critical indices from the percolation problem (see Table 3.2). 
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T 
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Figure 3.59. State diagram of the 
NPSLMWL system. BIG is the binodal 
curve of phase separation, C is the crit- 
ical point. A is the line of the solution- 
gel transition. u2, is the polymer con- 
centration corresponding to the node 
percolation threshold P,,,; v ; ~  is the 
concentration at the configurative point 
where the transition curve A meets BIG 
(de Gennes, 1979)[Reprinted from: Pierre- 
Gilles de Gennes Scaling Concepts zn Polymer 
Physics. Copyright @ 1979 by Cornel1 Univer- 
sity. Used by permission of the publisher, Cor- 
ne11 University Press] 

3.5.5. Light scattering in gels 
The morphology of gels, which are a framework of macromolecular branches filled with 

LMWL, leads to specific properties of structural fluctuations causing scattering of light 
and other kinds of radiation. 

The motion equation of gel (as an elastic motion) (Equation 22.1 in Landau and Lifshitz, 
1987) comprises an additional term owing to the friction forces arising when liquid moves 
over the elements of a polymer framework (Tanaka et al., 1973) 

This motion equation of an elastic medium is, in fact, the Newton second law. Its 
left-hand side is the product of the acceleration of a network unit cube by its mass (e is 
the network density). The right-hand side contains the sum of the forces acting on a unit 
cube. The first summand of the force corresponds to Equation 3 Yhile the second one 
represents the friction force and is written like the Stokes formula: F,, = -67rRqu. 

The value f can be determined by measuring the flow rate of a liquid through the 
polymer network under a given pressure acting on the liquid only'. In connection with 
the mentioned morphological peculiarity, four kinds of motion (modes) in structural fluc- 
tuations arise in gels in the general case: the network elements may move with (t?) 
or against (t$) the liquid as longitudinal or translational (transversal) waves (see 
Table 3.3). 

Special analysis shows the modes in Table 3.3 to have significantly different relaxation 
periods which enables them to be distinguished. 

'Polyelectrolyte superswelling gels, however, may not give such an opportunity to the experimenter 
Editor's note 
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Transverse 

Table 3.3 
Modes of structural fluctuations in gels (Tanaka, 1973) 

I1 IV 
t -1 t t 

character Liquid Network Liquid Network 
Longitudinal 

The type I modes manifest themselves in inelastic light scattering. In experiments on 
polyacrylamide gels in water (Tanaka et al., 1973), their relaxation times are r, - s 
for the fluctuations with a wave vector (q( = lo5 cm-'. The time mode of type 111 the 
fluctuations can be estimated using the frequency and relaxation time of sound waves in 
pure water, which are measured on the basis of the shift and bandwidth of Mandelshtam- 
Brillouin's spectrum of light scattering (Benedek and Greytak, 1965; Benedek and Fritsch, 
1966; Tanaka et al., 1973). For the scattering angle d = go", the oscillation period 
is N s and the relaxation time is r, N lo-' s. Hence, if the evolution times of 
the type I fluctuations are considered, the type I11 modes in liquid are averaged, and 
the liquid can be regarded as a nonfluctuating medium. The transversal (translational) 
type I1 modes have the relaxation time of the same order of magnitude that the type I 
modes. The translational type IV modes propagate with a frequency w = @, where p 
is the shear modulus. 

The I and I1 type modes are of most interest for light scattering (see Figure 2.30). 
Substitution of Equation 15 into motion equation 106 transforms it into the vector form 

It should now be used to find an expression for the spatial and temporal correlation 
of the shift vector (uj(?,t)u~(F,t ' ))  and its Fourier transform (uj(q,t)u:(rj', t')), where 
j = 2, y, z. These quantities are proportional to the corresponding correlation functions 
of the dielectric constant of the material (see subsection 2.3.3). 

The Fourier transform of the shift vector is introduced as 
00 

u'(q',&) = ( 2 4 - 5 ' 2  / U(T  - -, t)exp[--i(<.?+wt)] dr'dt. (108) 
-03 

Due to gel isotropy, the fluctuations must not depend on the direction of the vector I$ 
Therefore, one axis (eg., the z axis) can be chosen in the q-space as the direction q: 

a= ( O , O , q ) -  (109) 

p2u, - i fwu ,  - &u, = 0, (110) 

Substituting Equation 108 into Equation 109, we find 
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2 @w 26, - i fwu,  - Qc:q2u, = 0, 

where j = 2, y, 

Ct = 8. (113) 

Equations 110 and 111 arc thc equations of longitudinal and transversal sound waves 
(respectively) propagating in the gel with velocities ci and q, respectively, iM is the 
longitudinal modulus (see Equation 59). 

From this point on, no subscripts are required in Equations 110 and 111 due to their 
identical form. 

Non-trivial solutions of uj exist provided that 

@w= - i f w  - ec2q2 = 0, (114) 

whence 

= - - ( ro ) - l  (1 f d a ) ,  

(115) 

where 

2e (117) 
To= -7' 

In the case of WOTo >> 1, Equation 116 yields two frequencies 

iw = f i w o  - r;', (119) 

where wo = cq is the frequency of sound with the wave vector q, TO is the relaxation time 
due to the friction between the polymer framework and LMWL. More generally, iw is 
a. complex number which means a propagating wave. If iw is a real number, the wave 
decays. It follows from Equation 116 that if WOTO > 1 or WOTO 5 1, then the sound wave 
propagates or decays, respectively. 

In the first one, we neglect the 
summands of elastic deformation, then 

Consider the two limiting cases of Equation 107. 

Qii = -fU. 
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According to Equations 112 and 113, c x 0, wo fi: 0, and 
2 
70 

iw = -- E T-l J ’  

where ~f is the relaxation time of the fluctuations. 

Equation 114 is written as 
In the other limiting case, we neglect the acceleration term in Equation 107. Then, 

-ifw - pc2q2 = 0, 

and, in view of Equation 117, we obtain 

With an approximation 

we have in this case 

where 

G = K + 4/3p = M (124) 

G = p  (125) 

for a longitudinal wave and 

for a tangential wave. 

diffuses along the z axis with a diffusion constant 
Equation 123 coincides, by its form, with Fick’s second law for diffusion, i.e. the shift 

M /  f for a longitudinal wave, D = - =  
p /  f for a tangential wave. 

Recall that the diffusion coefficient of macromolecules in solution is 
kT D=c’ 

where C = 67rm ( R H )  (see Equation 3.3-88). 
The denominators of Equations 126 and 127 are the same while the nominators differ: 

the diffusional motion of a macromolecule is caused by collisions with small molecules of 
the solvent which is directly associated with temperature, and the motion of the polymer 
network is caused by its elasticity. 

Applying the Fourier transformation to Equation 123, we see that the fluctuation of 
the wave vector q decays with a constant 



3.5.5. Light scattering in gels 413 

(cf. Equation 3.3-98). 
In the general case, the time correlation of the shift vector has the form 

(129) 

where A, + Af = 1 .  Tanaka et al. (1973) prove that IA,/Afl >> 1 and 

and 

(131) 

hold true for the longitudinal and transversal fluctuations, respectively; j = I, y. 
The longitudinal and transversal fluctuations of the shear modulus cause time cor- 

relation functions of the electric field, which are measured by the heterodyne method 
(dynamic scattering of polarized and unpolarized light) (see Equation 2.3-32). 

As measurements show (Tanaka et al., 1973)) the relaxation time of the density of a 
PAA network is T = (Dq2)-'  with D cm2/s while that of the thermal diffusion 
of water is TT = (&q2)-' with DT N 1.4 . cm2/s, whence it follows that thermal 
diffusion is faster than polymer network structure relaxation. Consequently, in the time 
scale characteristic for the fluctuations in polymer network structure, temperature can 
be regarded constant and the process is isothermal (not adiabatic, as in the case of 
Mandelshtam-Brillouin's scattering). 

Accordingly, the constants K and p in Equations 130 and 131 have their isothermal 
values as well. 

At a distance 1 from a luminous gel volume V ,  the correlation of the electric field vector 
(the scattering light intensity) has the form 

and 

for vertically polarized and depolarized light, respectively, ED and E are the diagonal and 
off-diagonal elements of the dielectric constant tensor. The quantity ( & / a p ) ~  can be ob- 
tained by measuring the gel refractive index n at its various conccntrations e, as E = n2.  
The quantity (&g/duZy) can be obtained under shear deformation of gel tizy, by measur- 
ing the depolarization of light crossing the gel along the axis z. The depolarized/polarized 
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light intensity ratio measured in the direct direction is defined as ZD/ZP 1 ( E ~ / E ) ’  and, 
therefore, ED can be derived as a function of uZy (Tanaka et al., 1973). 

Thus, the ratios ( K  + 4/3p) / f and p/ f can, in principle, be obtained from the time 
correlation of scattered light. The measured integral intensity of scattered light (see 
Equation 2.3-40) (whose theoretical value is calculated from Equations 132 and 133 at 
t = 0) gives the quantities K + 4/3p and p (cf. Equations 2.3-39,-40,-43,-48). Hence, 
all the elasticity parameters of the gel K ,  p, and f can be determined by means of the 
polarized/depolarized scattering technique only. 

Tanaka et al. (1973) have compared the elasticity moduli of 5% and 2.5% polyacrylamide 
gels in water, obtained by measuring the deformation of their cylindrical samples and by 
means of dynamic light scattering. The time correlations of scattered light were measured 
on a set of the homodyne spectroscopy of mixing, and the squared correlation function of 
the field was determined (see Equation 2.3-33). 

Thus, the decay constant is 

for polarized and depolarized light scattering, respectively. 
For cylindrical samples (see Figure 3.49d, 1, 2) ,  

Measurements have shown that u x 0, whence, in view of Equations 29-30, 

E 
3 

A’= -, 

E 
p=!’ 

(135) 

(137) 

(138) 

Hence, in this case, the measured Young modulus (Equation 135) enables K and p to 
be determined from Equations 137 and 138. 

Autocorrelation data were analyzed using the cumulant method (see subsection 3.3.2). 
See Figure 3.60 as an example. By fitting two cumulants to experimental data, r/2q2 = 
2.38 . 

The third row of Table 3.4 reports the value Dcdc = 2p/f calculated from the defor- 
mation data (p) and the liquid rate of flow through gel ( f )  (the first two rows). 

For further checking of the theory of light scattering in gels, the dependence l’/2 = 
(2p/f)q2 ws q2 was plotted (Figure 3.61, the experimental points). The dashed line is 
drawn using independent measurements of p and f .  A very good match between the two 
approaches (Figure 3.61 and Table 3.4) is seen. 

Thus, optical mixing spectroscopy is a powerful tool for exploring gel structure and 
for experimental determination of the elasticity moduli and hydrodynamic interactions 
between the polymer network and liquid. 

cm2/s was found. The results obtained are recorded in Table 3.4. 
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Figure 3.60. Experimental 
time correlation function for 5% 
polyacrylamide gel at 25°C and 
the scattering angle YO". One 
channel corresponds to 10 ps. 
The line provides the best 
fit to the experimental values 
(Tanaka et al., 1973) [Reprinted 
with permission from: T.Tanaka, 
L.O.IIocker, G.B.Benedek. J. Chem. 

right @ 1973 American Institute of 
Physics] 

Phys. 59 (1973) 5151-5159. COPY- 

Experimental data by mechanical methods and optical mixing spectroscopy on 
poly(acry1ic amide) gels (Tanaka, 1973) 

Though p and f can be measured independently by macroscopic methods, such mea- 
surements axe laborious and timeconsuming. More precise measurements of 2p/ f in 
optical mixing spectroscopy are carried out in 2 minutes (Tanaka et al., 1973). 

On the basis of the definition of the compressional modulus K (Equation 20) and the 
expression for 7r (Equation 97), we write (Tanaka et al., 1977) 

where x, = /3 + a/RT is accepted (Equation 3.1-42). 
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Figure 3.61. Dependence of the re- 
laxation rate r/2 = (2p/f)q2 and 
the time correlation of scattered 
light in 5% polyacrylamide gel at 
25°C of q2 (circles). The line shows 
the (2p/f)q2 dependence with p,  
f measured in independent exper- 
iments (mechanics) (Tanaka et al., 
1973) [Reprinted with permiasion from: 
T.Tanaka, L.O.Hocker, G.B.Renedek. J. 
Chem. Phys. 59 (1973) 5151-5159. 
Copyright @ 1973 American Institute of 
Physics] 
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q 2 .  101", cm2 

The absence of the minus in Equation 139 in comparison with Equation 20 is due to 

If the expression 
an obvious requirement for K to be positive in both cases. 

is accepted for the shear modulus of a swollen gel (Flory, 1953; Tanaka et al., 1977), then 
we can write for the longitudinal modulus (Equation 59) 

where 

(142) 

It is seen from Equation 141 that the longitudinal modulus M = 0 at T = T,,. 
It follows from Equation 132 that at M = 0 (T  = Tap), the intensity of light scattered 

on the longitudinal fluctuations of the gel structure I + 00 while the fluctuation lifetime 
T~ + 03 (Equations 124, 128), which defines a configurative point on the spinodal. This 
is a difference between the spinodal conditions for gel ( M  = 0) and for solution ( K  = 0), 
i.e. (a?r/dvZ) = 0 (see Equation 139). 
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I ,  arb. un. , Figure 3.62. Scattered light 
intensity I and r/q2 = ( K  t 
4p/3)/f for 2.5% polyacry- 
lamide gel (Tanaka et al., 
1977) [Reprinted with permis- 
sion from: T.Tanaka, Shhiwata, 
C.Ishimoto. Phys. Rev. Lett. 38 
(1977) 771-774. Copyright @ 1977 
by the American Physical Society] 
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If K >> p,  then M N K ,  and the spinodal conditions for gel and solution are close. 
However, for PAA gels, the closeness M - K is not the case (see Equations 137 and 138). 

Figure 3.62 contains experimental data for 2.5% polyacrylamide gels (acrylamide+bis- 
acrylamide+water=37.5:1:1500 wt fractions) at a scattering angle of 90” (Tanaka et al., 
1977). 

According to Kawasaki (1970a)-Ferrel’s (1970) mode-mode coupling theory (see sub- 
sections 2.35 and 2.44 as well as: Flory, 1953), the curve r/q2 is expressed as (Tanaka, 
1976; Tanaka et al., 1977) (see Equation 2.4-73) 

kT - n = -  
q2 6 ~ 0 t ’  
r _ -  

where the correlation length of fluctuations near the spinodal has the form 

(144) 

(145) 

The same expression (Equation 144) holds true for solutions of LMW compounds and 
polymers near the spinodal as well (Chu and Schoenes, 1968; Berge et al., 1970; Lai and 
Chen, 1972) (cf. subsection 2.4.4 and section 2.5). 

The given relationships relate to light scattering by one-phase gels. 
We remark incidentally that the scattered light intensity in gels must be lower than 

that in solutions with other conditions being equal, as the development of polymer con- 
centration fluctuations is restricted by the presence of crosslinks. So, gels may well be 
very transparent if, of course, the number of crosslinks does not exceed the threshold of 
u-induced microphase separation. 

The v-phenomena of “Auctuation limitations” can explain a decrease in the scattered 
light intensity after the maximum in the course of 3 0  polymerization is reached (Volkova 
et al., 1987). 
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The approaches of colloidal optics are required for analysis of light scattering on het- 
erogeneous gels. In particular, Ftayleigh-Debye’s approximation with the correlation func- 
tion formalism finds application (see subsection 2.1.2) (Gallacher and Betterheim, 1962; 
Bueche, 1970; Pokrovski et al., 1976; Volkova et al., 1987). 

In this approximation, Bueche (1970) has related the correlation function of the di- 
electric constant E (Equation 2.1-73) to the fluctuations in the crosslinks density in gel 
(v - vo) and obtained the relationship 

where n, np, n, are the refractive indices of gel, polymer, and LMWL, respectively. 
Experiments with polystyrene gels in benzene and PMAA gels in methylethylketone 

(Bueche, 1970) have confirmed the character of the dependences RZ1 us sin3/’$ and 
RT1 os 

The parameters of the anisotropic elements of gel structure were determined from scat- 
tering depolarization & (Donkersloot et al., 1967; Gouda et al., 1970). 

The turbidity spectrum method (see subsection 2.1.5) is worthwhile applying to char- 
acterize the heterogeneous structure of gels (Sedlitek, 1967ab; Maslova, 1969; Masimov 
et al., 1983, 1984). 

but the corollary of Equation 146 (& + 00 at 19 -+ 0) was not observed. 

No object in polymer science gave and still does give rise to so much discussions and 
disputes as gels (jellies) and the gel state of polymers (Glikman, 1959; Papkov, 1974; 
Rogovina and Slonimski, 1974; Tager, 1978; Lipatov, 1984). Much stir were produced at 
the stage of definitions. In this connection, it should be noted that the present paragraph 
treats gel (jelly) in a sense narrower than Papkov’s (1974, p. 12) definition: 

Jellies are multicomponent systems comprising a high-molecular substance 
and LMWL (which predominates) and showing the ability for high-reversible 
deformation and the inability to flow, 

i.e. jellies are considered as “such polymer solutions. . . , which have lost their fluidity”. 
This definition gives preference to the morphological properties, chiefly, to the mechan- 

ical ones. So, systems with different state equations (correspondingly, with different 
state diagrams), which are thought to describe one (?!) “gel-like state of polymers”, are 
classified with jellies. The case at hand is the NPSLMWL system with state equations 64, 
65, 68, 71, 72 (their state diagram are shown in Figures 3.53 and 3.59) (Ia jellies after 
Papkov) and the P+LMWL system with state equations 3.1-50,-51 (their state diagrams 
are shown in Figures 3.2, 3.3, and 3.9) with the configurative point inside the phase sep- 
aration region and with kinetic features (“systems with incomplete phase separation”) 
(jellies type I1 after Papkov, in Figures 1.5ab in Papkov, 1974). 

We, in the context of section 3.5, give preference to thermodynamics and state equa- 
tion regardless of the location of the configurative point and specific realization of the 
system’s morphology (through the specific conditions of the phase separation kinetics). 
Our classification proves to be much more simple and natural. 
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Disputes “about structure” always arise when the traditional approach of physical 
chemistry (a model of the body structure is designed with subsequent deriving of the 
relationships to be tested in experiment) is neglected. In the case of a satisfactory agree- 
ment between model predictions and experiment, the structure of this specific object is 
accepted to correspond to the model one. Otherwise, the model must be altered until a 
satisfactory agreement with experiment is reached. 

Attempts to describe the structure and to define exhaustively the name of a system 
as a “thing in itself” are usually fruitless, and discussions of jellies have shown this once 
again. 

If we stay in the framework of the traditional approach, state equations 64, 65, 68, 71. 
72 reflect a specific model of the NP+LMWL system, which leads to the two summands 
AG, and AG,l. As experiments agree with these equations, it means the prescribed 
model is close to the actual structure of the body which can, for example, be called gel 
or jelly It is known that, to reach better agreement between the state equations and 
experimental data, the model of the NP+LMWL system (and the details of the state 
equations) were changed, but its main points remained: the presence of crosslinks, the 
entropy term AG,i. 

On the other hand, in different realizations of the P+LMWL state equations, concerning 
the location of the configurative point and the features of its motion on the state diagram, 
the system may show different morphological (in particular, mechanical) properties. 

In the case of the spinodal separation mechanism, a spatial polymer framework appears 
in the system, and this system will show the high-elastic properties of a solid polymer 
body. Unlike the above model NP+LMWL system, this framework is composed not 
of molecular network chains but of much larger constructions, which can hardly be 
ascribed the entropy term AG,l. 

Upon further motion of the configurative point to outside the phase separation region, 
the system will return to the structure of true solution. 

Moreover, true solutions (both semidilute and concentrated), regarded in the time scale 
t < T,., “legally” show gel properties in the sense of the appearance of the high-elastic 
properties. 

Special discussion is required for gels where molecular network chains are crosslinked 
due to the local crystallization of fragments of polymer chains (jellies type Ib after Pap- 
kov) . 

In this case, we are dealing with crystallizing polymers only whose mixtures with solvent 
have the state diagram with a liquidus curve (in the simplest variant) (see section 6.1). 
On the other hand, the fact of crosslinking must lead to the state equations of gels 
(Equation 64 etc.). As soon as the state equations of the NP+LMWL system hold true 
for such systems (see section 6.2 for details), this attests to the independence of the two 
kinds of phase separation, according to Papkov’s concept. 

Gels with crystal fragments as crosslinks are, as a rule, thermoreversible due to the 
liquidus curve being intersected while the configurative point moves along the temperature 
axis. 

In contrast to crosslinked gels, thermoreversible gels must possess the elastic modulus 
which is an extrema1 function of temperature: far from the melting temperature of crystal- 
lites, Equation 50 with v = const holds good, while near this temperature, the reduction 
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of the number of crosslinks z/ will inevitably overcompensate for the temperature effect. 
Discussion about the ”one-phase or two-phase character” of gels prove to be absolutely 

fruitless without a state diagram (typical or, better, specific), Depending on the config- 
urative point position on the state diagram, gels may be two-phase as well as one-phase 
which was discussed above. 

Gels with crystallite crosslinks, naturally, are, in principle, two-phase ones with respect 
to the liquid-crystal phase separation, though crystallites may be “silent” as crystal bodies 
(fragments) within the resolving power of a specific analysis method (see section 6.2 for 
details). As to phase separation within the framework of the NP+LMWL system, this 
case amounts to the previous one. 

3.6. Improvement of Flory-Huggins’ lattice theory 
3.6.1. Concentration dependence of Flory-Huggins’ interaction parameter (the 

Flory-Huggins’ classical theory has turned out to be improvable by assuming a cer- 
tain type of the interaction parameter dependence on the concentration and MWD of a 
polymer. 

In the second-approximation theories, the interaction parameter is denoted by the letter 
g. Then, the state equation has the form 

second approximation of the theory) 

(1) 
AG,,, 
RT - PO In ‘PO + E ~pip;’ In (pi + g(po(p. -- 

3 

Most often, g increases with concentration which attests to the contribution to the 
interaction parameter of not only the closest neighbours in the lattice (cf. Equations 3.1- 
28 and 1.3-4). In termsof screening length and blobs (see subsection 3.1.1), it is equivalent 
to a decrease in the blob sizes with increasing concentration. 

A general dependence of g on ‘p and T is derived from simple phenomenological con- 
siderations (Koningsveld, 1968). First of all, 

AG, = AH,,, - T AS,,,, (2) (s) = Acp, 
P 

(3) 

For most liquids, a linear temperature dependence of Acp is observed with the simplest 
approximation 

ACP = ( C W  + CPJ(p0’p) .  ( 5 )  
Integration of Equations 3 and 4 in view of Equation 5 with subsequent substitution of 

A& and AS,,, into Equation 2 leads to 

(6) 
1 

AGm = (HI + cmT + p T 2 )  (POP - T(S1+  cp01nT + cPlT)‘pOp, 
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where HI and SI are integration constants. 

1968) 
Then, the next approximation of a rather general form is introduced (Koningsveld, 

where all the coefficients are functions of MWD. Then, elimination of AG, from Equa- 
tions l and 6 with due account of Equation 7 leads to 

It follows from these two equations that the temperature and concentration dependence 
of g are separated, and g = g(T)  can be represented as the temperature dependence of 
the first term in Equation 9 

The fourth term is less sensitive to T .  The third one has a significant impact if Acp is 
a strong function of temperature, as it happens when the vapour-liquid critical point is 
approached (see section 3.8). 

Often (when T << Tc),  go3 and go4 either are negligible or compensate for each other: 
only the two first terms remain in Equation 10. 

In a wide temperature range, function 10 provides the existence of UCST and LCST (cf. 
section 3.8) and explains all the observed kinds of liquid-liquid phase separation regions 
(see below). 

If the concentration dependence g = g(p) is accepted in the absence of the MWD (the 
second approximation of the theory), then Equation 1, according to Equations 1.1.1-23, 
3.1-50,-51, 3.2-4,-5, produces 

APi P i 9  2 - = lnpi + 1 - - - pi(1- p) + 
RT Pn 

(Koningsveld and Staverman, 196%). 

form for Equations 11 and 3.2 4, then 
If we denote the expression in the brackets in Equation 11 as x in order to have one 

If is represented as a series 

x = c X,Pk, (14) 
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then Equations 9, 13, 14 yield a relationship among the coefficients of series 9 and 14 

(Koningsveld, 1968). 

critical state (Equations 3.2-2,-3) lead to the equations of the spinodal 
In view of the concentration dependence g = g(p), the conditions of the spinodal and 

d2s 1 
OV- a'P2 = -'ppu, 

-1-2g+2(1-2'P)--+'P 
a'P 'PO 

and the critical state 

(Koningsveld, 1968, 1970b; Koningsveld and Staverman, 1968b; Rehage and Koningsveld, 
1968). 

If g is a function of temperature only, these equations reduce to Equations 3.2-9,-10. 
In the case of a linear dependence g = g(cp), series 9 contains two summands 

g = go + g1'P. (18) 

(19) 

Then, according to Equations 16 and 17, the spinodal equation is 

2go = (pwcp)-' + (Pol + 2(1 - 3'P)g,, 

and 

holds true for the critical state. 
For a quadratic dependence 

9 = 9 + Sl'P + 92'P2, 

2% = (1 -VI-' + (cppW)-l t 

(21 1 

(22) 

the spinodal equation 

- 3p) + 6g2(1 - 2 9 ) ~  

and the critical state equation 

are derived from Equations 16, 17. 
It follows from Equations 16, 19, 22, and 3.2-9 that the polynary P+LMWL system 

has the same spinodal for polymers with different MWD but the same pw,  which coincides 
with the spinodal of the binary PSLMWL system with p = pw (see Figure 3.14). 

The spinodal goes through the critical point, whose position, in turn, depends on p, 
and p w .  It follows from Equations 17, 20, 23, and 3.2-11 that the more the p J p ,  ratio, 
the stronger pc differs from 'ppt (the concentration at the spinodal maximum). 
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Gordon et al. (1969) have found the critical point of the polynary system to be located 
on the right-hand branch of the spinodal and on the right-hand boundary of the phase 
separation region for systems with a LCST as well as for systems with a UCST. The c r i t i d  
point is the common point of the spinodal and the boundary of the phase separation region 
(the cloud-point curve). The spinodal and the CPC has a common tangent line at it. 

Equation 23 is a test to defme the character of the g = g(cp) dependence and the 
coefficients of series 9 (Koningsveld, 1968). Its right-hand side is denoted by Y: 

1 -  (1 - cpc)-2 - p, 
p",Y.," 

Y is, therefore, a function of the experimentally measured quantities pc, pw, and p ,  for 
a number of polymer samples. 

If, now, the dependence 

y v.9 cpc (25) 

is plotted, its shape points to the character of the g = g(9) dependence. 

Equation 23 gives 
If Y = 0, then it follows from Equation 23 that g does not depend on y. If Y = const, 

y = 9 1 ,  (26) 

If Y is a linear function of 'p,, then 

9 = go + 9lcp + 9 2 v 2  (28) 

and the slope and intercept of the straight line 

y = 91 - 9 2  + 4929, 
determine the coefficients 91 and 92. 

The coefficient go is determined from spinodal equations 19,22, and 3.2-9. If the critical 
points 9, and T, are measured for a number of samples, go is calculated for each value 
of cp, by Equation 19 or 22 or 3.2-9. The temperature dependence of go results from 
comparison of go us T, or go us T;', where T, corresponds to the values cpc which go's are 
calculated for. 

Additional information is given by the spinodd slope at the critical point (in the T us 'p 

coordinates). Eg., if Equation 18 holds good and the go comprises the two first terms 
(Equation lo), then substitution of 

902 
go = go1 + - T 

into Equation 19 and differentiation with respect to cp lead to 
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Figure 3.63. Dependence of Y on the polymer critical concentration (in mole fractions 
z2 = 1/(1 + woM,/wp), where wo and w,, are the inasses of the solvent and polymer, 
respectively, M, is the molecular weight of styrene) (a).  Temperature dependence of 90 
(b). Polystyrene+cyclohexane system (Koningsveld, 1970b; Koningsveld et al., 1970b) 
[Reprinted with permission from: R.Koningsveld. Disc. Faraday SOC. 49 (1970) 144-161. Copyright @ 
1970 by the Royal Society of Chemistry] 

from which go2 is determined. With known go and go2, go1 is calculated by Equation 29. 
This method was applied to the systems polystyrene+cyclohexane, polyethylene+di- 

phenyl ether (Koningsveld and Staverman, 1967b, 196%; Koningsveld, 1968, 1970b; Fk-  
hage and Koningsveld, 1968; Koningsveld et al., 1970b), polystyrene+methylcyclohexane 

The plot in Figure 3.63 for the polystyrene+cyclohexane system gives a quadratic 
dependence of g on 'p (Equation 21) with g1 = 0.2312 and g2 = 0.0750 (for polymer 
concentration in mole fractions 2 2 ,  see the caption to Figure 3.33) or g1 = 0.2064 and 
92 = 0.0518 (for volume fractions). The go = g o ( T )  dependence (Figure 3.6313) can be 
represented in the form 

(Dobashi et al., 1980b) (Figures 3.63 and 3.64). 

901 
go =goo + - T 

with the coefficients goo = 0.4961; 901 = 71.920 (at zz), and goo = 0.4099, 901 = 90.65 (at 
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Figure 3.64. Dependence of Y on cp a).  Temperature dependence of go (6) for the 

from: R.Koningsveld. Disc. Faraday SOC. 49 (1970) 144-161. Copyright 0 1970 by the Royal Society of 
Chemistry] 

polyethylene+diphenyl ether system ( d oningsveld, 1968, 1970b) [Reprinted with permission 

9). As a result, 

( 32) 
71.92 

T 
g(22, T )  = 0.4961 + - + 0.231222 + 0.07502; 

or 

+ 0.20649 + 0.0518p2 90.65 
T 

g(p, T) = 0.4099 + - (33) 
or 

+ 0 . 2 5 8 0 ~  + 0.1012w2, (34) 
47.36 

g(w, 7') = 0.6035 + 
where w is the weight fraction of the polymer (Koningsveld et al., 1970b). 

cating the high-order terms, we obtain 
Representing the logarithmic term and g(p, T )  in Equation 12 as series in cp and trun- 

9 1  1 
-- - [z - (90 - gd] (P2 - [5 - 2(g1 - 4 9 3  +. . . . -- APO - 

RT pn 
(35) 
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Parameters 

PO0 

Po1 

Y 

8, "C 

cy 

u = 27-' 

The coefficient attached to pa is proportional to dz (Equations 1.2-27, 1.3-37, 2.4-26), 
and at T = 8 

1 
go - 91 = - *  2 

For the polystyrene+cyclohexane system, g1 = 0.2312; hence, the 8 temperature corre- 
sponds to go = 0.5 + 0.2312 = 0.7312, and this value of go responds to 8 = 32.7"C in Fig- 
ure 3.63, in excellent agreement with light scattering and sedimentation data (0 = 33°C) 
(Koningsveld et al., 1970b). 

At any other temperature, the relationship go - g1 = x, = f - + K~ = f - $1 + &8/T 
(cf. Equations 15 and 3.140,-41) holds (Koningsveld et al., 1970b). 

The plot Y = Y(cp) for the polyethylene+diethyl ether system (Koningsveld, 1970b) 
(see Figure 3.64) points to the p-dependence of g (Y = 0). Extrapolation of g to the 
value g = 0.5 (g  = go, as g1 = 0) in the g us T-' construction (see Figure 3.6413) yields 
8 = 161.8"C which agrees with Chiang's (1965) independent data (8 = 161.4"C). 

Using the plot (Figure 3.64b), g = g ( T )  is expressed as 

Fraction 
Weight Volume Segment mol 

0.4212 0.4987 0.3899 
72.91 111.74 98.55 

0.4373 0.2365 0.3365 
4.6 8.5 5.9 

32.90 32.70 32.85 

0.1290 -0.1597 0.0276 

(36) 
482.2 

T 
g = -0.6086 + - 

(Koningsveld, 1968, 1970b). 

like 
Koningsveld and Kleintjens (1971) have proposed a closed expression for g = g(cp,T) 

(37) 
P O  

1-79' 
g = a + -  

which produces good agreement between the theoretical and experimental spinodals for 
the polystyrene+cyclohexane system with the values of the parameters included in Ta- 
ble 3.5. 

Table 3.5 
Values of the parameters in Equation 3.6-37 

I/ is the lattice coordination number 

The concentration dependencz of Flory-Huggins' interaction parameter in the molecular 
parameters follows from the theoretical development of the lattice model correcting for 
the change in the system's volume on mixing (Cohen, 1977). 
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In subsection 3.3.1, we mentioned the difference (by 1.5.. . 2  times) between the pc 
calculated after Flory (Equation 3.1-241) and the experimental ones (in fact, c p p t ) ,  which 
was reported in a number of papers. The difference between p ,  and pw is a cause of this (see 
subsection 3.3.1). Now we are able to quote the corresponding estimations (Koningsveld, 
1970b), which involve the concentration dependence g = g((p). 

For the polystyrenc+cyclohexane system, cpc(theory)/vpt(exp.) M 2 (Debye et al., 
196Ob). If M ,  x M, is assumed for the polystyrene samples examined by Debye et 
al., even in this case the cpc calculated from Equation 23 exceeds the measured 'ppt by 
1.35.. .1.5 times. If M, > M,, the pc(theory)/cppt(exp.) R 2 ratio can be regarded as real 
(Koningsveld, 1970b). 

Further improvements of Flory-Huggins' theory (the third approximation) were possible 
aftcr dcvclopment of experimental methods to determine the phase separation region, the 
spinodal, the critical point, and Flory-Huggins' interaction parameter. 

For this reason, the next section is devoted to these problems. 

3.6.2. Development of experimental  methods for determining t h e  phase sep- 
aration region, critical point, spinodal and interaction parameter 

Phase-volume ratio method 
In most of his papers, Koningsveld (1968, l970ab, 1975) (including: Koningsveld and 

Staverman, 1966, 1967ab, 1968abcde; Gordon et al., 1969; Koningsveld et al., 1970ab, 
1974ab; Gordon et al., 1969; Koningsveld and Kleintjens, 1971; Kennedy et al., 1972, 
1975) determined the critical point by means of the phasevolume ratio method which 
implies complete phase separation (the appearance of layers) and direct measurement of 
their volumes. 

Theory and experiment (see the papers indicated above and Kleintjens et al., 1976ab) 
show a strong temperature dependence of the phase-volume ratio T near cpc. It is demon- 
strative to plot T- against the difference AT between the current temperature and the 
cloud point at different p/pC ratios. 

It is seen from Figures 3.65 and 3.66 how an arbitrarily chosen 'p relates to cpc. Mea- 
suring r for different cp, pC can be determined with a desired accuracy. The experimental 
technique is simple and includes measuring the height of layers in a sealed glass tube hav- 
ing been thermostated (with an accuracy of 0.1"C) for a required period of time (hours, 
weeks, and even months). The cloud point at cpc defines the critical temperatnre. 

The requirement for the phase separation process to cease prior to measurements (which 
is often not the case in polymer systems) is a restriction of the method. Indeed, only 
few systems (eg. polyst,yrene+cyclohexane and polyethylene+diethyl ether) have been 
studied in detail by the phasevolume ratio method (see the abovementioned papers). 

Long periods of equilibrium establishment can be shortened using an ultracentrifuge 
at small speeds of rotation (to prevent sedimentation of macromolecules) (Scholte and 
Koningsveld, 1967; Koningsveld, 1968). 

As model calculations and experiment show (Koningsveld and Staverman, 1968b), in 
the case of some strongly asymmetric MWD functions, the branch 'P = T ( A T )  at cp < y c  
may fall below 1 and, having gone through a minimum, tend to infinity. The ciirve T = 
r(AT) responding to cp = cpc also goes through a minimum below 1 but with subsequent 
(AT + 0) attainment of r = 1. This circumstance requires special care in experimental 
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AT 

Figure 3.65. Phase-volume ratio as a function of the difference AT between the current 
temperature and the cloud point at different polymer concentrations (schematic) (Kon- 
ingsveld, 1970b) [Reprinted from: R.Koningsveld, L.A.Kleintjens, A.R.Shultz. J. Polym. Si. A-2 8 
(1970) 1261-1278. Copyright @ 1970 by Wiley. Reprinted by permission of John Wiley & Sons, Inc.] 

r 
Figure 3.66. Experimental phasevolume ra- 
tio against the difference AT between the cur- 
rent temperature and the cloud point for dif- 
ferent polymer concentrations (wt %). M,, = 
375,000, M, = 394,000, M, = 423,000. 
Polystyrene+cyclohexane system, w, = 0.0695% 
(Koningsveld, 1970) [Reprinted from: R.Koningsveld, 

1 L.A.Kleintjens, A.R.Shnltz. J. Polym. Sci. A-2 8 (1970) 
1261-1278. Copyright @ 1970 by Wiley. Reprinted by per- 
mission of John Wiley & Sons, Inc.] 

2 

- 
1 2  3 A T  

technique and rigour in interpretation of results. 
Solc (1970, 1974) ha,s foiind that  the break paint on the CPC does not coincide with t h e  

critical point for strongly asymmctric MWDs (cg. for logarithmically normal MWDs, wl, 
w2, and w3 in Koningsveld, 1970ab). Such CPC point is not singular but the interaction 
point of the branches of CPC whose continuation (after this point) defines the mentioned 
branch. In such cases, the critical point lies on the metastable branch of the CPC and is 
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Solc has called the intersertian point called an unstable critical point (Figiire 3.67). 

increase of MWD’s asymmetry 

Figure 3.67. The emergence of the metastable critical point when the asymmetry of 
MWD gets stronger: 1 is the boundary of the phase separation region (the cloud-point 
curve); 2 is the spinodal; la and l b  are the metastable branches of curve 1 (Koningsveld, 
1975) [Reprinted from: R.Koningsveld. Brit. Polym. J. 7 (1975) 435-466. Copyright @ 1975 by Wiley. 
Reprinted by permission of John Wiley & Sons, Inc.] 

of the CPC branches a triple point (see section 3.10 for details). The coincidence of 
the triple point with the critical point for logarithmically normal MWDs in Koningsveld’s 
(Ig7Oab) experiments is explained by Solc by the approximate character of the numerical 
calculation of the CPC by Koningsveld (1970a)-Staverman’s method: it does not account 
for all the details of phase separation in the case of strongly asymmetric MWDs, and the 
critical point cannot he determined from the dependence r = f(AT). $ole's considerations 
wcrc confirmcd cxpcrimcntally by Koningsvcld (1975) (scc Figurc 3.67). 

The necessity to have polymer fractions or samples in large amounts (several hundred 
grams) is a substantial limitation of the phase-volume ratio method (Koningsveld, 1968). 

Refractometry 
In some cases, the boundary of the phase separation region (or the configurative point 

close to it) can be recorded using a kink on the temperature dependence of the refractive 
index of solution while the configurative point moves along the temperature axis at a 
constant composition of the system (Rehage, 1963; Tager et al., 1982~). 

One should keep in mind that the character of this singularity on p = p ( T )  significantly 
depends on the rate of the configurative point’s motion (Rehage, 1963). 

In the most favourable variant, when phase separation is completed in reasonable pe- 
riods, refractometry can be used to determine the polymer concentration in both phases 
and, therefore, the phase coexistence points at  T = const (Dobashi et al., 1980ab) (Fig- 
ure 4.8). 

Thermal effects 
For amorphous separation systems with a UCST and LCST, heat effects of mixing (di- 

lution) are, as a rule, of an endothermic (Prigogine and Defay, 1954; Tager, 1978) and 
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I 

Figure 3.68. Concentration dependence of the enthalpy of mixing AH, for systems with 
amorphous separation (Smirnova and Morachevski, 1966) 

exothermic character (Figure 3.68) (Prigogine and Defay, 1954; Smirnova and Morachevski, 
1966; Tager and Bessonov, 1975ab), respectively. It follows that the measurement of the 
thermal effects can be used to determine the location of the phase separation region (Kage 
mot0 et al., 1972; Tamura et al., 1972; van Emmerik and Smolders, 1973b; Tsiperman et 
al., 1974 as well as the abovecited papers). 

When the configurative point moves from the onephase region to the two-phase one and 
intersects the binodal, a sigma-like signal with its sign opposite to that of the mixing effect 
appears in the DTA technique. Eg., in the MC+water system (amorphous separation with 
a LCST) at a heat rate 0.625 grad/min, the beginning of the sigma-like endothermic signal 
is associated (Kagemoto et al., 1972) with the binodal temperature (the boundary of the 
phase separation region), which exceeds the cloud temperature by 1.3" in the polymer 
concentration range 0.016.. .1.15 vol %. 

In a number of cases, analysis of the thermal effects enables one to reveal additional 
information of the state diagram: the presence of a glass transition curve, the identifica- 
tion of the phase separation regions of both the amorphous and crystalline types in the 
same system (van Emmerik and Smolders, 197313). However, the thermal effects of phase 
separation in polymer systems often turn out to be insignificant for reliable determination 
of the phase separation region (Papkov, 1981). 

Determination of t he  spinodal and the  interaction parameter by light scatter- 
ing 

As far back as in 1968, Koningsveld wrote that the spinodal cannot be studied ex- 
perimentally. But soon a method to determine the spinodal using light scattering from 
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polymer solutions was proposed (Chu et al., 1969; Scholte, 1970b, 1971, 1972). The 
method is based on the calculation of the determinant and cofactor in the expression for 
Rayleigh’s ratio Ro of a polymolecular polymer solution (Equation 3.3-10) in terms of 
Flory-Huggins’ equation 3.2-1 with volume fractions cp replaced by weight fractions wo 
and w; 

Mo 
woln wo + -w; In wi + xwwow 

RT Mi 

where AG, is the Gibbs potential of mixing in e AV grams of solution, e is the solution’s 
density, wo and wi are the weight fractions of LMWL and polymer components, respec- 
tively, w is the weight fraction of the whole polymer (w = Ciwi),  MO and M; are the 
molecular weights of LMWL and the ith component, respectively, x, is the interaction 
parameter which must differ from x from Equation 13 due to the different concentration 
units. It follows that 

- = I n ( I - w ) +  w2, APO 
RT 

4; Mj M; 
- = Inw; + 1 - -w - -(I - w) + 
RT M,, Mo 

(39) 

(cf. Equations 11 and 12). As a result, an equation is obtained for Rayleigh’s ratio Re 
(Scholte, 1970ab, 1971; Vrij, 1974) 

where v1 is the specific volume of LMWL; K’ differs from the optical constant K (Equa- 
tion 2.4-22) by dnldc replaced by dn/dw 

or 

2>(, - w- 
1 

with 

ag  x, = g - (1 - w - .  
d W  

(43) 

(44) 

Comparison of the derivative a(Apo)/aw at M,, = const (see Equation 39) with Equa- 
tion 41 for 29 = 0 leads to (Scholte, 1970b, 1971) 

This equation is used to determine the derivative (aAp,/aw)~,, at several solution 
concentrations, then Apo is calculated by integration for any (prescribed) values of w. 
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Figure 3.69. Concentration (wt %) de- 
pendence of the interaction parameter x, 
in the polystyrene+cyclohexane system 
( M ,  = 163,000) at T = 35"C, 45"C, 
and 65°C from light scattering ( I )  (Scholte, 
1970b), the critical state (2) (Koningsveld 
et al., 1970b), and the ultracentrifuge equi- 
librium (5') (Scholte, 1970b) [Reprinted from: 
Th.G.Scholte. Europ. Polym. J. 6 (1970) 1063- 
1074. Copyright @ 1970 with kind permission of 
Elsevier Science - NL, Sara Burgerhartstraat 25, 
1055 KV Amsterdam, The Netherlands] 
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Using Ape, x, is calculated from Equations 39 and 44. The obtained dependence x, = 
f(w) for the polystyrene+cyclohexane system is in good agreement with the data by 
other methods (Figure 3.69). Repetition of this procedure at different temperatures 
yields the temperature dependence x, = f(T) (Scholte, 1971). 

Differentiation of Ap; with respect to w at the same MWD (Equation 40), summation 
and comparison with Equation 41 at 29 = 0 lead to a differential equation for the polymer 
number average chemical potential (Scholte, 1970ab) 

2K'(l-W) 1 - w  
@Rk1e=o 

(9) = RTM,, 
MWD 

Integration of Equation 46 provides the calculation of Ap,,. 
If a quantity 

is introduced, then, in view of Equation 42, 

1 
.4-1 = . ( 

The condition R$, = 0 means the spinodal (Equation 3.3-lo), hence, according to 
Equation 47, A-' = 0 defines the spinodal as well. Then, on the basis of Equation 48, 
the spinodal condition is expressed by 

ax, - 2x -w--0. 
1 -+-- M,w 1 - w  dw 

MO 

The plot A-l ws 1/T (Figure 3.70) at 
axis 1/T (A-' = 0) while the slope shows 

(49) 

a given concentration intersects l /Tsp  on the 
the character of the 1/T-dependence of 2x, + 
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Figure 3.70. Extrapolation A-' = 
0 for determination of the spinodal 
temperature at different to's: 0.0186 
( I ) ,  0.0407 ( 2 ) ,  0.062 ( 3 ) ,  0.0821 
( d ) ,  0.1012 (4, 0.1243 (6),  0.1496 
( ?). Polystyrene+cyclohexane sys- 
tem (Scholte, 1971) [Reprinted from: 
Th.G.Scholte. J. Polym. Sci. A-2 9 (1971) 
1553-1577. Copyright @ 1971 by Wiley. 
Reprinted by permission of John Wiley & Sons, 
Inc.] 

w(ax,/&u). In particular, it is seen from the figure that at any small w, such a dependence 
manifests itself in a bend of the A-' us T-' plot and makes the extrapolation A-' + 0 
less reliable. Figure 3.71 represents an example of spinodals determined in lhis way (see 
also: Andreyeva et al., 1976; Tager et al., 1976a). 

The chief condition of applicability of this method is that R8=0 = f ( w , T )  must be 
determined in the one-phase region (homogeneity), i.e. outside the phase separation region 
(Figure 3.72). The stronger w differs from w,, the wider the temperature range between 
the boundary of the phase separation region and the spinodal, the extrapolation range 
gets longer, and the accuracy of Tsp determination gets worse. It is for this very reason 
that Chu et al. (1969) called the corresponding curve a pseudospinodal . 

To improve the accuracy and reliability of the extrapolation procedure A-' N R& + 0 
and to increase the efficiency of the analysis, a special nephelometer was designed and 
manufactured at the University of Essex (Great Britain) (Gordon et al., 1974, 1975). The 
method itself was named "pulse-induced critical scattering" (PICS) (Derham et al., 
1974; Gordon et al., 1974, 1975; Kennedy et al., 1975). 

The design of the PICS device provides for the motion of the configurative point to the 
metastable region for a period, sufficient for establishing heat equilibrium and measuring 
the scattered light intensity at two angles, 29 = 30" and 29 = go", but less than the 
induction period of the formation of a new phase's particles. 

The device described in (Kennedy et al., 1975) comprises two chambers: one with 
a maintained temperature known to correspond to the onephase state while the other 
with a slowly varying temperature towards the existence of the phase separation region. 
An optical scheme for recording R # = Z O o  and &,m. with fiber lightguides is mounted 
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Figure 3.71. Spinodals for the po- 
lystyrene+cyclohexane system: 
M,,, = 520,000 (5a), 163,000 ( l a ) ,  
51,000 (7a) determined by ex- 
trapolation A-' = 0 (Scholte, 
1971) [Reprinted with permission 
from: Th.G.Scho1t.e. J. Polym. Sci. 
A-2 9 (1971) 1553-1577. Copyright 
@ 19711 (see Figure 3.70) ( I ) ,  
calculated from one of the ap- 
proximations x, = x, (T ,w)  ob- 
tained from light scattering data 
(Scholte, 1970b)(see Figure 3.69) 
(2); from the dependence x, = 
yw(T, w) obtained from critical 
state data (Koningsveld et ai., 
1970b) (3). The critical points 
have been determined by the 
phase-volume ratio method (Kon- 
ingsveld et al., 1970b) 

Figure 3.72. Scholte's (1971) method 
of spinodal determination (I), 2 is 
the boundary of the phase separa- 
tion region, 9 is the critical point. 
The crosses mark the configurative 
points where the scattered light in- 
tensity was measured [Reprinted from: 
Th.G.Scholte. J. Polym. Sci. A-2 9 (1971) 
1553-1577. Copyright @ 1971 by Wiley. 
Reprinted by permission of John Wiley & 
Sons, Inc.] 

in the second chamber. Cells (capillar vessels of 10 pl) are fixed by clamps set on a 
whirligig. A special time program transfers the clamp with the cell on the whirligig by a 
step-by-step motor from the first chamber to the second one with subsequent returning 
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after establishment of heat equilibrium and measuring R @ = ~ o  and R @ = ~ O .  Thus, the 
configurative point is, by turn, at a constant temperature far from the phase separation 
region or at a temperature drifting towards this region. The duration of the cycles can he 
chosen short enough to  make the time of the system being in the metastable region shorter 
than the induction period (Figure 3.73). This enables the extrapolation gap IGi + 0 

Z30 . mV 

I 

Figure 3.73. Typical pat- 
tern of scattering Zm. in 
heating-cooling cycles. 
The values at the 130" 

maxima correspond to the 
temperature where the con- 
figurative point is recorded. 
The minimal values of 
130' respond to heating 
cycles up to the onephase 
state temperature of the 
polystyrene+cyclohexane 
system. M, = 193,000, 
M w  - - 200,000, 
w = 0.15 wt  % (Derham 
et d., 1974) [Reprinted with 
permission from K.W.Derhani, 
J .Goldsbrough, M .Gordon. Pure 

/ 

I I 

'L3.0 22.9 
T .  "C 

and Appl. Chem. 38 (1974) 
97-116. Copyright @ 1974 by 
IUPAC] 
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to be significantly shortened and, hence, improve the accuracy of the Tsp determination. 
Derham et al. (1974) and Kennedy et al. (1975) consider the extrapolation ZG: (instead 
of Ziio) not to introduce a significant error into the Tsp determination. The way of 
extrapolation is the same as in Chu-Scholte's method. 

This nephelometer does not determine the boundary of the phase separation region (the 
CPC): the temperature Ta of a sharp fall in 1, in a cooling impulse is recorded (see the 
arrow in Figure 3.73). The authors associate this fall with the beginning of new phase 
particle formation which causes a sharp deformation of the radiation diagram. 

The PICS method is most advantageous when performing a huge number of measure- 
ments using a huge number of P+LMWL samples, for which the phase separation region 
is known on the whole and careful measurements are required to clarify the fine features 
of this region and spinodals depending on the compositional peculiarities of the polymer 
(polymolecularity, branching, etc.). 

It should be noted that this way of determination of the boundary of the phase sepa- 
ration region (the binodal) is in no case flawless. Generally speaking, nothing evidences 
that the deformation of the radiation diagram occurs on the binodal, not at any point 
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between the binodal and spinodal or behind the binodal. 
The PICS method has, on the whole, confirmed Scholte's (1971) data on the dependence 

of the spinodal position on the higher average molecular weights M,, M,+1, etc. (Kennedy 
et al., 1975), which enables the circle of the problems under study to be expanded to 
develop the third approximation of lattice theory (dilute solutions, the x = x ( M )  depen- 
dence, see subsection 3.6.3). The successful development of the theory provides, in turn, 
the basis for application of the methods, determining the critical quantities, to evaluate 
the higher average molecular weights, which is of great importance in polymer production 
and processing technology (Kennedy et al., 1975). 

Determination of characteristic curves of the phase separation region by the 
turbidity spectrum method 

The state-of-the-art of the turbidity spectrum method enables the parameters of ill- 
defined disperse systems to be determined (Klenin et al., 1977a). 

An ensemble of particles of a new phase in the metastable region is a typical example 
of such systems, where nothing is known of the structure of the particles but the fact of 
their existence. 

The turbidity spectrum method is capable of determining the particle sizes and weight 
concentration M of the new phase, i.c. in essence, the degree of phase conversion x = M / c ,  
c being the polymer concentration in the system. 

This serves as the basis for a technique of plotting the characteristic curves of the 
phase separation region, namely, its boundary and the spinodal, with the former being 
determined much more legally than the latter. 

The chief point of the approach is that the configurative point is driven into the 
metastable region and the rate of phase conversion v = d x / d t  (or vT = d r l d t ,  or the 
degree of phase conversion) is therefore changed. Extrapolation v -+ 0 (or v, -+ 0 ,  or 
x + 0 )  defines the boundary of the phase separation region (Klenin et al., 1974acf; Klenin, 
1977, 1982) in accordance with the conditions of Table 3.1. In one variation of the method, 
temperature at constant concentration is measured. If the turbidity of the system sub- 
stantially increases in a certain temperature range, the turbidity spectrum is recorded at 
a few fixed temperatures with measuring the rate of phase conversion v = d x / d t  at the 
initial stage of conversion (or after the induction period). Extrapolation v ( T )  + 0 defines 
the temperature of the boundary of the phase separation region at a given concentration 
c while w-'(T) + 0 defines the spinodal temperature. 

This procedure is performed in a certain range where the concentration dependence 
of the boundary of the phase separation region in the P+LMWL system is determined. 
The character of this dependence indicates the type of phase separation: liquid-liquid 
(UCST or LCST) or liquid-crystal (see Chapter 6). The technique of determining the 
characteristic curves of the liquid-liquid phase separation region is outlined in Figure 3.74. 

Thus, this approach determines the spinodal by a phenomenological kinetic principle 
(v + co). How closely this obtained curve (perhaps, a quasispinodal) may fit to the 
thermodynamic spinodal can be determined only from experience in studying a number 
of systems. One particular case is dealt with below. 

In contrast to the common technique of recording the boundary of the phase separation 
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Figure 3.74. Schematic of the determination of the boundary of the liquid-liquid phase 
separation region (1 )  and the spinodal (2) by the turbidity spectrum method 

region by turbidity (see subsections 3.2.1 and 3.3.1) where the critical opalescence phe- 
nomenon may be mistaken for phase separation, the measurement of the rate of phase 
separation prevents any possibility of such artifacts. 

Among the advantages of the method is the simplicity of experimental technique using 
common instruments (colorimeters, spectrophotometers of any kind whose measuring cells 
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are equipped with a thermostating unit). 
The fact that it is the integral properties of scattered light tha.t are measured is of 

utmost importance as they weakly depend on some anisodiametry of particles (Khlebtsov 
and Shchyogolev, 1977ab; Khlebtsov et al., 1977, 1978ab; Shchyogolev et al., 1977a), 
their polydispersity (Ramazanov et al., 1983a), and other fine details of the structure 
of particles (Ramazanov and Shchyogolev, 1979), which causes a sufficient stability of 
the solutions of the inverse problems in different variations of the turbidity spectrum 
method (Khlebtsov et al., 1978b; Ramazanov and Shchyogolev, 1979; Shchyogolev, 1983) 
(see subsection 2.1.5). Besides,'the turbidity spectrum method is effective in a wide 
conccntra.tion range of thc P+T,MWT, system provided that, spccial care i s  taken a,ga.inst 
information distortions caused by multiple and low-angle sca,ttering. 

This method is most reasonable in venture researches when even preliminary data on 
the type of phase separation are lacking. It was the case while studying phase separation 
in the poly-m-phenylene isophthalamide (PPhIA)+dimethylacetamide (DMA) (Klenin 
et al., 1974af, 1976a). 

a 

30 50 70 no 110 130150 T,"C 

b 
Figure 3.75. Determination of the boundary of the phase separation region (a) and the 
spinodal (6) by extrapolation of the phase separation rate e, -+ 0 (u)  and v-' -+ 0 (v + m) 
(6) for the poly-m-phenylene isophthalamide+dimethylacetamide system (Klenin et al., 
1974a). M, = 65,000, M,,, = 341,000, M, = 570,000 (Klenin et al., 1976a). Numbers at 
curves denote polymer concentration, g/dl 

It follows from Figures 3.75 and 3.76 that liquid-liquid phase separation with a LCST 
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Figure 3.76. Boundary of the phase separation 
region (1) and the spinodal (2) plotted in accor- 
dance with the data of Figure 3.75; the spinodal 
(3)  obtained by Chu-Scholte's method (Klenin et 
al., 1974a) [v.J .Klenin, L.V.Prozorov, M .Yu.Prozorova, 
B.I.Zhisdyuk. J. Polym. Sci. Symp. 44 (1974) 131. Copy- 
right @ 1974 by Wiley. Reprinted by permission of John 
Wiley & Sons, Inc.] 

proceeds in the PPhIASDMA system. The absence of the point of tangency between the 
boundary of the phase separation region and the spinodal is obviously associated with a 
shift of the critical point towards higher concentrations, as the polymer (a commercial 
sample) was significantly polymolecular (M, /M,  = 5.3, Mz/Mw = 1.67) (Klenin et al., 
1974a). Advance to the region of higher concentrations was hindered by preparative 
difficulties. In this system, the spinodal determined by v + co practically coincides with 
that given by Chu-Scholte's method (see Figure 3.76). 

The liquid-liquid phase separation with a LCST in the system PPhIA+DMA was also 
recorded using measurements of the thermal effects and vapour pressure over polymer 
solutions (Tsiperman et al., 1974). 

T ,  "CI 

80 

60 

40 

Figure 3.77. Cloud-point curve ( I ) ,  the bound- 
ary of the phase separation region by M / c  + 0 
(2), and line corresponding to the conversion de- 
gree M / c  = 10% (3) for the poly(dimethoxy ethy- 
lene)+water system. Ms,o = 45,000 (Klenin et al., 
1979b) 

20 I 
0.01 0.05 

c, g/dl 

With the poly(dimethoxy ethylene)+water system as an example (Klenin et al., 1979b) 
(Figure 3.77), one can see how sharply the CPC determined by the conventional technique 
(using a certain turbidity threshold which corresponds to  the visual effect) may differ 
from the boundary of the phase separation region recorded in the metastable region by 
x = M/c  -+ 0. The curve corresponding to any finite degree of conversion (say, x = lo%, 
see Figure 3.77) can be plotted in the same coordinates. 

Measuring the complete precipitation curve (with x = 100%) provides the basis for 
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the determination of the integral MWD function (Ramazanov et al., 198313; Shchyogolev, 
1983), which was discussed in subsection 3.2.3. 

The turbidity spectrum method was applied to determine the phase separation region 
in the systems: cellulose triacetate+nitromethane with a UCST (Timofeyeva et al., 
1977), polyamidhydrazide+DMA with a LCST (Prozorov et al., 1976), and poly(ethy1ene 
oxide)+water with a closed phase separation region (Uskov et al., 1976). 

Section 6.3 reports on a series of investigations to clarify the nature of phase separation 
in the poly(viny1 alcohol)+water by the turbidity spectrum method. 

It should be noted that measuring particle sizes using a turbidity spectrum in the course 
of phase separation gives additional and very important information about fine details of 
separation. In particular, the character of the time dependence of new-phase particle sizes 
allows one to judge the mechanismof phase separation, but these questions concern phase 
separation kinetics which is not the subject of the present book. 

Determination of the interaction parameter by equilibrium ultracentrifugation 
All the polymer fractions are in equilibrium in the centrifugal force field of an analytical 

ultracentrifuge when the equation 

~- - 0  
d A G ;  

d r  
is satisfied, and, together with the Gibbs potential of mixing (Equation 38), it leads to 
the expressions (Rietveld et al., 1972) 

where r is the distance at the rotation axis, eo is the solvent density, w is the angular ve- 
locity of rotation, (dn/dr)( , )  is the gradient of the refractive index in the ultracentrifuge’s 
cell due to the concentration gradient, and the subscript points to an increment of the re- 
fractive index with respect to concentration ( d n l d w ) .  The first derivatives of the chemical 
potential of mixing of solvent (Equation 51) and of the number average chemical potential 
of mixing of polymer (Equation 52) with respect to the weight fraction of polymer are 
taken at constant M,, and MWD, respectively. Once an equilibrium is established in the 
cell at a given angular velocity of rotation, the quantity (da/dr)( , )  can be determined 
using the optical system in the ultracentrifuge. From Equations 51 and 52, the derivatives (v) and (?@&) 

MW MWD 
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are calculated. 

that described in subsection 3.6.2. 
The procedure of integration and calculation of the interaction parameter is similar to 

Diffusion and methods defining molecular mobility 
The concentration dependence of the diffusion coefficient D = D(c)  has a minimum at 

c = c, on an isotherm near the critical point (see Figures 2.36 and 3.34). On the critical 
isotherm, Om,, = 0 (see Figure 2.37). 

Thus, the concentration dependence D = D(c)  can be used to determine the critical 
concentration by means of dynamic light scattering (Chu et al., 1969; Lempert and Wang, 
1980, 1981) (Figure 2.37) as well as by the routine diffusional methods (Rehage et al., 
1970) (Figure 3.34). 

An interference method was proposed for determining the binodals and spinodals in 
mixtures (Chalykh, 1975). Two components are placed into the cell of an interference 
diffusiomer (Malkin and Chalykh, 1979) (Figurc 3.78) with the interfacc between them 
to be taken X = 0. 

0), the interference pattern corresponds to the pure separated 
components (the dashed lines in Figure 3.78a) but, further, the process of mixing of the 
components only in the range of their miscibility (outside the binodal curve) takes place, 
i.e. up to the concentrations corresponding to the points on the binodal at T = TI.  Once 
an equilibrium is established ( tm),  the points, at which the interference band breaks, 
define the binodal concentrations at TI. The interference bands arc continuous in the 
range of complete miscibility of the components ("3). Thus, by raising temperature step 
by step and waiting for the equilibrium of the concentration fields in the cell, one can 
determine the binodal points. The spinodal position is determined with the aid of a rapid 
transfer of the configurative point from outside to inside the binodal. The inflection of 
the interference band at the first stage of the separation process ( t o  M 0) corresponds to 
the absolute instability boundary, i.e. the spinodal (see Figure 3.78c,d). 

This method must be most effective for very viscous components (even one of them) to 
initially form a sharp interface (Malkin and Chalykh, 1979). 

Indeed, the method has received acceptance and development for plotting the state 
diagrams of oligomer-polymer systems (Kotova et al., 1982; Chalykh et al., 1978). 

When the system is thermostated in the phase separation region, two layers appear, 
and the component concentrations in them are determined from the difference between 
the refractive indices. A set of such measurements near the critical point enables the 
critical index p to be determined (Balzarini, 1974). 

Introduction of a polarizer and analyzer into the optical system of the interferometer 
provides a possibility to determine the crystal separation region i ~ s  well as the amorphous 
separation region, if they lie within the same temperature range (Kulichikhin et al., 1978). 

A new modification of the diffraction method has been applied to study phase separa- 
tion, namely, electron-probe X-ray spectral analysis (Chalykh et al., 1979b; Malkin and 
Chalykh, 1979; Chalykh and Sapozhnikova, 1981). 

The relationship for the interdiffusion coefficient (Equation 2.447) can be written as a 
function of the first derivative of the chemical potential of the i th component with respect 
to the concentration of any component by means of Equations 1.1.2-51,-52. 

At the initial instant ( t o  
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Figure 3.78. Schematic of the determination of the boundary of the phase separation 
region and the spinodal by the microinterference method (Chalykh, 1975; Malkin and 
Chalykh, 1979) 

The first derivative of the chemical potential can be calculated either by Equations 11, 
12 (in the framework of the second approximation of lattice theory) or according to 
Equations 3.1-50,-51 (in the framework of the first approximation, where x = x, = const ) 
(Chalykh et al., 1979a; Roginskaya et al., 1984). 

Development of this approach enables one, in principle, to determine the value of x, 
(ChaIykh et al., 1979a; Roginskaya et al., 1984) or the concentration dependence 9 = g(p) 
as it is done in the light scattering method (see subsection 3.6.2) where a number of 
additional quantities and simplifyig assumptions are introduced. 

As the configurative point approaches the liquid-liquid phase separation region, the 
diffusion coefficient decreases (at the spinodal, D = 0) and the diffusional flow of the 
molecules (rotational and translational) is substantially retarded near the phase separation 
region. This is accounted for in methods where the measured quantity depends on the 
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velocity (rotational frequency, mobility) of the molecules or of their parts either directly 
or through a special mark (probe), connected to a molecule covalently or introduced 
into the system as an additive. In this connection, recently, the possibility to apply the 
following methods to the study of mixtures near and in the phase separation region has 
been investigated: 

0 EPR (the method of paramagnetic probe), measuring the spectral bandwidth of the 
EPR radical introduced into the system (Buchachenko et al., 1973; Alexandrova et 
al., 1977; Dovbiy et al., 1977); 

0 NMR, measuring the periods of longitudinal (spin-lattice) TI and transversal (spin- 
spin) TZ nuclear magnetic relaxation (Gotlib et al., 1975ab; Paul and Newman, 1978; 
Maklakov and Derinovski, 1979); 

0 NMR with a magnetic field gradient, measuring the spin echo signal amplitude as 
a function of the impulse gradient parameters (Steiskal and Tanner, 1965; Karger, 
1969; Tanner, 1970; Maklakov et al., 1987); 

0 dielectric polarization, measuring the relaxation time of dipole polarization (Bur- 
shtein and Malinovskaya, 1973, 1976; Burshtein et al., 1978); 

0 luminescence depolarization, measuring the mobility of a luminescent mark (Anu- 
frieva et al., 1971); 

0 IR spectroscopy, measuring the intensity and frequency shift of the absorption band 
of characteristic groups in the molecules (Lirova et al., 1972; Tager, 1972; Tager et 
al., 1975; Kuznetsov et al., 1978). 

These investigations will obviously be developed in the framework of other methods 
sensitive to the molecular mobility of mixture components as well as the methods referred 
to above. 

Other methods for determining the interaction parameter 
Osmotic pressure in solutions 

The expression 

follows from Equations 1.2-57 and 3.1-56, which enables the interaction parameter x to be 
calculated from the measured osmotic pressure of solutions (Figure 3.79). If Equation 53 
is solved with respect to i ~ ,  x is represented by a series 

with the coefficients x, = xu,=,, xz = (6'x/&,),,,, etc., the logarithmic term is repre 
scntcd by a tweterm series, and the concentration c is introduced as 

CJZ 
u2 = c- = vzc, 

M 
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Figure 3.79. Interaction parameter in 
the (network PDMS)+benzene system 
at 25°C as a function of the volume con- 
centration v2, M = 1.3 - lo6. Different 
signs denote polymer samples crosslinked 
under different conditions (Flory and 
Tatara, 1975). The solid line is from the 
osmotic pressure data of linear PDMS so- 
lutions in benzene (Flory and Shih, 1972) 
[Reprinted from: P.J.Flory, Y.-J.Tatara. 3. 
Polym. Sci.: Polym. Phys. Ed. 13 (1975) 683- 
702. Copyright @ 1975 by Wiley. Reprinted by 
permission of John Wiley & Sons, I C . ]  

then 

a -- 
RTc M (55) 

The coefficient attached to c is the second virial coefficient dz, which is determined 
from the original slope of 7r/RTc us c (Equations 2.4-26, 1.3-37) or K c / R ~ , ~ ~  vs c 
(Equation 2.4-25). The interaction parameter x1 (x at v2 = 0) is calculated using Equa- 
tion 3.1-52 (see also Equation 55). 

Due to the different nature of M averaging, the values of A2 obtained from osmotic pres- 
sure and light scattering differ, but x1 proves to be much less sensitive to such differences 
in M (Orwoll, 1977). 

The second virial coefficient A2 can also be determined from sedimentation equilibrium 
of polymer solutions (Chu and Munk, 1977; Nefyodov and Lavrenko, 1979). 

Vapour pressure of a low-molecular-weight liquid 

The chemical potential of mixing of LMWL relates to its vapour pressure by the rela- 
tionship (Equation 1.1.3-5) 

where PI and Pol are the vapour pressures over solution and individual liquid, respectively, 
the liquid being accepted as a reference state. 

This equation is only valid if the behaviour of LMWL pressure can be approximated 
by the state equation of ideal gas. 

In the general case (see Equation 1.1.3-22), 
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where f; is the fugacity of the ith component in the system, fo; is the standard fugacity, i.e. 
the fugacity of a pure liquid of the i th component at the same pressure and temperature 
(Read et al., 1977), ai is the activity. 

The activity a1 is determined from the experimentally measured vapour pressure of 
LMWL using (Baughan et al., 1954; Moore and Shuttleworth, 1963; Medved’et al., 1983) 

fl Pl (&I - V,l)POl log a,  = log - = log - - 
f0l Po1 2.3MRT 

where B11 is the second virial coefficient on the virial expansion of vapour pressure P of 
an individual LMWL by powers of ( l /v )  (Equation 1.2-68) (eg. see: Kogan, 1968; Read 
et al., 1977; Smirnova, 1982); the first digit in the subscript denotes the first component 
while the second one points to the individual state of the component. 

It follows from Equations 57 and 3.1-56 that 

Using Equation 59, the parameter x can be calculated over a wide concentration range. 
In accordance with Equations 1.1.1-23,-33, the basic thermodynamic parameters are cal- 
culated (Moore and Shuttleworth, 1963; Golovin and Lotmintsev, 1981): 

If Ap, is measured in a certain concentration range, Gibbs-Durgham’s equation enables 
the polymer chemical potential of mixing to be determined by numerical or graphical 
integration 

APZ = - / ~ ~ ( A P I ) ,  (62) 

wl and 202 being the weight fractions of the LMWL and polymer, respectively. Then, 
from equation 

Agm WIAPI + WZAPZ, (63) 

the concentration dependence of the mean specific Gibbs potential  of mixing A.gm 
is determined or (see Equations 1.1.149,-51) (Tager et al., 1972) 

AGm = niApi + n~Ap2. (64) 

One should keep in mind that the thermodynamic parameters calculated from vapour- 
liquid equilibrium should be applied to liquid-liquid equilibrium with great caution, as 
the parameters of the latter equilibrium are much more sensitive to small variations of 
activity coefficients ( bad  et al., 1977). 

If there exists a liquid-liquid phase separation region at a given temperature T, then 
Pl/Pol = const in this concentration range, which can be used to determine the binodal 
concentrations (Golovin et al., 1975; Papkov, 1981). 



446 3.6. lmprovernent of Flory-Huggins’ lattice theory 

Equilibrium swelling of a crosslinked polymer 

The state equation of the NP+LMWL system (Equation 3.5-97) can be transformed, 
in view of Equation 3.5-67, to the form 

from which it follows that if the left-hand side is plotted against V~”/ (V; /~  - v2/2), then a 
straight line must appear, whose slope is equal to x and the intercept gives the weight of 
a molecular branch Mz (Mula and Chinellato, 1971). 

In the case of free swelling of a network polymer, it follows from Equation 3.5-92 that 
(Flory and Tatara, 1975) 

Figure 3.79 presents the data of x calculations by Equation 66 for the (network PDMS) 
+ benzene system at 25°C. The concentration dependence x = ~ ( v z )  practically coincides 
with the data of osmotic pressure measurements in linear PDMS solution in benzene (Flory 
and Shih, 1972). 

Viscosity of polymer solutions 

The limiting viscosity number of a polymer solution obeys Flory’s equation 

(7q3l2 a; (q3’2 
M ’  [ p I ]  = a- = CP M 

where @ is Flory’s parameter, which depends weakly on the thermodynamic quality of 
the solvent. In the 6’ solvent, 

where @e = 2.86. lo2’ mol-’ is Flory’s constant, if [&I is in dl/g (Ptitsyn, 1961). 
According to the theory of Ptitsyn (1961)’ Eizner and Ptitsyn (1964)’ near the 6 point, 

@ % @ o ( l  - 0.4722 + . - e), (69) 

while with a certain distance from it 

i.e. CP diminishes when the thermodynamic quality of the solvent improves from 2.86 loz1 

In view of a weak dependence of @ on the solvent quality, Flory (1969) has proposed 
to N 1.175 - loz1. 

CP N 2.6. loz1 near the 8 point, which agrees with a large body of experimental data. 
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Comparison between Equations 67 and 68 leads to 

As the first approximation, 

3 ['I 
' [ d e  
0 =-- 

is often accepted. 
Flory's equation 67 has another form 

[q] = KeM%:, ( 72) 

where KO = @(g/M)3/2 is the flexibility parameter of a polymer chain. 
The experimentally determined (by Equation 71) swelling coefficient a,, is substituted 

into Equation 3.1-113 and, with account of EQuations 3.1-41,-64, xl is calculated. 
There are some difficulties concerning different values of the constant C,,, (Equation 3.1- 

114) in different versions of the theory (see subsection 3.1.1) and, strictly speaking, a 
necessity to estimate @/@.e according to Feuation 70. One might fail to get the 8 solvent, 
or the 0 temperature may prove to be rather low, which makes it diflicult, or even im- 
possible, to determine [']e and to estimate the thermodynamic flexibility of the polymer 
molecular chains. 

The interaction x, and flexibility parameters KO are determined from [q] and M mea- 
sured on a series of polymer fractions in a good solvent by means of Flory-Fox' (1951) 
equation. The latter results from substitution of a from Equation 72 into Equation 3.1- 
113 

Hence, the plot [q]2/3/M'/3 us M / [ q ]  gives a straight line which intersects the value 
K;I3 at the ordinate axis. The slope yields the interaction parameter x,. 

A few equations to relate [q ] ,  M ,  and KO,  x,, it8 Equation 73 does, have been proposed 
in the literature (Rafikov et al., 1978; Rabek, 1980; Tverdokhlebova, 1981). Fixman- 
Stockmayer's (1963) equation is most often applied 

where 

Reverse gas chromatography 

A portion of LMWL vapours in a flow of a carrier gas (helium, nitrogen) is passed 
through a chromatographic column packed with a polymer, directly or as a covering on 
a solid support. The effect of vapour sorption depends on x, and in the limit v2 + 1 
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the follodng expression results (Patterson et al., 1971; Newman and Prausnitz, 1972; 
Summers et al., 1972; Brawn and Guillet, 1975; Nesterov and Lipatov, 1976; Orwoll, 
1977) 

where Pol is the vapour pressure of LMWL in the system at T (in K), V, is the reten- 
tion volume of the sorbate, Bll is the second virial coefficient of LMWL vapours (see 
Equation 1.2-68). 

The reverse gas chromatography method implies control over equilibrium and elimi- 
nation of a number of instrumental and methodical distortions (eg. the dependence of 
sorption on the amount of polymer adsorbent, the nature of motionless support for poly- 
mer, etc.) (Nesterov and Lipatov, 1976; Tager et al., 1978). The method is capable of 
determining x at small amounts of LMWL (v2 + 1). 

The reverse gas chromatographic method has been applied to determine the depen- 
dences of x on temperature, molecular weight, and concentration for a number of the 
P+LMWL systems (Nesterov and Lipatov, 1976; Orwoll, 1977; Tager et al., 1978; Tait 
and Abushihada, 1978; Klein and Jeberien, 1980). 

See Chapter 6 for the determination of Flory-Huggins' parameter x, at liquid-crystal 
phase separation. 

3.6.3. Third approximation of Flory-Huggins' theory 
The development of experimental methods of determining the spinodal, the interaction 

parameter x (or g) ,  and other critical parameters has promoted the appearance of the third 
approximation of Flory-Huggins' lattice theory where the dependence of the interaction 
parameter g on the polymer molecular weight (or MWD) and the peculiar features of 
dilute polymer solutions or of polymer-depleted phase at phase separation are taken into 
account. 

The dependence g = g ( M ) ,  especially at low M's, was revealed experimentally by 
means of equilibrium centrifugation (Scholte, 1970b; Ftietveld et al., 1972). 

The PICS method (Kennedy et al., 1975) (see subsection 3.6.2) indicated a difference 
in the spinodals for polymer samples with equal pw but different MWDs (as the second 
approximation predicts, g = g ( T ,  p) and the spinodals must be invariant with respect to 
p,, Equations 19, 22). Moreover, the M dependence of g follows from the relation between 
g (or x) and dz (Equation 3.1-51) while the M dependence of d2, in turn, has been 
established both experimentally and theoretically (Equations 3.1-146,-158) (Yamakawa, 
1971; Elias et al., 1975). 

In view of g = g(p, T,  M ) ,  the expressions for the spinodd and critical state (Equa- 
tions 3.2-2,-3) become more complicated (Koningsveld and Kleintjens, 1971; Kennedy et 
a]., 1972). 

Kennedy et al. (1972) have proposed a five-parameter system, which showed good 
agreement between the theoretical and experimental spinodals g = g(p, T ,  M ) :  

g = [Pol + Po2T-l + (PI1 + P12T-')m,'] (1 - yp)-l (75) 

with y = 0.3408, Pol = 0.1744, Po2 = 176.89, = -260.92, P 1 2  = 72.426. 



3.6.3. Third approximation of Flory-Huggins' theory 449 

Reduction of the number of parameters to 4 (with 7 = 1/3) leads to a good fit to 
experimental data its well ,801 = 0.2151, ,802 = 162.21, ,811 = -193.95, ,812 = 53.821. 

The features of dilute solutions are considered by representation of g with two sum- 
mands, of which gconc has the form of the second-approximation function (eg. Equation 37) 
while the second summand contributes greatly at low concentrations and negligibly at high 
concentrations. 

For binary systems (Koningsveld et d., 1974a) 

The quantity l / X  corresponds to the polymer volume fraction where the sum of the 
volumes of all the molecular coils is equal to the volume of the system. X relates to the 
rigidity of a molecular chain via a characteristic parameter A0 

where 

a is a parameter close to 1 to correct the coil shape if the coil volume is calculated by 

For the polystyrene+cyclohexane system, gwnc = g from Equation 37 (see also Table 3.3 
= 108 cm3/mol, b2 = 7.6 - lo-'* cm2/g, for the volume fractions), V2 = 0.925 cm3/g, 

Xo = 0.57~, 

In accordance with Equations 37 and 13, 

X I  = a + Po(1 - 7). (79) 

Koningsveld et al. (1974a) have analyzed a number of approximations for h(z) :  Flory- 
Krigbaum-Orofino's (FKO) 

h ( z )  = - h(1 + 5.732), 
5.732 

Stockmayer's (S) 

h ( z )  = 
1 

1 + 2.8652 ' 
Kurata-Yamakawa's (KY) 

(1 + 3 . 9 0 3 ~ ) - ~ . ~ ~  
t .8282 

h ( z )  1 1  - , 
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Casassa-Markovitz' (KM) 
I - exp( -5.732) 

5.732 
h(z)  = 

The spinodal equation, according to Equations 3.2-2, 76, 37, looks as 

T ,  "C 

25 

20 

15 

10 

Figure 3.80. The spinodals 
calculated by Equation 3.6-84 
(Koningsveld et al., 1974a) with 
A0 = 112, M, are marked 
at curves. The experimen- 
tal spinodals are given on the 
data of Scholte (1971) (I), Der- 
ham et al. (1974), Goldsbrough 
(1972) (2). The critical points 
are taken from: Scholte, 1971 
(3). The spinodals are cal- 
culated for different h(z) (see 
Equations 3.6-80.. .83) (abbre- 
viations at the curves). The 

0 1  curve conc is calculated for 
0.2 h(z)  = 1, i.e. with no respect 

to the peculiar features of a 0.3 

dilute solution (Koningsveld et 

&on from: Macromolecules 7 (1974) 
73-79. Copyright @ 1974 American 
Chemical Society] 

I I I d., 1974a) [Reprinted with perm& 
0.05 0.1 0.15 

Q 

The spinodals calculated using this equation and the experimental spinodals are pre- 
sented in Figure 3.80; it follows that the effect of the dilute solution manifests itself at 
M, < 500,000. 

The application of this approximation, considering the peculiar features of a dilute 
solution at equilibrium between the dilute and concentrated phases, produces a good fit 
between theory and experiment. 

Generally, the account of the dependence of g on M or MWD is very complicated and 
poorly known (as the dependence A2 = f ( M )  itself: Elias et al., 1975). 

Thus, the temperature dependence of the interaction parameter g (or x) (Equation 10 
which has the form 

Qo2 
(85) = go1 + +god' 
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without the fourth, almost temperature-insensitive parameter) has the main effect on how 
the phase separation region is located on the state diagram T us v2. 

Depending on the signs of the parameters in Equation 85, the phase separation regions 
may be located in the T us v2 plane as shown in Figure 3.81. 

The diagrams like those shown in Figure 3.81a are exemplified by to the polystyrene+cy- 
clohexane system (Koningsveld, 1968, 1970b; Saeki et al., 1973a); like those shown in 
Figure 3.81b - by the polystyrene+acetone system (Siow et al., 1972) (see Figure 3.89); 
like those shown in Figure 3 . 8 1 ~  - by the systems: copolymer of vinyl alcohol with viny- 
lacetate (6.8% of AG)+water (Rehage, 1963) and copolymer of vinyl alcohol with ethy- 
lene (3.13 mol % of ethylene units)+water (Shibatani and Oyanagi, 1971), poly(ethylene 
oxide)+water (Malcolm and bwlinson, 1957; Saeki et al., 1976; Uskov et al., 1976; 
Kjellander and Florin, 1981) (see Figure 6.9). 

A closed phase separation region can be explained by the specific interactions and poses 
the greatest difficulties in interpretation with respect to molecular parameters. 

The dependences of g on concentration and M in the above proposed form, shift, to 
some degree, the phase separation regions shown in Figure 3.81. 

Within the framework of the third approximation, Einaga et al. (1984) put forward a 
new version of the expression of the interaction parameter 9, including the dependences 
on T, c p ,  and M. The development of characteristic dependences of the theory is based 
on measurements of light scattering of polystyrene solutions in cyclohexane, performed 
up to the nearest proximity of the binodal (below the 0 temperature). 

Pouchljr (1969) has generalized Flory-Huggins’ model to account for specific interactions 
(H-bonds, etc.) in the ternary system A+ B+C susceptible to the formation of complexes 
of the AiBjCk type. 

The third approximation of the theory implies substantial redistribution of the macre 
molecules of a polymolecular polymer between two phases at equilibrium (Kleintjens et 
al., 1976b). 

Analyzing the advantages of the third approximation, Gordon and Torkington (1980) 
consider as inconsistent any arguments against using the mean field theory to describe 
conversions in polymer solutions. In their opinion, this theory predicts the character and 
the peculiar features of phenomena (an outstanding role of polymolecularity) much better 
than the modern theories of similarity. 

3.7. Polymer mixtures 
3.7.1. State equations 

The systems polymer l+polymer 2 and polymer l+polymer 2 tLMWL are increasingly 
gaining in importance and currency in technological practice to create materials with 
various properties; therefore, they have been dealt with in many publications, includ- 
ing monographs (van den Esker and Vrij, 1976; Manson and Sperling, 1976; Tager and 
Sholokhovich, 1976; Tager, 1977; Krause, 1978; Paul and Newman, 1978; Kuleznev, 1980; 
Onclin et al., 1980; Sperling, 1981). 

We will outline only the basic properties of such systems. 
The Gibbs potential of mixing per mole of lattice cells (Equation 3.2-1) for a mixture 
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go2 > 0; go3 > 0 

1.0 -I I 

a b C 

Figure 3.81. Arrangement of phase separation regions for the temperature dependence 
of the interaction parameter g (or x) of the type g = gol + *2/T + gmT at different 
values of the parameters in this equation (schematic) (Koningsveld, 1975) [Reprinted from: 
R.Koningsveld. Brit. Polym. J. 7 (1975) 435-458. Copyright @ 1975 by Wiley. Reprinted by permission 
of John Wiley & Sons, Inc.] 
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of two different polymers is naturally generalized (Koningsveld, 1970b; Koningsveld et 
al., 1970a) 

where (PI; and cpzj are the volume fractions of the kth fraction of polymer 1 and of the j t h  
fraction of polymer 2 with the relative chain lengths mi; and m2j expressed through the 
number of cells occupied by the polymer molecules. The volume fractions of polymers 1 
and 2 are expressed a8 'p1 = (PI, and y2 = 92j, so 

'PI + cp2 = 1. (2) 

In the simplest version of a mixture of two monomolecular polymers with the interaction 
parameter x ,  depending on T only, one can write 

The spinodal (Equation 3.2-2) and critical point (Equations 3.2-2,-3) conditions lead, 
in this case, to 

or 

m!/ 
+ (PIC = 

If ml = m2, then 'pic = l/2; if m2 > ml then cplC shifts towards high concentrations of 
P1. It follows from Equations 6 and 4 that 

(mil2 + mil2) 
> (7) 

'IC= 2 m lm2 

and if ml = m2 = m, then 

2 
m XI,  = -> 

1 1  1 
2 f i  2m 

i.e. for a polymer mixture, x,, is a very small quantity (cf. x,, = - + - + -, Equa- 

tion 3.1-242, when ml = 1 and mz = m). 
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Equations 8 and 3 imply that, even at small x,, two polymers prove to be incompatible 

An interesting and important feature of polymer mixtures is that they almost strictly 

De Gennes (1979) demonstrates this in a simple and illustrative way. Suppose ml > m2. 

(insoluble). 

obey the mean field approximation. 

A chain of polymer 1 has its size (F)lI2 - Ami'* and occupies the volume 

v, - A3m3I2 1 '  (9) 

A is the step length of Ising's lattice which contains macromolecules (see Figure 1.23d). 
The short-range interaction is included into A,  therefore it is equivalent to Kuhn's seg- 
ment. 

Further, a parameter P is introduced, equal to the average number of other chains of 
the same kind 1 which are within the given coil. Now, if P - 1, the fluctuation effects 
must he of much importance, and the mean field theory is incorrect. If P >> 1, these 
phenomena substantially reduce: as a matter of fact, every chain is subject to the mean 
field generated by other chains, and the mean field theory is applicable. 

The number of P1 chains per unit volume is ' p l /mlA3 ,  and 

Near the critical point, Equation 6 holds true, and 

(m2m1)1/2 P -  
+ 

In a symmetrical case of large ml = m2 = m, 

m1/2 
P - - -  

2 .  

P proves to be a large quantity and the mean field approximation holds good. If 
ml >> m2, then 

P - mil2 

and the mean field approximation is valid if only m2 >> 1. In the case of P+LMWL 
(where m2 = l ) ,  P - 1, and the mean field approximation in the neighbourhood of the 
critical point turns out to be incorrect. 

In the framework of the second approximation of theory (the multicomponent version), 

= d P ,  T ,  'P2)9r'P2, (14) 

the spinodal equation (Koningsveld et al., 1974b) is 
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and for the critical state 

mzl mz2 

- (%LT = m t l d c  m L 9 f c '  

If g = g(T, P) and P = comt (atmospheric), then 

and the critical state 

1 

where uk = m z k / m w k ,  k = 1,2. For mwl = mzl = 1, Equation 19 reduces to Equa- 
tion 3.2-10. Figure 3.82 demonstrates the spinodals and critical points for a few systems 
calculated from Equations 17 and 19. 

Koningsveld et al. (1974b) have developed numerical methods for calculating the bound- 
ary of the phase separation region. To provide an example, Figure 3.83 is presented, 
from which one can see a shift of the boundary of the phase separation region towards 
higher g, it9 the average length of Pl's with the lower M macromolecule diminishes. 

Comparison between Figures 3.83 and 3.84 shows how drastically the location of the 
phase separation region changes if the interaction parameter depends on concentration, 
say, linearly 

9 = go + 91v2- (20) 

An interesting peculiarity of polymer mixtures is bimodality of the phase separation 
region (Koningsveld et al., 1974b) (Figure 3.85). This figure also shows the effect of the 
strong shift of the phase separation region at a small variation of the M of one of the 
polymers (here - polystyrene). 

Such bimodality may appear due to the quadratic concentration dependence of g 

g = 90 + 9192 + g2(P:, (21) 

as it follows from model calculations of the locations of the phasc separation region and 
the spinodals presented in Figure 3.86. Such shape of CPC suggests a possibility of 
a three-phase separation (see section 3.10). A strong dependence of the location of the 
phase separation region in the Pl+P2+LMWL system on the M of one of the polymers 
served as the basis for a way of determining the A4 of a polymer in its mixture with a 
standard polymer with a known M (Berek et al., 1967ab, 1969). 

Indeed, experiments have proved the validity of the relationship 

C* = + c,, 
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cle) (Koningsveld et al., 1970a, 
1974b; Koningsveld, 1975) [Reprinted 
with permission from: R.Koningsveld, 
H.A.G.Chermin, M.Gordon. Proc. Roy. 
Soc. London A 319 (1970) 331-349. Copy- 

- 0.8 

P2 Figure 3.82. The spinodals of quasi- 
binary sections of the Pl+P2 (up 
per curves) and P+LMWL (lower 
curves) systems with polymolecu- 
lar polymers. Dashed and dot-and- 
dash lines correspond to the spin- 
odals of systems with concentration- 

0.2 dependent (according to Equa- 
9 tion 3.7-20) g: g1 = -0.1 and 

+0.1, respectively. The ratios 
ml/rnz and m,,,~/m,z (figures) are 
marked at the curves. Empty cir- 
cles denote the critical points for 
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6% 
I I right @ 1970 by the Royal Society of 
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where ccp is the boundary of the phase separation region determined from a sharp growth of 
turbidity (see subsection 3.2.3), A and c, are constants for a given system Pl+PB+LMWL, a = (M1M2)0-5 or = YiM1 + Y2M2, where Mi are the molecular weights of P1 and 
P2, E: is the relative weight fraction of the ith polymer component 

= wi 
1 - WLMWL ' 

where wi and WLMWL are the weight fractions of the ith polymer and LMWL, respectively. 
Various ways of how the phase separation region may be located are calculated for the 

systems Pl+P2+LMWL (Scott, 1949b; Tompa, 1956) and observed in practice. 
Of special interest are systems where the pairs Pl+LMWL and P2+LMWL are mutu- 

ally soluble in the whole conrentration range (Figure 3.87). 
A phase separation region may appear even when all the components are pairwise 

compatible (Figure 3.87~). 
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I T- I I 7 ,  , - - I  

P1 0.2 0.4 0.6 0.8 

Figure 3.83. The bound- 
ary of the phase separa- 
tion region and the spin- 
odal for mixtures of two 
polymolecular polymers 
with mw2 Jmr2 = 5001625, 
the mWl/mzl ratios are 
given at the curves. 
Circles are critical 
points. The parameter 
g is concentration- 
independent (Kon- 
ingsveld et al., 1974b) 
[Reprinted with permis- 
sion from: R.Koningsveld, 
L.A.Kleintjens, 
H.M .SchoffeIens. Pure 
and Appl. Chem. 39 (1974) 
1-32. Copyright @ 1974 by 
IUPAC] 

P2 

mwllmzl mW2/ms2 = 5001625 

Krause (1978) gives an extensive review of experimental results in the phase separation 
of polymer mixtures. 

The phase separation of polymer mixtures exhibits so great a variety of properties in 
comparison with LMW mixtures that not dl the peculiarities of this phase separation 
have hitherto been amenable to a theoreticecalculational justification. 

Certain progress has been made in LCST predictions for polymer mixtures by the 
theory of corresponding states (see the next paragraph), but this theory fails to explain 
the bimodality of the boundary of the phase separation region. 

The search for new ways and opportunities is continuing in the framework of the third 
approximation of Flory-Huggins’ theory, with due account of fine effects of changes in the 
molecular coil sizes of one polymer with the concentration of the other polymer in the 
mixture. 

3.7.2. Light scattering. Dynamics of concentration fluctuations in the critical 

1 .  The fluctuations in the order parameter (component concentrations) in polymer 
mixtures are expressed so weakly that it is quite correct to consider the thermodynamic 

region. Critical indices 
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Figure 3.85. Experimental cloud-point curves 
for the system polypropylene (PP) ( M ,  = 
2,700)tpolystyrene ( M ,  are indicated at curves); wps 
is the weight fraction of polystyrene (Koningsveld et 
al., 197413) [Reprinted with permission from: R.Koningsveld, 
L.A.Kleintjens, H.M.Schoffelens. Pure and Appl. Chem. 39 
(1974) 1-32. Copyright @ 1974 by IUPAC] 

3.7. Polymer mixtures 

Figure 3.84. Same as in Fig- 
ure 3.83, but g = go + 9 1 9 2 ,  

g1 = 0.02 (Koningsveld et 
al., 1974b) [Reprinted with 
permission from: R.Koningsveld, 
L.A.Kleintjens, H.M.Schoffelens. 
Pure and Appl. Chem. 39 (1974) 

PAC] 
1-32. Copyright @ 1974 by IU- 

PP 

properties of such a system in the mean field approximation. 

tering factor in the Pl+P2 mixture 
Using this approximation, de Gennes (1979) obtained a formula for the structural scat- 
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Figure 3.86. Calculated cloud- 
point curves and critical points 
for mixtures of two polymers with 
mwl/mw2 denoted at the curves; 
g = go - 0.04~2 + 0.049; (Kon- 
ingsveld et a]., 1974b) [Reprinted 
with permission from: R.Koningsveld, 
L.A.Kleintjens, H.M.Schoffelens. Pure 
and Appl. Chem. 39 (1974) 1-32. Copy- 
right @ 1974 by IUPAC] 
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where go(mi, q )  is Debye's function describing scattering on one chain in the 0 solvent 

1 
' - 6  

x -  - -m,A2q2 

(cf. Equation 2.1-67). 
The structural factor S(4 proportional to the scattered light intensity (see, eg., Equa- 

tion 2.3-107) is the Fourier transform of the correlation function of concentration S ( 3  
(see Equation 2.1-83) 

S(4 = A-'/S(F)exp(@')dF, (24) 

where the factor A-' is introduced for S(4 to be dimensionless. 

and 2.1-73) 
By definition, the correlation function of the concentration is (see Equations 1.7-33 
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LMWL A 
P1 P2 

C 

Figure 3.87. Location of the 
phase separation region in the 
system Pl+P2+LMWL when 
the systems Pl+LMWL and 
P2+LMWL (and Pl+P2 in 
the case c )  are completely 
compatible (Scott, 1949b; 
Tompa, 1956; Koningsveld et 

P1 P2al., 197413). Examples: a - 
polystyrene + polypropylene + 
toluene (Berek et al., 1967a); 
b - polystyrene+PIB+toluene 

(van den Esker and Vrij, 
1976); c - butyl rubber+EPS 
rubber+benzene (Koningsveld 
et al., 1974b); d - polypropy- 
lene+polyethylene+diphenyl 

p2 ether (Koningsveld et al., 
1974b) [Reprinted with permission 

d from: R.Koningsveld, L.A.Kleintjens, 
H.M.Schoffelens. Pure and Appl. 
Chern. 39 (1974) 1-32. Copyright @ 
1974 by IUPAC] 

LMWL 

b 

P1 A 
Denote 'pi = p, ' p 2  = 1 - 'p. At q = 0, Debye's function (Equation 23) gD(mi, q = 0) = 

m; and 

(cf. Equation 4) in accordance with the thermodynamic theorem which relates the struc- 
tural factor with the thermodynamic quantities of a system (see Equations 2.3-107 and 2.4- 

In particular, on the spinodal (see Equation 4), all the sides of Equation 27 vanish. 
At small q's,  i.e. given qR << 1, 

7). 

1 
gD(m;,q + 0) 1 1  - -q2R2. 3 (28) 

Substituting it to Equation 22, we have 

where x,,,(cp) satisfies the spinodal equation 4. 

concentration fluctuations & (cf. Equation 2.3-133), then 
If Equation 29 is transformed to the standard form with a correlation length of the 
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where 

Thus, when thc configurative point approaches the spinodal, & diverges with its singu- 

In the other limiting case, qR > 1, 
larity being of a reverse quadratic root nature. 

(regardless of m), and go(m,q) grows so sharply that -2x, in Equation 22 can be ne- 
glected 

i.e. the scattering intensity is proportional to Debye's function (Equation 32). 
If Equations 30 and 33 are subjected to the inverse Fourier transformation, then 

3 A 
S(p3 = -p(1- p)y ,  T << R,  

7r 

9P A (-i), r > R .  
S ( 3  = -(I - cp);exp 

27r 

(34) 

(35) 

So, near the spinodal, the correlation function of the concentration fluctuations S(7') 
decreases as 1/r (Equation 34) or as the exponent (Equation 35), when T < & and T > &: 
respectively. 

Budtov (1986) applied Equation 22 to the P+LMWL system, which, strictly speaking, 
is incorrect because correlations of the concentration fluctuations in this system cannot 
be neglected (see siibsection 3.7.1). 

Nevertheless, he obtained a [ b  - dependence which coincides with the result of 
de Gennes' (1968) rigorous consideration (see section 4.4). 

Equation 31 can be used to determine the gradient term of the Pl+P2 system's potential 
in the general mean field theory (see Equation 2.5-1). According to Equation 2.5-13, 

where Q is the c d c i e n t  at the quadratic term of the potential's expansion with re- 
spect to the order parameter. With allowance for the expansion of the Gibbs potential 
(Equation 3.1-275) near the spinodal, 

k0 
a = G ~ Q T A T ,  G a a ~  = -, 

TSP 

Following the approximation 

(3.1-285) 

(3.1-283) 



462 3.7. Polymer mixtures 

we have 

At last, including the coefficient 112 by the gradient term in Equation 2.5-1, we get 

and for polymer mixtures 

2. Consider the dynamics of the concentration fluctuations near the critical point for a 
symmetrical version of mixture with rnl = rn2 = rn according to de Gennes (1980). Then, 
the Gibbs potential of mixing has the form (de Gennes, 1977) (see Equation 36) 

The asterisk marks the deviation from AG, (per mole of lattice sites). 
Fluctuation dynamics is characterized by the fall rate of the fluctuation wave amplitude. 

If a fluctuation perturbation is modelled by the sum of the Fourier transforms, then the 
relaxation rate of the component 69,  with the wave vector q is defined by l /rq.  

Accepting Onsager's hypothesis of the fluctuation perturbation evolution 69 ,  obeying 
the macroscopic equations, we write the equation of continuity 

+ div = 0, 
bt (37) 

where .& is the local flux of P1 after resolution of the concentration fliictuation. 
According to Onsager's theorem from nonequilibrium thermodynamics, the flux is p r e  

portional to the gradient of the chemical potential of this component (see Equation 2.4-33) 

= -M(V/& (38) 

If we separate the temperature dependence of M ,  we obtain 

where h(q) is Onsager's coefficient. The chemical potential p1 is calculated routinely 

In the linearized approximation, 
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is accepted. 

kept, we obtain 
If it is substituted to Equation 40 and only the terms linear with respect to by(?, t) are 

Then, the gradient of the chemical potential of P1 at the q vector is 

The solution of Equation 37 has the form 

dip, = (Spo&iqre-t'Tp (44) 

V2(6V,) = q2(6Yq); V4(69,) = q4(6Y,), (45) 

(cf. Equations 2.3-48 and 2.4-50). Therefore, V(6pq) = q(d'p,), and 

Substituting, in turn, Equation 43 into Equation 39, Equation 39 into Equation 37 (in 
view of Equation 45), and Equation 37 into Equation 46, we get (de Gennes, 1980) 

and, for cpc = 1/2, 

The relation of A(q) with the diffusion rmfficient is found in terms of reptation motion 
of the macromolecules in the mixed melt Pl+P2. 

The entanglement points of a polymer chain with the neighbouring chains are repre 
sented as obstacles preventing the transversal motion of this macromolecule: it can just 
diffusionally "reptate" along its longitudinal axis (see Figure 4.2). Such motion resembles 
a reptilian's creeping in a certain pipe, and is therefore named reptation . 

If me is the number of steps (segments) of length A between the entanglements, then 
the pipe diameter is about 

d N ?n;"A, (49) 

and the pipe length is 
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The chain moves along the pipe with a mobility p p  inversely proportional to the chain 
length, i.e. 

P1 
P P  = ;> 

where is the segment mobility, and, according to Einstein’s law, 

as p p  = l/f (the subscript denotes a “pipe”). By another Einstein’s law, the squared 
diffusional displacement is proportional to the product of the diffusion coefficient and 
time, so, in this case, 

where Trep is the so-called fundamental relaxation time, during which the chain has 
reptated a distance of the ordcr of L along the pipe. 

Combining Equations 50-53, we derive 

m3A2 m3 L2 m2A2 
Dp mekTpp m,kTp1 m e  

-7-1, 
- - - T,,, = - = 

where 

7-1 = A2/kTp1 

is the microscopic relaxation time. 
For m = me, Equation 54 gives the Rouse relaxation time (Equation 3.3-62) 

(54) 

(55) 

TR - q m 2 .  (56) 

For any time T > Trep, the chain completely forgets the previous pipe and moves over 
a distance compatible with the coil size Re = m’/’A. Hence, the translational diffusion 
coefficient, in view of Equation 54, is 

where 

is the microscopic diffusion coefficient . 
Now, let us find the concentration dependence of Onsager’s coefficient. 
Assume, first, that there is no interaction between the components. Then, according 

to Fick’s first law (Equation 2.4-31), 

J,  = - D , V y l ,  i = 1,2. (59) 

On the other hand (see Equation 39), 
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and, according to Equation 36, 

We now write Equation 60 with allowance for Equation 61: 

Comparison between Equations 59 and 62 yields 

Ai = mtpiD;. 

If we now “turn on” the interaction, then 

PI - = m-’InpI + x,pz, kT 

_ -  ” - ,-I In ‘pz + x , ‘ p I .  kT 

The introduction of the interaction means that the chemical potential in Equation 60 
increases by the value of a certain repulsion potential u, which can be estimated as 

At equilibrium, 

Ji + J 2  = 0, 

which yields 

If now Equation 68 is substituted into Equation 66, then 

2A1 AlVp1+ AzVp2 
kT A1 + A 2  

J1 = --. , 

J2 --. 2A2 AiVpl+ AzVpz (70) 

A1 = -Az, (71) 

kT Ai  + A2 

It follows from Equation 67, applied with Equations 69 and 70, that 

In view of this, Equation 69 has the form 
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Let us denote 

and substitute Ai into Equation 73 expressed through the diffusion coefficients (Equa- 
tion 63). Then, we accept D1 = Dz = DEp: 

A = 2D,,mcp(l - cp). 

A(0) = 2Dlm,m-’cp(l - cp). 

cp = cpc = 1/27 XI,, = XI, = 2lm, 

(74) 

(75) 

(76) 

For small q + 0, in view of Equation 57, 

Return to Equation 48. For 

the relaxation rate of the concentration fluctuations in the limit q -+ 0 takes the form 

and the correlation length (Equation 31) is 

A 
‘$k = F(xlc - X)-l”. 

Combining Equations 78 and 77 leads to 

1 

7 s  
- = 2q2A(0)(x1, - XJ1+ q25:), 

and, including Equations 74 and 76, 

(79) 

When the configurative point approaches T,, (xlc - x,) + 0 and T~ + 00. 

Relationships 80 and 81 reflect the law of secallcd thermodynamic retardation 
near the critical point (van Hove, 1954; de Gennes, 1979, 1980), where concentration 
fluctuations practically do not disappear and they may be regarded as long-living colloidal 
particles which was discussed above with other systems as examples. 

For q # 0 and one relaxation time ~ ( q )  in the mode T < Trep, de Gennes (1980) deduced 
a relationship 

However, later on, de Gennes (1981) found the existence of two relaxation times in the 
mode T < T,, due to the short-amplitude rapid mode and largeamplitude slow mode. 
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In view of this circumstance, Pinkus (1981) obtained 

A ( d  c2. (83) 

Further development of this topic was performed by Binder (1983). 
3. Binder (1983) obtained expressions for critical indices in the Pl+P2 system for the 

symmetrical case ml = m2 = m 

The order parameter Q is defined according to 

1 (86) 
c p X , l Z  - cpc 

( P C  

Q X J I  = 

where ( P I  and (PIX relate to the left-hand and right-hand branches of the binodal, respec- 
tively, The order parameter Q varies within the limits 

-1 5 Q 5 +l. (87) 

Equation 85 can be written (see Equations 1.5-74,-75) as 

(88) 
mx,Qi,ix 

2 -  
Q I , l z  = t m h  

Near the critical point, two terms of tanh’s (Equation 1.5-78) are enough 

As x,, = 2/m (Equation 8)) then 

112 312 

Q I J X  = f [3 (? - l ) ]  (?) 
For a system with a UCST, x ,  N 1/T and 

T - T  
Q X J I  B (y) ) 

where p = 112. It follows from Equation 29 that at q + 0 in the one-phase region 
( x ,  < XI,, T > Tc) 

- 1  1 
S(0) = - ( 1  - e) , 

2x1, 
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Le. (cf. Equation 2.3 107 and Table 1.2) 

where y = 1. 
At last, from Equation 31 we get 

where v = 1/2. Thus, the critical indices have values typical for the mean field theory. 
On the basis of Equations 22 and 27, Akcasu and Sanchez (1988) obtained the most gen- 

eral expression for the potential of the P1+P2 system to account for the order parameter's 
fluctuations p; = (pi + bpi: 

where 

1 + 1 1 + -&q&)2 + . ' ='[ 2 1 - $(q&)Z l l  

and 

Substituting Equation 97 into Equation 95, we get 

where ~ F H  is Flory-Huggins' potentia1 (Equation 3). 
If we assume that on the system's boundary Vp = 0 is met, then 

(97) 

(98) 

In view of this, Equation 98 reduces to  de Gennes' potential (Equation 36). 
With p; taken m a non-fluctuating quantity (9; = q;) ,  Equation 98 reduces to Flory- 

Akcasu and Sanchez (1988) have written potential 95 as a series in the vertex functions 
Huggins' standard potential. 

rp) which, in their turn, are expressed via Debye's functions gD(q2R?).  
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3.7.3. Interpenetrating polymer networks 
If, to prepare a NP+LMWL system, a monomer with an initiator and crosslinker is 

taken as LMWL, then, on 3 0  polymerization of the second polymer, the system network 
PlSnetwork P2 appears, so-called interpenetrating polymer networks (IPN). If there 
is no crosslinker, semiinterpenetrating polymer networks (SIPN) are formed, i.e. net- 
work Pl+P2. A great body of publications, including reviews and monographs (Manson 
and Sperling, 1976; Tomas and Sperling, 1978; Lipatov and Sergeyeva, 1979; Sperling, 
1981; Sergeyeva and Lipatov, 1986) are devoted to the problems of such systems. 

It follows from sections 3.5 and 3.7 that the conditions of the one-phase state (com- 
patibility) of IPN and SIPN are more restricted in comparison with polymer networks 
and mixtures. On the other hand, chemical crosslinks hinder phase separation which, 
therefore, has to be realized on the colloidal level of dispersion. As a rule, microphase 
separation begins to be observed even at  the stage of polymerization and crosslinking of 
the second polymer. 

Superposition of processes of different nature leads to a diverse morphological pattern 
of polymer materials which, in turn, provides their wide technical applications. ?'ha 
sequential thermodynamic description of such systems presents significant difficulties; one 
can test this with an example of the PIPN structure model from (Donatelly et al., 1977; 
Sperling, 1981). 

Morphologically, the turbidity spectrum method has great advantages to characterize 
the microheterogeneous structure of IPN and SIPN (see subsection 2.1.5) (Klenin et al., 
1977b). 

3.8. Theory of corresponding states 

The restrictions of the initial version of Flory-Huggins' lattice model (P+LMWL mix- 
tures) were obvious from the very beginning and, first and foremost, to the authors 
themselves. Indeed, the model did not foresee the change in volume on mixing and, as 
a sequence, the additional variation of the configurative entropy of mixing. x, was con- 
sidered to have a reciprocal dependence on T which specifies the existence of the UCST 
only. 

Since 1960's, a LCST near the critical vapour-liquid temperature of the LMW com- 
ponent has been revealed experimentally for many P+LMWL systems (Freeman and 
Rowlinson, 1960; Baker et al., 1962). 

To explain the existence of the LCST of such a type, a theory of corresponding 
states (called the theory of liquid state as well) has received a large development 
effort by Prigogine et al. (19*53), Prigogine (1957), Flory et al. (1964ab), Flory (1965, 
1970), Patterson and Delmas (1970), Siow et al. (1972). This approach is based on the 
theory of r-dimensional liquids developed by the Brussels school (Ilia Prigogine et al.) 

The theory involves the molecular properties of liquids (the chain length; the number 
of molecular degrees of freedom, contributing to heat expansion; the cohesion energy 
between unlinked segments) and accepts the statement of the law of corresponding sates 
of there being a-universal state equation of liquids and their mixtures in the reduced 
variables 'f, v ,  P .  
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For polymer liquids, Prigogine et al. introduce the concept of internal and external 
degrees of freedom. The number of external freedom degrees of a spherical macromolecule 
is 3 for a LMW compound (monomer, or just mer). When spherical molecules are linked 
into a chain, the number of external freedom degrees reduces, which leads to a decrease in 
the heat energy providing heat expansion, i.e. to a decrease in the so-called free volume 
of liquid. A polymer molecule is assumed to have 3c external degrees of freedom and 
q intermolecular contacts with the energy E* each. For an ensemble of r independent 
molcculcs, 

3c = 3r. (1 )  

(2) 

On linking monomers (segments, mers) into a chain, 

3c = 2r + 1; 

with due account of valent angles, 3c = r + 3, etc. (Patterson and Tager, 1967). 
Hence, 3c is the number of external (intermolecular) degrees of freedom per segment 

(mer) with c < 1 (Eichinger and Flory, 1968a). 
Thermal expansion or the free volume of liquid is characterized by the reduced temper- 

ature f'; in fact, it is the ratio of the thermal energy of external freedom degrees and the 
energy of intermolecular contacts . 

where 

QEf 
ck 

T* 1 - (4) 

is reduced temperature. 

are called configurational . 
The molecular characteristics, which depend on the intermolecular interactions only, 

The molar configurational quantities under constant and negligible pressure are defined 
as 

- = V ( T ) ,  
V 
V* ( 5 )  

where V *  is the volume of the densely packed part or solid core of the monomer (mer), 

U 
u* - = ii(f'), ( 7 )  

S 
s* 
- = S ( f ' ) ,  (9) 
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in accordance with Equation 4. Reduced pressure P* results from Equations 6 and 8: 

In view of Equation 4, 

T*ck p* = -. 
rv* 

The characteristic reduced quantities V*,  U', and S* are found from the moleciilar and 
thermodynamic properties of a pure liquid. 

Prigogine et al. (1957) considered a polymer chain consisting of spherical segments. 
Any segment is a part of the molecule, equal (in length) to the chain diameter measured 
in either van der Waals' diameters u or r*, where r* is the distance between two unlinked 
segments at the potential minimum E*.  Then, they introduced the parameter 

to characterize the difference between the diameters of spherical molecules (two compe 
nents) or between the diameters of the chain and of a spherical molecule of LMWL. 

The state equation in reduced quantities is derived from (see Equation 1.7-14) 

where 2 is the partition function for a specific model of liquid (individual one or a mix- 
t ure) . 

Prigogine (1957) applied the partition function of Eyring and Hirschfelder (1937) and 
used Lennard-Johns' potentid as the potential energy between two molecules (rners) 

where 
12 6 +) = (f) - 2 ( f )  7 

or, more generally, 

$3 (:) = v (f)' - p ( f ) m .  

In this version of the theory (Prigogine, 1957; Patterson and Delmas, 1970), the reduced 
energy is 
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and the state equation is 

where b = (rn/n)'/("-") is the packing factor. 

interaction potential, which is a specific casc of Lennard-Johns' potential at n = 3 and 
n + 00. For N molecules of an r-mer, the partition function is 

Flory et al. (1964ab) applied a partition function of the same form but with van der Waals' 

1)3rNCexp (--T), r N c  Z(f' 6) = Zcomb (gv')'NC ($13 - 

where 6 = v/v* = V/V* = v ,  v = V / r N  is the volume per segment (mer), V is the 
total volume of the system, g is the geometrical factor (in Eyring-Hirschfelder's partition 
function c = 1 while in Equation 21 c < 1). 

It results for this model that 

6 = --V--l, (22) 

and the state equation is 

or 

~ i M 3  
T* = -. 

Q1p - 1 

The characteristic reduced quantities fit Equation 13. 
If a thermal expansion coefficient 

(Y = v-' (Z) 
P 

is introduced, than it follows from Equation 26 that 

On differentiating Equation 24 with respect to temperature, one derives 

P* = PTG', 
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where 

P =  (%) V 

is the thermal  pressure coefficient. By the experimentally determined a, v is obtained 
from Equation 28 and V' from Equation 5. For P = 0 ( P  = 0), T' is determined from 
Equation 26 and P' is from Equation 29 (von Tapavicza and Prausnitz, 1975; Casassa, 
1976). 

Equations 19-29 are regarded valid for each individual component as well as for their 
mixture. 

The reduced thermodynamic functions of mixture (solution) are found with the help 
of the characteristic reduced quantities, which are determined from the corresponding 
quantities of the components according to a certain law of mixing (Patterson and Delmas, 
1970). Eg. 

s' = x1s; + x,s;, (31) 

where xi are thc mole fractions of the components. Additivity in this equation reflects 
the absence of interaction between the external freedom degrees of molecules of both the 
components. On the other hand, 

u* = x1u; + xzu; - x1u;x2v2, (32) 

where 

is the surface fraction of the second component (Prigogine, 1957). Therefore, Equa- 
tion 32 accounts for a relative weakness of the 1-2 interaction in comparison with the 1-1 
and 2-2 ones and a difference between the diameters of the components' molecules (the 
chain diameter in the case of a polymer chain). 

Combining Equations 31, 32, and 11 leads to 

- *lF1+*2% 

1 - *,x*u2 ' T =  

where 

(35) 

mi and v&i arc: the mass and specific volume of the i th component, respectively. 
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Equations 31-37 are given in Prigogine’s notation. In Flory’s notation (Eichinger and 
Flory, 1968a) for mixture, 

1)3iNEexp (-$) , 

where N = Nl + N2; p = (rl Nl + rZNz) /N;  E = (1-1 Nici + rzN2cz)lP-N. 
It is assumed that v; = u; = u*, V,* = r p * ,  v;/v = rz / r1 ,  

~ 

k In &omb = ASm,comb = -k(nl In @ I  + In @ 2 )  (39) 

(see Equation 3.1-20). The surface fraction is 

s; is the number of molecular contacts per mer, proportional to the cross-section of the 
ith mer (Eichinger and Flory, 1968a). 

It follows from Equations 31, 32, 11, 13 that 

P* = alp; + Q ~ P ;  - @le2x1,2, (41) 

and 

alp; + a2p; - ale2x1,2 
alp,* a2P; , T* = 

T;+Tz‘ 
where 

s1 
Xl,Z = - a(v*)’ (7711 + 7722 - 27712) (43) 

Equations 40-43 (in Flory’s notation) are equivalent to Equations 31-37 (in Prigogine’s 
notation) with the following glossary 

and $; is transformed to a, according to Equation 36. 

culated: 
Partition function 38 enables the chemical potential of the first component to be cal- 

and 

P1 - Po1 1 &lex 

RT r RT lnal  = ~ - - ln(1- + (1 - -) az + - 
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Expanding into a 
Flory, 1968a) 

where 

series and eliminating the third-ordcr tcrms givcs (Eichinger and 

1 [ 2 + Y1,Z a; + o(a;), 
A2alT 

It follows from Equation 50 that ( see  Equation 3.1-59) 

where 

If we neglect the third-order infinitesimal (Siow et al., 1972), then 

For the model used in Flory's theory, 

p;v;Cq 
61 

CP,l = -------, 

and Equation 54 is identical to x, from Prigogine-Patterson's version of the theory 

u1 2 CP,l 2 x = --u + -7- , 
RT 2R 

where 

(52) 

(53 )  

(57) 

Ul is the configurational (intermolecular) energy of the solvent (the energy of liquid ex- 
cept the energy of the same substance as ideal gas at the same temperature). It is a 
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negative value equal to the evaporation energy. The parameters v and r are temperature- 
independent and are related to Prigogine’s (1957) molecular parameters p from Equa- 
tion 14 and 

(59) 4 2  6 = - - 1 ,  
E f l  

by means of (Saeki et al., 1973b) 

7 1 1 d + X ,  

6 2  

4 
Y 2  = - + 9p2. 

The first term in Equation 57 is similar to the temperature dependence of x, in Flory- 
Huggins’ classical theory and responsible for the appearance of an UCST. The second 
term in Equation 57 increases with temperature, tending to a very large value ( C P , ~  + 
00 as the critical vapour-liquid temperature of the first component is approached) (see 
Equations 1.1.2-19,-43). 

Hence, with increasing temperature, the second term will inevitably overcompensate 
for the first one, and, when x, exceeds 112, a LCST will appear for, in principle, any 
P+LMWL pair. 

c1 = P;V;/RT; results from Equation 6 and 13. In view of this and Equations 26 
and 28, we get from Equation 54 

In the notation of this paragraph, we write Equation 3.1-242 as 

1 
= 2 (1 + ,-1/2)2 ’ 

Then, for the critical state, Equations 63 and 64 yield 

With allowance for Equation 25, Equation 65 predicts the appearance of UCST and 
LCST in the temperature scale depending on c1v2, el?, and the molecular weight of the 
polymer (Figure 3.88) (Siow et al., 1972). If the system contains polymer homologues, 
then u = 0 (Figure 3.88 presents only one root of Equation 64, corresponding to the 
LCST). If v # 0, then goes through a point with an infinitely sharp slope with a certain 
molecular weight. To the left of this point, there exist two roots for f’, corresponding 
to UCST and LCST; to the right there are no roots, i.e. two phase separation regions 
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Figure 3.88. Dependence of?  on clr2/(1 +r-’/’)’ at different values of c l v 2 / ( 1  + r-l/’)’. 
P = 0 (siow et al., 1972) [Reprinted with permission from: Macromolecules 5 (1972) 29-34. Copy- 
right @ 1972 American Chemical Society] 

T ,  “C 

Figure 3.89. State diagram of 
polystyrene+acetone. The MW of the 
polymer is: 4,800 (I), 10,300 (Z), 19,800 (3) 

Macromolecules 5 (1972) 29-34. Copyright @ 1972 
American Chemical Society] 

(siow et al., 1972) [Reprinted with permission from: 

70 

0.1 0.2 0.3 
v2 

overlap each other, forming a “sand clock”. This has indeed been experimentally revealed 
for the system polystyrene+acetone and polystyrene+diethyl ether (Siow et al., 1972) 
(Figure 3.89). 

The existence of two roots is provided by low values of r 2  and v2 while there are no 
roots at a high value of any of these parameters. 

Figure 3.88 shows the influence of M on the critical solution temperatures. A decrease 
in r (the molecular weight) leads to the corresponding decrease in the function’s argument, 
which lowers the UCST and raises the LCST. An increase in r (the molecular weight), 
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0 . 0 7 k  
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Figure 3.90. Calculated and experimental dependences of 
UCST and LCST on r-'/' for the systems CTA+acetone 
(1 )  and CDA(2,8)+acetone (2) (Cowie et al., 1971) 
[Reprinted with permission from: Macromolecules 4 (1971) 57-61. 
Copyright @ 1971 American Chemical Society] 
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Figure 3.90 are presented the experimental values of UCST and LCST with theoretical 
values for the systems cellulose 3,O-acetate (CTA) + acetone and cellulose 2,Sacetate 
(CDA(2,8)) + acetone (Cowie et al., 1971). The authors calculated T; from the thermal 
expansion coefficient of acetone and from Equations 28 and 26. The figure demonstrates 
qualitative agreement betyeen theory and experiment, after the axes for the theoretical 
and experimental curves T are shifted by 169" relative to each other. 

To interpret the results of experimental investigations within the theory of correspond- 
ing states, one needs to determine experimentally the temperature dependence of heat 
capacity and density, the thermal coefficients of expansion and pressure of the individ- 
ual components, and such properties of mixtures as the chemical potentials and enthalpy 
of mixing (Cowie et al., 1971), i.e. measuring a number of quantities on a specialized, 
sophisticated, and expensive equipment is required (Blanks, 1977). 

For the polystyrene+acetone system, the calculated phase separation region (a "sand 
clock") proves to be more narrow than the experimental one, and the theoretical critical 
concentrations at the UCST and LCST are twice as lower as the experimental ones (Siow 
et al., 1972). 

In the systems PaMS+cyclohexane, PaMS+methylcyclohexane, PaMS+butyl c h b  
ride, and PaMStpropylene oxide, Cowie and McEwen (1975) also observed a qualitative 
agreement between the theoretical and experimental curves (UCST and LCST us r-lI*) 
which, however, was achieved by means of arbitrary changes in a number of parame 
ters. In particular, T: must remain constant, but its variation with T was observed in 
experiment. 

Measurements of x from vapour pressure and osmotic pressure have shown a concen- 
tration dependence x = x(@) which is in semiquantitative agreement with xtheor calcu- 
lated using Equation 52 for the systems natural rubber+benzene (Eichinger and Flory, 
1968a), polyisobutylene (PIB)+benzene (Eichinger and Flory, 1968b), PIB+cyclohexane 

For the systems polystyrene+decaline, polystyrene+benzene, polystyrene+ethylben- 
zene, polystyrene+cyclohexane, Vshivkov and Komolova (1981) have revealed significant 
disagreement between the theoretical and experimental spinodals. 

McMaster (1973) has found a strong influence of the thermal expansion coefficient a 
and the thermal pressure coefficient /3 on the location of the phase separation region in 

(Eichinger and Flory, 1968ac), PIB+n-pentane (Eichinger and Flory, 1968d). 
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polymer mixtures. 
Due to a difference in the state equations of two polymers, a phase separation region 

with a LCST should be expected in their mixtures, which drastically shifts along the T 
axis when the differences (a1 - az) and (PI - pZ) increase (Figure 3.91). 

T T T 

P2 

Figure 3.91. Dependence of the location of the phase separation region in P1+P2 mix- 
tures on the difference between the thermal expansion coefficients (a1 - az), the thermal 
pressure coefficients (01 - Pz),  and the interaction parameter XI2 of polymers. MI < Mz 
(McMaster, 1973) [Reprinted with permission from: Macromolecules 6 (1973) 76&773. Copyright @ 
1973 American Chemical Society] 

In polymer mixtures, two phase separation regions with a LCST and UCST may be 
observed at low values of the interaction parameter XI, (Equation 43) (cf. Equation 58 
and Figure 3.88). As XI2 increases, these two phase separation regions merge into a “sand 
clock” (Figure 3.91). 

Hence, to enhance the compatibility region of two polymers, close values of their thermal 
coefficients a and p and small positive (or negative) values of XI2 (and small values of 
MW) are needed. Eg., a large compatibility region of two polymers with their MW 2. lo5 
and XI2 = 0 is provided if their (I differ by not more than 4%. 

A version of the corresponding states theory, which is able to predict some new types 
of the location of the phase separation regions (Figure 3.92) and has proved to be rather 
fruitful in predicting the incompatibility region (phase separation) of polymer mixtures, 
has been elaborated by Lacombe and Sanchez (1976), Sanchez and Lacombe (1976, 1977), 
Sanchez (1978). 

Sugamiya’s (1977) version involves the dipole moment of a monomer unit and (or) 
LMWI, molecules. 

In summary, the theory of corresponding states has made much progress; however, it 
is far from harmony with expcrimcnt. 

3.9. Relaxational thermodynamics 
Frenkel and Miashevich (1971, 1975), Frenkel (1974) have put forward an idea to con- 

struct a theory of relaxational thermodynamics (thermokinetics). Its basic principle is 
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Figure 3.92. State diagrams of 
liquid-liquid phase separation, pre- 
dicted by the theory of correspond- 
ing states, besides those shown in 
Figure 3.81 (Lacombe and Sanchez, 
1976) [Reprinted with permission from: 
R.H.Lacombe, J.C.Sanchee. J .  Phys. 
Chem. 80 (1976) 2568-2580. Copyright 
@ 1976 American Chemical Society] 

c 

the dependence of the thermodynamic potentials of a system (in particular, the Gibbs 
potential of mixing or the Helmholtz free energy of mixing) on the velocity of motion of 
the configurative point 

aAFmaT 
AFm(t) = J F d t  dt .  

0 

The question is not about the formalism of irreversible thermodynamics or merely 
relaxational processes in phase separation kinetics, but, precisely, about the possibility to 
modify traditional thermodynamic potentials as seen in Equation 1 .  

According to the thermokinetic principle, the location of the phase separation region 
must depend on the velocity of the configurative point approaching it. 

A multilevel structural organization is characteristic for many polymer systems. If each 
level is related to a relative minimum of the thermodynamic potential and a dependence of 
the Equation 1 type accepted, one can understand, qualitatively and semiquantitatively, 
the morphological variety of polymer systems, i.e. their polymorphism. 

The thermokinctic approach ideas have found their place in phase separation kinetics, 
and, especially, in morphology. 

Involving the time dependence AFm(t) (Equation 1) is close to the thermodynam- 
ics of systems with fading memory (Day, 1972) and the TTT type (time-temperature- 
transformation) diagram, a so-called “nose” diagram in the spinodal decomposition theory 
(Huston et al., 1966; Cahn, 1968). 

As to the explicit form of Equation 1, nothing definite can be said. Perhaps, such 
attempts may be exerted by plotting spinodals using Chu-Scholte’s method (see subsec- 
tion 3.6.2) at different velocities of motion of the configurative point in the one-phase 
region. 
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3.10. Multiphase separation 
in a binary system, equilibrium of three phases takes place when the tangent lines to 

AG, = f(v2) at three values of v2 merge into one straight line (Figure 3.93, T = T3). In 

AG, - 
RT 

Ti 
T2 

T3 

T4 

Figure 3.93. Diagram of threeliquid-phase equi- 

tem. 
the spinodals. The dashed lines on the isotherms 
AG,/RT show the metastable equilibrium of 
phases, the empty circles are critical points (Kon- 
ingsveld, 1975) [Reprinted from: R.Koningsveld. Brit. 
Polym. J. 7 (1975) 435-458. Copyright @ 1975 by Wiley. 
Reprinted by permission of John Wiley & Sons, Inc.] 

librium at the temperature T3 in a binary sys- 
The dashed lines in the upper figure are 

polynary systems, in equilibriumJhere are as many phases as many times a plane can be 
tangent to the folding surface AG,. 

If, under certain conditions, 7 phases transform to one phase, such a state of the systems 
is referred to as the ?-order critical state (or the 7-order critical point) (Kohnstamm, 
1926). 

According to Gibbs’ phase rule (Equation 1.2-32), in a u-component system with 7 
phases, f parameters (such as temperature, pressure, component concentrations) may 
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vary without any change in the number of phases (see subsection 1.2.3) 

f = v + 2  - y. (1) 

If all the 7 phases turn out to be identical, the number of degrees of freedom in the 
critical state decreases by (7 - l ) ,  so 

f =  ~ + 2 - 7 - ( 7 - 1 )  = ~ - 2 y + 3 .  (2) 
The number of degrees of freedom f cannot be negative; therefore, for a 7-order critical 

point to exist, 27 - 3 components are required at minimum. 
Hence, the 2nd-order critical point is realizd in a onecomponent system, the 3rd-order 

one may be observed in a three-component (ternary) system, the 4th-order one - in a 
five-component system, and so on. 

Griffiths and Widom (1973), Widom (1973), Griffiths (1974) prove that the 3rd-order 
critical point is a tricritical point in the sense accepted in section 1.6. 

b C d 

I 

P1 
e 

Figure 3.94. Threephase equilibrium a + p + 7 (a, dashed area in e); finite critical point 
ap (fc ap) (b, e); finite critical point Py (c,  e); tricritical point (tc) ( d ,  e); p1 is the 
chemical potential of one of the components (Griffiths, 1974) [Reprinted with permission from: 
R.B.Griffiths. J. Chem. Phys. 60 (1974) 195-206. Copyright @ 1974 American Institute of Physics] 

Figure 3.94 demonstrates how two lines of the double critical points a0 and Py can 
merge into one point, namely, the tricritical point of the asymmetrical type. 

As theoretical calculations and experiments show, three-phase equilibrium is observed in 
the P+LMWL system, when the polymer comprises two polymer homologues with their 
M differing by more than 10 times, or when the polymolecular sample has a strongly 
asymmetrical MWD, and in a binary P1+P2 system where the interaction parameter is 
concentration-dependent ~ 
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Analysis of this situation can be carried out within Flory-Huggins' theory (Tompa, 

According to the first approximation of the theory, the distribution of polymer substance 
1949; Solc, 1970, 1974, 1977, 1982, 1983; Chemin, 1977; Solc et al., 1984). 

in phases obeys the exponential function (Equation 3.2-12) 

wherc 

We assume the system to be in the onephase state and to be subject to phase separation 
by means of a temperature or composition variation, and the amount of the second phase 
is infinitely small (z --+ 0), which corresponds to the CPC (see section 3.2). This phase 
is called a conjugate (incipient) phase while the initial phase is called a principal 
phase. 

As was mentioned above, the CPC is of great importance in the study of phase sep- 
aration in polymer systems as one of the few experimental methods for recording phase 
separation. 

We denote the incipient-principal phase ratio as 

(cf. Equation 3.2-15). Besides, we accept K = $1 if y11 > (PI, and K = -1 if 911 < P I  
in Equation 3. 

The material balance condition yields the relationship 

(cf. Equation 3.2-25), where f ( p )  is the differential polymerization-degree distribution 
function (by weight) of the polymer in the initial solution, y is the polymer concentration 
in the initial solution. 

The CPC corresponds to the Q + 0 limit of the ratio 

As the conjugate phase is present in an infinitesimal amount, pi M y and 

We now introduce moments pk of the normalized MWD function f(p) of the polymer in 
the initial solution 
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and moments v k  of the non-normalized MWD function f ~ & )  of the polymer in the con- 
jugate phase 

00 00 

v k  = / P k f I I ( P )  dp  = / p k f ( p )  e d K u p )  6. (10) 
0 0 

On the basis of Equation 8, any distribution moment vk may be expressed through 0 
and the moments of the distribution function f ( p )  of the initial polymer 

O0 ( K O ) i p k + i  
= p k + c  

+l i! 

Here, the exponential function is represented by a series. 

of the polymer in the phases 
With Equations 7 and 8, the zeroth moment uo defines the volume concentration ratio 

Differentiating Fxluation 11 with respect to u n times, we get 

Under the CPC condition, the amount of the conjugate phase I1 tends to zero; hence, 
the parameters characterizing the principal phase in Equation 3.2-20 can be replaced by 
the parameters of the initial solution. With due account of the notation accepted in this 
section, Equation 3.2-20 takes the form 

1 + Vo 

2 
F ( 0 ,  'p) = Ku- + (uo - 1) - (v-1 - p - I )  + 'p-l - ( *) In l-cp 1 - 'pvo = 0,(14) 

2 

and allows the direct calculation of CPC. 
For the chosen 'p and MWD function specifying the moments pk, the root u of Equa- 

tion 14 is sought for, vo and u - ~  are determined using Equation 11. The interaction 
parameter x, is then calculated from Equation 4 with allowance for the accepted notation 
(Equation 12) 

1-'p 2 ~ , ' p ( v ~  - 1) = Ka + In -. 
1 - 'pvo 

Analysis (solc, 1970, 1974) shows that, provided that f ( p )  is not strongly asymmetrical, 
Equation 14 has one non-trivial root u, which tends to zero when cp approaches its critical 
value 'pc = (1 + pwp;1/2)-' (Equation 3.2-10). 

In this case, the root u is always positive provided that K = 1 for 'p < 'pc and K = -1 
for 'p > 'pc. 

The trivial root of Equation 14 is K u  = 0. 
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In other cases of rather asymmetrical distributions of f(p), Equation 14 may have two 
or three different non-trivial roots depending on f(p) and cp. Each root corresponds to a 
conjugate phase which is in equilibrium with the principal phase at the concentration cp 
and x, corresponding to Equation 15. 

Thus, Equation 14 proves to be valid for multiphase separation as well. 
This circumstance has an effect on the behaviour of CPC which undergoes a break (see 

In a system with an UCST, the CPC corresponds to the x;' us cp dependence. 
As the shadow line (SL) is the curve of coexistence to the CPC (see section 3.2), it is 

Equations 11, 13-15, in the limit u + 0 and cp + cpc, have yielded (Solc, 1970, 1974) 

below). 

represented by the x;' ws cpvo dependence in simulation (see Equation 12). 

relationships, including the known one for xl, (Equation 3.2-11): 

PwP;1/2 (1 + Pz 112 Pw -1 ) 
3Pz + 2PY2 - Pz+l 

( $ ) c  = -4K ' 

1 (2) c = 5 (1 +P:'*P2)2 (1 - Pd,') , 

[TI = 1 - 4  (P" + P y )  (3% + 2 p y  - p z + y ,  
c 

where the usual average values are applied 

It follows from F4uation 17 that the positive-by-definition parameter u will be really 
positive near p - pe if only the denominator of Equation 17 S > 0: 

The same result follows from comparison of Equations 18 and 20 with the derivatives 

While ( d ~ , ~ , / d c p ) ~  fits Fxluation 18, the second derivative differs from Equation 20 
taken along the spinodal (Equation 3.2-9). 

($) = pi1  (1 + PwP;1/2)3 + (1 + P, 112 P, -1 ) 
c 

(23) 

Until S > 0, 
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and the spinodal, going through the critical point and being tangent here to the CPC, 
remains inside the two-phase region. But, as soon as S < 0, the CPC “jumps away” from 
the spinodal-bounded region (see Figure 3.67). Remaining on the spinodal, the critical 
point (in the event of S < 0) loses its physical reality, and just at S = 0 the critical point 
shows a singularity. 

Condition 22 is always satisfied for certain types of MWD (eg. like Shultz-Zimm’s kind) 
while it is not the case for other types. 

According to Equation 18, the critical point is always observed either at the maximum 
(a monomolecular polymer) or on the right-hand branch of the CPC (a polymolecular 
polymer). 

By direct testing, one can prove that the derivative from Equation 19 is always negative 
given condition 22 is satisfied; it follows that the SL and CPC approach the critical point 
from different sides. 

Detailed analysis of the function F(u,  cp) and of the roots of Equation 14 for different 
ranges of S was made by Solc (1970). In particular, for (T = 0 

(g)‘p=(g) = o .  
‘p 

At  K = $1, the function F((T)  at a constant y and (T + 0 is nondecreasing if cp < cpc 
or nonincreasing if cp > cpc. At cp = ( p c ,  even the third derivative of F((T)  with respect to 
u is equal to zero: 

(Z) = o .  
‘p=‘pc 

Eg., in the case of S << 0, when the MWD is very asymmetrical, the function F(a,cp) 
at cp = cpc shows a flat minimum at the origin of coordinate (0 = 0), and Equation 14 
must have two different roots (01 and uz) which are called by Solc noncritical while the 
critical roots tend to  zero at cp + pC. 

Correspondingly, the CPC branch is called critical, if it corresponds to a critical root, 
and otherwise noncritical. 

In the case being discussed, S << 0; the CPC, therefore, comprises two non-critical 
branches relating to the roots (TI and uz. 

The branch going at lower polymer concentrations will be hereinafter referred to as left- 
hand and the other one as right-hand. They intersect at the triple (or three-phase: 
Solc, 1970) point yt where 

As u1 # u2, then 

Hence, at cp = cpt ,  the CPC shows a bend while the SL has a break, i.e. the principal 
phase and two conjugate phases are in equilibrium. This situation is portrayed in Fig- 
ure 3.95 (Solc, 1974). The complex shape of CPC indicates that only the segments GT 
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Figure 3.95. Schematic of the CPC location with a three-phase point T .  GTBDTF are 
the CPC's branches, GTF is the stable part, TBDT is the metastable part; PB'D'F is 
the SL; G"T" and T'F' are the stable parts, T"B'D'T' is the metastable part; C is the 
metastable critical point (solc, 1974) [Reprinted from: K.Solc. J. Polym. Si.: Polym. Phys. Ed. 
12 (1974) 555-562. Copyright @ 1974 by Wiley. Reprinted by permission of John Wiley & Sons, Inc.] 

and TF are real and have a physical meaning, while DB is in the unstable region. De- 
pending on the MWD details, the critical point may be located either on the metastable 
branches TB or TO, or on the unstable branch DB. Rarely, the critical point will c e  
incide with the triple point T. In the figure, the critical point C is on the segment TB, 
being a metastable critical point; the SI, is denoted by the dashed line. 

Subsection 3.6.2 discussed the properties of the neighbourhood of the critical points 
where at AT -+ 0 

For the considered type of systems, these rules may not be observed. Let us discuss the 
behaviour of the limit (Solc, 1974) 

ro = lim I". 
AT-0 (29) 

It is seen from Figure 3.95 that only the SL's branch G'IB', corresponding to the CPC's 
branch GI?, goes through the critical point. According to the lever rule and considering 
the relative location of the CPC and SL (see Figure 3.95), Equation 26 holds true if only 
cp < pt. At the triple point, the quantity r g  is undeterminable in principle, since there 
exist two different incipient phases, namely, T' and TI', in equilibrium with the original 
solution of the concentration Q = pt. 
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If, however, p > pt, then ro 4 0 always, and Rules 26 and 28 are not observed. For 

For p = pc, r o  = 0 as well, and Rule 28 is not fulfilled. 
Similarly, at (pc < cpt, when the critical point is on the CPC segments RD or DT, 

Hence, rules 26-28 are valid for the stable critical point only, i.e. when it is located on 

This is concerned with the necessity of those cautions while determining critical points 

pt < p < pc we have r o  = 0 although the concentration is smaller than thc critical one. 

requirements 27 and 28 may fail. 

the stable branches of the CPC (GT or T F )  or on the CPC without a triple point. 

by the phase-volume ratio method, which were dealt with in subsection 3.6.2. 

Figure 3.96. Surface x1 in the ternary 
system 0+1+2: LMWLtmonomer 
( p l  = 1 ) + P ( h  = 25). cp is a quasib- 
inary section 0-(1+2); w2 = cp2/(p1 + 
cpz) (the LMWL concentration is con- 
stant). The sections of the x, sur- 
face by parallel planes w2 and p show 
the CPC; the dotted line is the critical 
line in the unstable region; the dashed 
line is the critical line in the stable re- 
gion; the circles are the critical points; 
the dot-and-dash line is the three-phase 
line (solc, 1970) @printed with permis- 
sion from: Macromolecules 3 (1970) 66.5673. 
Copyright @ 1970 American Chemical Soci- 

w2 

ety] 
XI 
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2.04 - 

2.06 - 

2.08 - 

Figure 3.97. Characteristic curves in 
the ternary system: LMWL+monomer 
( p l  = l)+P(pz = 25). DGHC is the 
three-phase line; the upper (DFAC) 
and lower dashed lines (DBEC)  are 
the cusp lines; the stable (thin solid) 
and metastable (dotted) lines are the 
critical lines (solc, 1982) [Reprinted from: 
K.Solc. J .  Polym. Sci.: Polym. Phys. Ed. 20 
(1982) 1947-1961. Copyright @ 1982 by Wi- 
ley. Reprinted by permission of John Wiley & 
Sons, Inc.] 

I 

Figures 3.96 and 3.97 present the results of calculation of CPC and other characteristic 
curves of phase separation in a model ternary system 0+1+2: LMWL+monomer (p1 = 
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l)+P(pz = 25) (Solc, 1970). There is no interaction between components 1 and 2 xl(,z) = 0 
while the interactions between 0-1 and 0-2 are the same: 

Xl(0l) = Xl(02) = XI. (30) 

A variation of the total (1+2) concentration with reference to zero is a quasibinary 
section $3; at a constant LMWL (component 0) concentration: 

$32 w2 = -. 
$31 + $32 

Different planes with a constant w2 model systems with changing MWD asymmetry ( S ) .  
The line of the critical points for individual CPC called a critical line, drops down 

with decreasing w2, goes through a minimum at w2 2 9.4. (x, = 2.08, the point B in 
Figure 3.97), then grows again to reach a maximum at w2 2 4.2. lop4 (the point A )  and 
reaches x ,  = 2 at w2 + 0. Both the extrema correspond to S = 0. First, the critical line 
is located on the x ,  surface, and the critical points have a real meaning, though there are 
triple points on the CPC. As w2 decreases, the critical line approaches the threephase 
line, intersects it at 202 N 2 . lo-' and drops down under the x, surface, losing, hence, its 
physical stability. At w2, corresponding to the critical points after their minimal values, 
the critical points are located on the extended left-hand CPC branches (see Figures 3.95 
and 3.96). On a further decrease of w2, the critical point move, under the x ,  surface, 
from the continuation of the left-hand CPC branches to that of the right-hand ones and 
appear on the x, surface at the maximum of the three-phase line (see Figure 3.97). 

Each CPC branch, which goes through the three-phase point, has singular points (cusp 
points) where it abruptly inverses its course, i.e. the derivative duldy along the CPC 
diverges and changes its sign at these points while dxl/dp behaves as usual (the points 
B and D in Figure 3.95). 

In addition to Equations 14 and 15, the relationship 

must be satisfied at the cusp point. 
The cusp lines are entirely under the thermodynamically stable binodal surface (see the 

points D and B in Figure 3.95) except their end points C and D (see Figure 3.97) where 
they appear on the binodal surface. Thus, the cusp lines are boundary curves between 
the metastable and unstable binodal surfaces. 

It is seen from Figure 3.97 that the maximum A (minimum B) of the critical line 
coincides with the maximum (minimum) of the upper (lower) cusp point line. This relation 
is valid generally. The extremum condition of the cusp point line requires dx, to be equal 
to zero along the cusp line. Calculations involving Equations 14, 15, and 31 lead to an 
equation symmetrical with Equation 31 

2x1 = ( c p c 1 1 ) - l  + (1 - $ 1  = ( p p w ) - '  + (1 (32) 

which shows the cusp point at the extremum of the cusp point curve to belong to the 
spinodal. 

One of the possibilities for Equations 31 and 32 to be satisfied simultaneously is in 
p -+ $311 and p ,  p w l l ,  i.e. the two phases differ by an infinitesimal quantity. This 
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occurs at the double critical points - at the double point of the spinodal. Another 
possibility is provided when two extrema of the cusp-point lines turn out to be conjugate, 
i.e. represent two phases in equilibrium. Exactly such a case is shown in Figure 3.97 when 
the maximum of the lower cusppoint curve E ( w 2 , ~  N 7.0. is in equilibrium with 
the minimum of the upper cusp-point line F ( 2 ~ 2 , ~  N_ 3.8. lo-'). 

At last, the three-phase line, appearing when two binodal surfaces intersect, reflects 
all the stable three-phase equilibria in the system: the horizontal line x1 in Figure 3.97 
intersects the three-phase one just three times, i.e. at the points corresponding to three 
conjugate phases. 

The three-phase line merges with the upper and lower cusppoint lines at the points C 
and D where three-phase equilibrium finishes to exist. These points meet Equations 14, 
15, 31 (Solc, 1977), and 

i.e. the phases, conjugate at the points C and D, must be critical points, and, hence, 
the double (extremal) points of the three-phase line as well (the points G and H in 
Figure 3.97). 

Of the three characteristic curves (Figure 3.97), only the three-phase line is thermody- 
namically stable over its entire length. Recall that the critical line becomes metastable 
where it is dropped under the stable binodal surface on the segments GB and HA, and 
becomes unstable between the extrema A and B. 

The curves in Figure 3.97 help us to obtain an impression of the evolution of the 
three-phase equilibrium, say, during cooling of the system, by means of plotting the 
binodals which appear when the binodal surface is intersected by X,-constant planes with 
a constantly decreasing temperature level (when the values of x, increase). At the lowest 
values of x,, the binodals have only one critical point L on the sharply-dropping right-hand 
stable branch of the critical line (see Figures 3.96 and 3.97). 

At x,,, the double cusp point coinciding with the double critical point (Figure 3.97, 
the point A), appears inside the initial binodal at W2A. A new binodal then arises from 
this point. An increase in x ,  within x l A  < x, < x,, causes a splitting of the double cusp 
point into two cusp points with two arcs of the new binodal between them (Figure 3.98a) 
(cusp-also means the moon's horn as two arcs of the binodal look). 

The double critical point also splits into two single ones, namely, the metastable one M 
(to the left from the point A in Figure 3-97), which moves toward the external arc of the 
binodal and becomes stable, and the unstable one N, which moves towards the internal 
arc of the binodal (Figure 3.97, to the right from the point A to the point B). 

As x, further increases, the new binodal (now stable) grows and approaches, by its 
external arc, the initial binodal and, at last, touches it at x,, = x,, (see Figure 3.97). 

The old and new binodals touch each other at the critical point M (H in Figure 3.97), 
and, at the same time, a new configuration with cusp points, corresponding to the b e  
ginning of development of the third phase (Figure 3.98b), forms near the distant point of 
the initial binodal P (D in Figure 3.97). Two phases with an infinitesimal difference in 
composition appear at the point M. 

x , ,  increasing within x,,, < x, < xis, leads to an advance of the external arc of the new 
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Figure 3.98. Development of 
the phase separation region during 
temperature variations in a ternary 
system with a threephase separa- 
tion region. The solid circles are 
the critical points, the empty tri- 
angles are points defining the com- 
position of three-phase equilibrium 
(SO~C, 1982) [Reprinted from: K.Solc. 
J. Polym. Si.: Polym. Phys. Ed. 20 
(1982) 1947-1961. Copyright @ 1982 by 
Wiley. Reprinted by permission of John 
Wiley & Sons, Inc.] 

e 

binodal over the initial binodal, and the extrema1 part of the arc becomes stable along 
with the critical point M .  Two bend points of the external contour of the new and old 
binodals and the bend point of the binodal together with the cusp points near the point 
P give the composition triangle of the three-phase state of the system (Figure 3.98~). 

A unique symmetrical construction of the binodals appears at xlE = xIF (Figures 3.97 
and 3.98d) where two cusp points of two different configurations with cusp points merge 
at the point F ,  and, simultaneously, the internal (unstable) branch of the new binodal 
touches the old one at the point E. This contact point E is not critical. The unstable 
critical point N is located in the central, most internal branch of the binodals. 

When x, appears to be greater than xi,, the behaviour of the binodals changes as 
described above but in the reverse order and with roles swopped. Two cusp points diverge 
from the point E (see Figure 3.97), forming a configuration with cusp points to the 
left (Figure 3.98e) while the internal arc of the binodal breaks away from the point F 
(Figure 3.97) with the formation of another new binodal to the right (Figure 3.98e) with 
the stable critical point L (Figure 3.98e; the solid line in Figure 3.97). At xi, = x,,, 
the external arc of the new right-hand binodal meets the old one at the critical point L,  
and the left-hand configuration with the cusp points disappear. A t  last, at x, = xi,, the 
new binodal contracts down to a point while the critical points N and L merge into one 
double critical point (the point B in Figure 3.97). 

Figure 3.99 shows a number of CPC going through the three-phase region where 40 
varies; w2 is a parameter varying from a certain 2u2 > wZ,D (see Figure 3.97) down to zero. 

At w2 > w2,p, the CPC is of a smooth, gradual nature. At w2 = W & D ,  a double cusp 
point is reached (Figure 3.97, the point D ) ,  which the CPC h corresponds to (Figure 3.99). 
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Figure 3.99. CPC for the ternary system 0+1+2: LMWL+monomer (p1 = l)+P(pl = 
25). 'p is the concentration of (1+2); wz = cp2/('p1 + cpz) = 0 (o), 9 .  lo-' ( a ) ,  1. (b), 
5 * (c ) ,  4 - (4, 2 .  (e), 9.4 - (f l, 2 .  (g), 5 - (h). The empty 
triangles are the critical points for the curves 0, Q, b; the solid circles are the critical 
points for the other curves (solc, 1982) [Reprinted from: K.%lc. J .  Polym. Sci.: Polym. Phys. 
Ed. 20 (1982) 1947-1961. Copyright @ 1982 by Wiley. Reprinted by permission of John Wiley & Sons, 
Inc.] 

When 202 = w ~ , D ,  the double cusp point splits into two cusp points, and there appears 
a configuration with two cusp points. The stable critical point is far from the cusp points 
on the left-hand branch of the CPC (see Figure 3.97) and, apparently, does not play any 
role. 

As 202 diminishes, the critical point falls (Figure 3.99, line g), turns out to be metastable 
on passing the three-phase point G (Figure 3.97), and reaches the lower double cusp points 
at W ~ , B  (see Figure 3.97; Figure 3.99, curve f). Then, it goes up along the CPC's unstable 
branch (Figure 3.99, curve e), reaching the upper double cusp point at W Z , A  (Figure 3.99, 
curve La); then it changes its direction, moves down along the CPC's right-hand branch, 
and becomes stable when it appears on the binodal surface at the maximum of the three- 
phase line H (Figure 3.97; Figure 3.99, curves c, b). About w2 FJ 1 - (between the 
curves c and bin Figure 3.99), the configuration of the cusp points changes its orientation, 
and the three-phase point is at lower values of x,. On a decrease in wz, the configuration 
with the cusp points disappears, and the CPC becomes smooth again (Figure 3.99, curve 

The CPC for the binary system 0+1 ( t u2  = 0, Figure 3.99, curve o) forms an envelope for 
the right-hand branches of other CPCs; it means that the LMW fractions of the polymer 
play a large role in phase equilibria at high polymer concentrations (1+2). 

The thr-phase behaviour of a model quasiternary system, containing LMWL and two 
polymolecular homologues, substantially differs from that of true ternary systems (solc, 
1982). 

Q)- 
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In the second approximation of Flory-Huggins' theory (state equation 3.6-l), the phase 
equilibrium relationships have the form (Solc et al., 1984) 

In (E) = up; ,  ( 3 5 )  

where 

(36 )  
pori  
Po1 

0 = In - - (grr -si)  + pIi(2gri - poirgiir) - p1(2gr - porgir), 

and gk = akG/apk is the kth derivative in phase I or 11. 

Equations 7 and 8), Equations 34-35 are transformed into the CPC equations: 
Accepting the same approximation for the principal (I) and incipient (11) phases (see 

1 2  1 
-(SI1 -91) W O  - -(vo + 1) - -(vo - 1)p [glIrvo(l - pug) + gll(l - p)] = 0 [ 2  

and 

1 - pvo 
1--cp 

FZ(0, $0, T )  2gp(vo - 1) + In ~ - 0- 

- (911 - g ) ( l  - 2 v o )  - p [g111vo(l - V O )  - g11(1 - p)] = 0. 

If g is p-independent, Fl(a,  p) (Equation 37) is temperature-independent and reduces 
to Equation 14. 

Generally, analysis of Equations 37 and 38 is very laborious, even if computer-aided. 
Their basic properties are revealed if the interaction parameter is represented by the sum 
of two summands, temperature-dependent and concentration-dependent 

g(T,  P) = ST(T) + g+YCp). (39) 

At the critical point, the coexisting phases become identical; hence, o -+ 0, v k  + pk, 

Near the critical point, the interaction parameter and its derivatives with respect to 
gk gk,lI, etc. 

concentration can be represented as the series 

k = 0 , 1 , 2  )... . 

Then, the functions F1 and Fz are also represented as series by Equation 11 and an 
expansion into series of logarithmic functions. It turns out that, at u -+ 0, F1 converges 
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as u3 while F2 converges as u,  and the trivial roots of Equations 37 and 38 are eliminated 
by introducing new functions 

Therefore, the critical state is defined by 
- - 

lim Fl = 0+0 lim F2 = 0. (43) u-bo 

The multiple critical points correspond to the multiple roots of the phase equilibrium 
equations related to the critical point of the system. 

Because phase equilibrium exists under isothermal conditions, the multiple mots arc 
obtained, in turn, by analysis of the partial derivatives with respect to u of any of FI, Fa, 
F,, or F 2  at constant T and 'p. Eg., the condition 

lirnFI=O 
O+O 

along with the spinodal equation corresponds to one nontrivial root (the single critical 
point). 

If 

then the function FI(a) at constant T and Q shows an extremum at u = 0 and has a 
double root (the double critical point). 

In the general case, the condition of existence of an rn-multiple critical point is 

= 0; n = O , l ,  ..., m - 1 
T,9 

and the spinodal condition (Equation 46 at n = -1). 
Thus, the rn-multiple critical point is defined by (m + 1) independent equations 46, 

including n = -1. 
Solc et al. (1984) have analyzed the conditions of existence of multiphase equilibrium 

and multiplecritical points in the system (polymolecular P)+LMWL when a concxzntration- 
independent interaction parameter and in binary systems with a concentration-dependent 
interaction parameter g = f(p). 

Gibbs' phase rule (Equation 1) for the system (polymolecular P)+LMWL requires some 
modification. First, phase equilibria are considered under constant (atmospheric) pres- 
sure, i.e. pressure is fixed and no longer a variable. Second, the degrees of polymerization 
p; with E = 1,2,. . . , s-1 and concentrations of components become variables. The number 
of degrees of freedom for the m-multiple critical points is cancelled by (m + 1) conditions 
of its existence (see Equation 46, including n = -l), so there remains 

f =  2s - 1 - ( m +  1) = 2s - 2 - m ,  s > 1, 15 m 5 2s - 3  (47) 
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Table 3.6 
Number of degrees of freedom in the critical state of a polynary system with a 
concentration-independent parameter g 

Number of 
components, 

S 

Number of 
independent 

variables 

Critical point 
Multiplicity Number of Degree of freedom, f" 

m equations, m + 1 
1 2 P l  

1 2 P l ,  P2, w2 

2 3 P I ,  P2 

3 4 PI 
1 2 P I ,  P2,  w, w2, w3 

2 3 P l ,  P 2 ,  w, w3 
3 4 P l ,  P2, P3 

4 5 P l ,  P2 
5 6 Pl 

the most typical combinations; others are also possible 

degrees of freedom. 
According to Equation 47, Table 3.6 reports the degrees of freedom of 2. . .4-component 

systems in the m-multiple critical state. 
Polymer homologues are arranged in the ascending order of their molecule lengths, 

p l  < p2 < ... < ~ ~ - 1 .  The length is often expressed in relative units r, = p j / p j - l ,  
j = 2,3,. . . ,s - 1 with rj > 1. 

For a given number of components, the critical points of a certain multiplicity exist 
only at a certain combination of rj ,  and such critical points can be represented in r-space. 

The state of a binary system (at a fixed pressure) is characterized by three variables, 
T, 'p, and p1 (see Equation 3.1-32) and two equations that define the only critical point: 
Equation 46 at n = 0 and n = -1 (see also Equation 3.1-50 and d A p l / d n l  = 0). 

Hence, according to Equation 47, f = 1. Indeed, the location of the critical point is 
defined by one parameter, eg., by the chain length p l  (Equation 3.1-241). 

Every ternary system has a line of simple critical points, which is defined in the whole 
concentration range of the polymer homologues PI and P2. Hence, p1, p2,  and w2 may 
vary (see Table 3.6). In ternary systems, where three-phase separation is possible, double 
critical points with a fixed composition 202 appear as the extrema of the lines of simple 
critical points while pl  and p2 remain variables. At the triple critical point of a ternary 
system, a certain p2/p1 ratio must be preserved while p l  remains a variable (see Table 3.6). 

The diagram of multiple critical points for ternary and quaternary systems in r-space 
is presented in Figure 3.100. 

For a ternary system, the diagram is one-dimensional with a triple critical (tricritical) 
point which separates the three-phase region from the twephase ones with double critical 
points (Figure 3.100a; see also Figures 3.93 and 3.94). The location of the tricritical point 
r2,tc E r * ( p l )  depends on p1, varying from r* 11 15.645 for p1 = 1 to r* N 9.899 for p1 -+ 00 

(Tompa, 1949; Solc et al., 1984). 
For the three-phase state of a quaternary system, there exists an infinite number of 
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2phases T 3phases Figure 3.100. Diagram of multiple crit- 
1 r2.tc r2 ical points in r-space (rj = p j / p j - l ) :  

- 
ternary systems ( a ) ,  quaternary sys- 
tems (b).  Multiple critical points: T 
- triple, Q. - quaternary, Qi - pen- 
tary. The position of the triple point 
T and both the lines of the quaternary 
critical points depends on the value of 
p l  (sole, 1984) [Reprinted with permis- 
sion from: Mxmmolccules 17 (1984) 573-585. 

\ Qi Copyright @ 1984 American Chemical Soci- 

a Q.[ ,, 
\ 14 phases, /‘ 

’ ,/ 3phases 
\ 
\ 
\ 

\ etyl 
\ 3 phases 
\ 

2 phases ------- 
1 r3 

b 

double critical points which form a continuous line, and, at least, one triple critical point 
at a fixed composition WZ, w3. 

Quaternary critical points are revealed in systems where r3 takes a certain value which 
functionally related to p1 and pz. 

At last, the pentary critical point requires fixed relations between r 3  and rz; only pl  

remains variable. 
The diagram of the critical points of a quaternary system is shown in Figure 3.100b. 

The existence condition of a line of double critical points is m / p l  = r2r3 2 .*(PI), i.e. a 
hyperbola in the ~2 and r3 coordinates (the lower dashed line, Figure 3.100b). 

The set of the quaternary critical points Qa comprises two asymptotic branches which 
meet at the cusp point - it defines the pentary critical point. These asymptotic branches 
are boundaries between systems with simple three-phase separation and systems with a 
more complex behaviour (two different three-phase regions, one of which may be unstable, 
and four-phase separation). 

Figure 3.101 demonstrates the behaviour of CPC in systems with multiphase separa- 
tion (Solc et al., 1984). For comparison, a CPC for two-phase separation in the system 
(polymolecular P)+LMWI, is shown in Figure 3.101a (see section 3.2). In systems with 
three-phase separation, the CPC has the shape discussed above in detail. Two stable 
branches of CPC intersect at the point P. At its concentration ‘ p p ,  the principal phase is 
in equilibrium with two different incipient (conjugate) phases (Figure 3.95, the points T’ 
and T”), Le. three-phase separation originates from the point P which, hence, is called 
a three-phase point on the CPC. Depending on MWD, the critical point may be located 
on the CPC, including its metastable branches P B  and PC, and the unstable segment 
CB. If the critical point coincides with one of the cusp points C or 8, it is referred to as 
a heterogeneous double critical point. The word “heterogeneous” is associated with 
the fact that on a certain change in the composition of the P+LMWI, system, the critical 
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Figure 3.101. Cloud-point curves during multiphase separation (Solc et al., 1984) [Reprinted 
with permission h t r l :  Macrorrroleculev 17 (1984) 573-585. Copyright @ 1984 American Chemical Soci- 

ety] 

point (say, the point B in Figure 3.101b) may turn out to be either a simple unstable 
critical point (while moving towards the point C )  or a simple metastable c.ritica1 point 
(while moving towards the point P ) .  Being metastable, the critical point is stable with 
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respect to separation into two infinitesimally-differing phases. 
On a substantial and arbitrary shift in composition wz, the area PBC contracts, and 

the points P, t3, C merge into one point, the three-phase region no longer exists, and the 
CPC is a smooth curve. Resides, the critical point may be located on the CPC either 
higher or lower than the merging point PBC. Only if the homologue lengths ratio rz 
meets the prescribed value, the critical point coincides with the merging point PRC, i.e. 
joins two cusp points. In the immediate vicinity of such a point, the CPC changes its 
direction twice (the point T in Figure 3.101b). Such a critical point can also be regarded 
as the merging point of two heterogeneous critical points and characterized as a triple 
critical (tricritical) point. It is seen that the CPC shows no peculiarities at this point. 

The quaternary critical point Qa emerges as a result of the junction of three double 
critical points or the junction of three cusp points with the critical point on the CPC 
(Figure 3.101~). The system may travel to the quaternary critical point through the triple 
critical point either on the metastable branch of the CPC (the point T3 in Figure 3.101~) 
or on its unstable branch (the point T2 in Figure 3.101~). 

Thus, in a four-(and more)-component system, the triple critical point may be located 
on the metastable or unstable branch of the CPC while its stable branch shows a kink 
similar to that in Figure 3.101b. 

The pentary critical point results from the junction of four double critical points or 
of two pairs of cusp points with the critical point (Figure 3.101d). Such a point on the 
CPC is indistinguishable from the tricritical one in a ternary system. In the general case, 
the m-multiple critical point gets into the CPC when the critical point merges with the 
(m - 1)-multiple cusp point. The even-multiple critical points are always away from the 
CPC stable branch while an odd-multiple critical point may well appear on the CPC 
stable branch. 

It follows from the aforesaid that the multiplicity of the critical point cannot be deter- 
mined from the character of the CPC stable branch. To identify it, the changes in the 
CPC or the phase state of the system should be followed upon a change in the polymer 
composition and/or MWD. 

The influence of the concentration dependence g(v2) on three-phase equilibrium, the 
existence of multiple critical points and associated features were shown by solc et al. 
(1984) using model calculations for binary systems P+LMWL. 

In this version, conditions 42 (including n = -1) lead to the equations 
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The concentration dcpcndence g = g(v2) is represented as usual (cf. Equation 3.6-9) as 
a series 

Then, for a certain type of functionality (eg., cubic with IC = 3), all the highest deriva- 
tives gi with i > 3 in Equations 48-52 disappear. Thus, the system’s behaviour is defined 
by the set of coefficients ai(T) .  Their interrelations result in changes in the shape of the 
CPC, the existence of three-phase separation, appearance or disappearance of multiple 
critical points, etc. 

Systems with the linear dependence g (g; = a, = 0 for i > 1) do not satisfy Equation 50 
and, therefore, comprise only a single critical point with its existence conditions prescribed 
by Equations 48 and 49. 

Systems with the quadratic dependence g may have, at least, a triple crit,ical point. 
Equation 51 gives t h e  tricritical concentration value 

v2tc = (1 + p1/4)-l . (54) 

Equations 49 and 50 lead to interrelations between altc and aZtc: 

All the variables but one are fixed at the tricritical point. For example, the chosen 
chain length p defines the tricritical concentration of a polymer according to Equation 54 
while the relationships aZtc us altc are defined by Equations 55 and 56. In the limiting 
cases 

1 4 4 8 
p = 1 : VZtc = -, Q 1 t c  = --, u2tc = -, UOtc = -; 

2 3 3 3 

1 1 3 
4 4 p + c4J : VZtc + 0, a 1 t c  + --, QZtc + 12, QOtc + -. 

(57) 

As an example, Figure 3.102 reproduces Figure 9 from Solc et al. (1984). The CPC 
shows three break points which are the points of intersection of the CPC’s isolated por- 
tions. These points define three-phase equilibrium which exists at a certain temperat.ure. 
For binary systems, the CPC contains complete information on the phase state of the 
system, as it coincides with the binodal curve. Moreover, the critical points are here 
always located at the CPC’s maximum, as opposed to a polynary system. The spinodal 
touches (or intersects) the CPC at its extrema1 points. 

When the coefficients al and a2 vary, the characteristic curves transform, and, given 
Equation 57 is satisfied, the system has a CPC with a tricritical point (Figure 3.103). 
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Figure 3.102. State diagram of a bi- 
nary system with p = 1, al = -2.0, 
a2 = 2.02. The stable (1) and un- 
stable (2) CPC portions and the spin- 
odd  (3). The stable (M, S) and un- 
stable (N) critical points. P’PNPrrr de- 
notes threephase equilibrium. The c e  
existing phases are marked by the same 
letters with primes (Solc et al., 1984) 
[Reprinted with permiasion from: Macro- 
molecules 17 (1984) 573-585. Copyright @ 
1984 American Chemical Society] 

tc Figure 3.103. State diagram of a binary 
system with a triple critical point: p = 1, 
alt ,  = -4/3, aZtr = 4/3 (Solc et al., 
1984) [Reprinted with permission from: Macro- 
molecules 17 (1984) 573-585. Copyright @ 1984 
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2.80 - American Chemical Society] 
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Special analysis (Solc et al., 1984) shows that the greater the critical point’s multiplicity, 

At  p > 1, the maximum of the  CPC shifts towards lower concentrations. 
There is a principally new property of the CPC with the quadratic dependence of g 

in comparison with g = const or the linear dependence of g, namely, its compositional 
character (see Figure 3.102). 

Detailed analysis (solc et al., 1984) shows that several points on the CPC may have 
one value of u, and this parameter, therefore, turns out to be ambiguous in determining 
phase equilibrium. In this case, in solving Equation 37, particular attention should be 
paid to the possibility of existence of several roots. 

The CPCs of the type shown in Figure 3.102 have been observed experimentally on 
polymer mixtures with a narrow MWD (see Figure 3.95). Thus, multiple equilibrium 
and the existence of multiple critical points are caused by either a substantial MWD 
asymmetry or a strong concentration dependence of the interaction parameter g, or both. 

In conclusion, we note that Solc’s classification of critical point multiplicity using the 

the flatter the CPC vertex. 
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number of Equation 49’s roots also accounts for unstable critical roots while Griffiths- 
Widom’s (Griffiths and Widom, 1973; Widom, 1973; GrifEths, 1974) (see the beginning 
of the paragraph and Equation 2) relates to stable critical points only, and does not 
consider even-multiple critical points. 

Chapter summary 

1. The state equation for the system polymer+low-molecular-weight liquid (P+LMWL) 
is deduced by the methods of statistical thermodynamics in the mean field approximation 
(Flory-Huggins’ equation). 

The interaction parameter x = x , + x , w ~ + x , w ~ + - ~ ~  (the interaction energy per molecule 
of the LMWL, in units of kT)  is assumed to be the only parameter characterizing the 
specific features of a system. 

The approximation x = x, = a/RT (Equation 3.1-33) leads to a model for the regular 
solution, for which ASmb,unEomb = 0. 

A model for the strictly regular solution (ASm~,uncm~ # 0) requires x = x, = P+a/R’T 
(Equation 3.142) or xI = I E ~  - + 1/2 (Equation 3.1-40) and has four approximations: 

0th: v2 -+ 0 and z + m; 

1st: x1 = Aplerc/w;RT, where Apleoc is given by (Equation 3.1-58); 

2nd: the concentration dependenceof x is to be given (Equation 3.1-36, subsection 3.6.1); 

3rd: x is a function of both the concentration and molecular weight distribution (MWD), 
subsection 3.6.3. 

2. As the combinatorial mixing entropy is usually large, for the condition AG-,, = 
ACmir,id to be satisfied, the contribution of the mixing enthalpy must be positive. Hence, 
polymer solutions with A2 = 0 (in the 0 solvent) cannot be athermic, in contrast with 
those of low-molecular-weight compounds. Indeed, for the 0 solvent x, = 1/2 and 6 1  = $1. 

3. Different models are proposed for the conformational description of a macromolecule. 
The model for a continuous equivalent chain proposed by Edwards is of special significance 
for further applications. Being applied to conformational problems it has led to the 
formalism of functional (path) integrals, which is well-elaborated in quantum field theory. 

The model approximating a polymer chain by N linked segments of length A each is 
widely used. The value of A is determined by the interactions between the neighbouring 
monomer units, such as short-range ones (the framework dfect, the stiffness of chain). 
The distribution of N segments in space is well described by the Gaussian function. 

4. The state equation for a single polymer chain is given from the Flory theory. In 
the case of a thermodynamically good solvent (i.e. away from the 19 temperature), the 
interaction potential between chain-distant segments (the long-range, or space interac- 
tions) has, as a matter of fact, only the repulsion component. This can be formalized 
by introducing an excluded volume of a segment /? and that of a macromolecule we, at 
the intramolecular and intermolecular level, respectively. The existence of the excluded 
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volume explains why the coil linear size is a(= R/Re)  times as large as that in the case 
of the unperturbed state, a being a function (Equation 3.1-115) of the excluded volume 
parameter z (Equation 3.1-116). This function is the state equation for a single molecular 
chain. It may be noted in passing that the second virial coefficient A2 depends on z as 
well (Equations 3.1-146,447). 

The functional dependence of R on N ,  A, and p can be alternatively defined in terms of 
the general principles of the mean field approximation in three-dimensional (Equation 3.1- 
142) and d-dimensional (Equation 3.1-144) space. 

5. The effective repulsion between segments of different macromolecules causes a de- 
crease in the coil size, as the polymck concentration in solution increases. 

Morphologically, solutions can be divided into dilute, semidilute, and concentrated. 
In semidilute solutions, the segment distribution, which is characteristic for the dilute 
solution in the given (good) solvent, holds within the distance [ in a macromolecule. At 
longer distances P > t, the distribution of chain units of the size [ becomes Gaussian (as 
in the unperturbed state) due to the repulsion from segments of other macromolecules. 
The distance is referred to  as the screening length, and a portion of chain of size 6 is a 
blob. 

In dilute solutions there is no compensation for the excluded volume of segment by 
other macromolecules, and the coil size R defines the upper limit of [. As the polymer 
concentration increases, [ diminishts, and at a certain, characteristic concentration it 
becomes equal to the linear size of the excluded volume of segment. 

From this concentration and till the condensed state of the polymer, the coil has the 
unperturbed size, as in the B solvent. 

6. Both the binodal and spinodal of the Flory-Huggins state equation have an extremely 
asymmetric form in the coordinates T (or y) ws w2 due to the wide difference between the 
sizes of the component molecules. 

The higher the molecular weight of a polymer, the higher T,, the less vzC, so uzc + 0, 
x,, + 1/2 if z + 00 (A4 + m). 

In the given approximation, the plot - 
Tc 

is a straight line with the slope 

being proportional to l/O$l  and cutting off l/e at the ordinate axis. The mixing enthalpy 
parameter I E ~  is calculated according to Equation 3.1-248: 1c1 = 0$1/T. 
7. Due to the natural polymolecularity of any polymer sample, the system P+LMWL 

should be regarded as a polynary one, containing (v + 1) components provided that the 
polymer consists of v polymer homologues. When P = m s t ,  the stability boundary of 
the single-phase system state is a spinodd surface in the (v + 1)-dimensional space bascd 
on the v-dimensional polyhedron of composition (with the material balance taken into 
account) and the temperature axis, the critical state being defined by a v-dimensional 
surface. 

The conditions of equilibrium in the twephase state lead to relationships, which require 
special computational methods to obtain a (v  + 1)-dimensional binodal surface. The 
intersections of the plane T us cp ('p is the concentration of a polymolecular polymer) 
with the binodal and spinodal surfaces give the boundary of the phase separation region 
(also called a cloud-point curve (CPC)) and the spinodal curve (spinodal), respectively. 

The plot T us  cp (or Tcp ws p) remains in a plane regardless of the number of components, 

1 (t)+7 



3. Chapter summary 503 

since in the quasi-binary section T PIS cp, the ratio between polymer homologues (v) 
remains constant, and the concentration of one component (LMWL) changes with respect 
to the sum of all the polymer homologues. This situation is more often than not realized 
on preparing solutions of a polymolecular polymer with different concentrations. 

In a polynary system at twephase equilibrium, there is a curve of coexistence of phases 
on the T vs cp diagram for each polymer concentration, and it shows a break at high 
temperatures (if the system has the upper critical solution temperature ~ UCST) and at 
all the concentrations except one: p = pC. 

When cp < cpc the left-hand branch of the phase coexistence curve goes under the CPC 
lefter than cp and finishes on the CPC (a break!) at the point corresponding to the given 
polymer concentration cp. The right-hand branch goes out of the CPC and finishes at 
the temperature of the left-hand branch break and at the polymer concentration in the 
second phase when the amount of this phase is infinitesimal. A set of endpoints of this 
right-hand branch of the phase coexistence curve (PCC) forms a shadow line (SL). 

Thus, the right-hand branch of the PCC finishes on the SL at the temperature of the 
left-hand branch finishing on the CPC. 

When cp > cpc, the PCC right-hand branch goes more to the right than the CPC and 
finishes on it at a given concentration cp. The PCC left-hand branch goes between the 
CPC left-hand branch and the SL left-branch and breaks on the SL at the temperataure 
of the PCC right-hand branch finishing on the CPC right-hand. 

When cp = cpc the twephase ceexistence curve is uninterrupted and has an extremum 
(a maximum with UCST) at the critical point. 

The CPC shape depends on both the MWD and the concentration dependence of the 
interaction parameter g = g(cp) (the second approximation of the Flory-Huggins theory). 

The critical point (Tc, 9,) is the common point of the spinodal and CPC, at which a 
common tangent line exists. It is located on the CPC right-hand branch for systems with 
either UCST or LCST, and the greater the ratio M,/M,,  the farther is this point away 
from the CPC maximum (the precipitation threshold) along the concentration scale. 

The second approximation of the t,hmry assumes the spinodal position to depend on 
M, only. That is why the spinodal is invariant for polymer samples with different MWD 
but with the same M,. 

If this property is not realized, this attests to the dependence of the interaction param- 
eter on the MWD (the third approximation of the Flory-Huggins theory). 

8. Redistribution of the polymer homologues occurs between coexisting phases, with 
the second (more concentrated with the polymer) phase enriched (and no more!) with 
homologues with greater molecular weights. This effect is the base for the procedure of 
fractionation of polymolecular polymers. Different means of fractionation are used. The 
precipitation method consists in decreasing the temperature stepwise (for systems with 
UCST) or adding a non-solvent; on achieving equilibrium, the second phase is removed, 
which is followed by a further decrease in temperature, etc. With the extraction method, 
either the temperature is increased or a better solvent is added; on achieving equilibrium, 
the first phase is removed (decanted) that is followed by a further temperature increase, 
etc. 

The theory of fractionation is rather complex. Different computational versions require 
simplifications, simulations, and computers. 
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The summative fractionation is a method of fractionation with the determination of the 
overall polymer precipitate mass in the second phase (without removing the previously 
precipitated polymer fractions) on adding a due portion of non-solvent (or on decreasing 
temperature). Thus, the degree of phase transformation x is determined at the stage of 
summative fractionation. 

Spectroturbidimetric titration (STT) of polymer solutions is a version of summative 
fractionation with “optical weighing” of the polymer in the colloid-disperse state. 

It is based on solving two inverse problems, namely, optical and thermodynamic. In 
the first problem, the mass (concentration) of the precipitated polymer is determined as 
a function of the precipitant volume part 7, i.e. the precipitation curve x = x(7) is to be 
obtained. The aim of the second inverse problem is to converse this curve into the MWD 
function. 

9. When the correlations of concentration fluctuations are not taken into account, the 
theory of light scattering in polynary systems gives an expression for .Re with the de- 
terminant a;j appearing in the denominator and vanishing on the spinodal. Hence, on 
the spinodal &+o + 00, which is unreal and due to the neglect of the correlations of 
concentration fluctuations. However, there is a method for determining the spinodal tem- 
perature at a given polymer concentration Q by measuring & in the singlophase region 
during successive cooling of the solution (system with UCST). Following extfpolation 
Rs+o + 00 gives the spinodal temperature. Repeating the procedure for a number of 
concentrations cp yields the spinodal curve. 

We remark incidentally that such a problem for low-molecular-weight liquid mixtures 
presents significant experimental difficulties. 

The diffusion coefficient as a function of the concentration Q is an extrema1 dependence 
with a minimum at p = cpe. The nearer the isotherm to the critical isotherm (where 
Dmin = 0) the lesser the minimal value of Dmin. 

10. Critical opalescence in polymer solutions is observed in a much wider temperature 
range than in solutions of low-molecular-weight compounds. This makes it more difficult 
to identify the binodal curve (the boundary of the region of phase separation or CPC) 
as distinct from low-molecular-weight solutions. The latter show so sharp a rise in the 
scattered light intensity in the critical region that the method of recording makes no 
matter. 

The experimental radiation diagram of the critical opalescence and the existing theories 
allow one to determine the radius of coil gyration m, Debye’s length of interactions I, 
the energy of polymer molecular cohesion. What is more, the order of the value a 
determined by the critical opalescence is much lesser than the lower limits of the macrw 
molecule size, with the latter being determined by the effect of intrinsic interference in 
dilute solutions away from the critical point. 

Both the theoretical and experimental studies have shown the macromolecule sizes near 
the critical point to be comparable with the size of an unperturbed coil at the @-state, 
and l2 N m. 

11. Dynamic light scattering is due to the relaxation of the concentration fluctuations 
when the scale of segments is comparable with q-’. So, the relative contribution of 
macromolecule diffusional mobility and their internal modes depend on the wave vector 
9: 
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Rq << 1: the macromolecule behaves as a particle with motionless segments; 

Rq N 1: the macromolecule diffusion mode is comparable with the longest wave mode of 
segment mobility having the relaxation time T~ . 

Rq >, 1: the following modes for the motion of segments are “turned on”. 

The experimental results concerning dynamic light scattering in polymer solutions indi- 
cate the existence of two diffusion modes of a macromolecule. The first mode is concerned 
with the conventional self-diffusion coefficient of the polymer. To the second one is as- 
cribed the reptation motion of the macromolecule in an imaginary pipe of entanglement 
points formed from other macromolecules. 

The hydrodynamic interactions of segments in a macromolecule is screened by other 
macromolecules on increasing the polymer concentration in solution. In semidilute and 
concentrated solutions of the polymer, there occur fluctuation entanglements with the 
scale < and existence time T,.. With Dq2 > T;’ the solution behaves as a gel in respect 
to its dynamic properties. 

12. As the configurative point goes down along the temperature scale (a system with 
UCST) on the state diagram T ‘us v2, the transition coil-globule occurs between the 
ordinate axis and the left-hand branch of the binodal. The character of this transition de- 
pends essentially on the ternary interactions between segments in the coil: in the absence 
of these interactions, the transition is like that of the first kind, while with the ternary 
interactions being enhanced it approaches the transition of the continuous type. 

13. The system network polymer+LMWL shows properties both of the solid and of 
high elasticity of entropy nature. The system models proposed lead to state equations 
which are verified by experimental results. In the single-phase region, the state equation 
in the coordinates T us v2 is expressed by a swelling curve with either positive or negative 
slope depending on the sign of the mixing enthalpy. 

There may exist two phases of a network polymer with different chain conformations 
at some values of the system parameters (high x and the concentration of crosslinks u) .  
Due to the fixed state of the chains, such a phase separation happens in local volumes 
and causes a significant heterogeneity of the gel structure (microsyneresis). 

When x (temperature, non-solvent concentration) varies continuously, the achievement 
of the condition of the gel two-phase state leads to a sharp reduction in the gel volume 
(collapse), which is similar to the transition coil-globule. 

The dominant influence v (in comparison with x) may lead to the fact that phase 
separation in gel takes place in the presence of LMWL being a good solvent in solutions 
of the linear modification of a polymer. 

As the parameter u may change its value during the process of phase separation due 
to the local reduction of volume, the final pattern of this process depends on its kinetics 
and is rather difficult for quantitative analysis. 

These effects are of special significance in systems with three-dimensional polymeriza- 
tion. This process for polyfunctional polymers in solution may be successfully described 
in the fashion of percolation problem. 

Both static and dynamic light scattering in homogeneous molecular gel are due to the 
modes of structural fluctuations depending on the gel elasticity moduli. 
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All the gel moduli can be defined by a combination of the static and dynamic light 
scattering methods. 

The configurative point with the longitudinal modulus M = 0 corresponds to the 
condition of spinodal scattering R+,D + 00. 

Analysis of the gel literature has shown the  effectiveness of the classic approach of 
physical chemistry, including preliminary introduction of a system model and followed 
by derivation of a state equation, which is then compared with the experimental results. 
It is distinct from the truly morphological approach, which inevitably leads to internal 
contradictions and gives no key to controlling the properties of things and materials based 
on polymer gels. 

14. To verify the theory of phase separation in the system P+LMWL, it was required 
to improve the methods for determining the characteristic values and phase separation 
functions, first of all, of the phase separation boundary, the spinodal, the critical point 
and the Flory-Huggins interaction parameter. The development of experimental methods 
has lead, in turn, to new modifications of the theory, in particular, to its second and third 
approximations. 

For kinetic difficulties, the phase separation in polymer systems seldom finishes with 
phase equilibrium. This is the reason why only several systems are known for which 
the binodals have been traced using the determined polymer concentration in the co- 
existing phases, and the critical concentration has been evaluated by extrapolating the 
phase-volume ratio 7 + 1. 

The theory of light scattering in polymolecular polymer solutions enables one to de- 
termine the derivative (8(Apo)/aw),, using the Rayleigh ratio Rk,tp+o, Integrating this 
derivative gives Ap0 for any given value of w, and Ap0 is used for the calculation of 
the Flory-Huggins interaction parameter. Carrying out this procedure for a number of 
solutions with difierent concentrations, one can determine the concentration dependence 
of the interaction parameter. The latter can also be determined using osmotic pressure 
in solutions, the LMWL vapour pressure over solution, the effect of gel swelling, and the 
method of inverse gas chromatography. 

A method is proposed for determining the boundary of the phase separation region 
by means of extrapolating the new-phase particle-forming rate v + 0. The rate v is 
calculated using the kinetics of the phase transformation degree I = z ( t )  obtained by the 
turbidity spectrum method. Knowing the character of the kinetic dependences of formed- 
phase particle sizes ?;x = f x ( t ) ,  one can judge the mechanism of the phase separation 
kinetics. 

In the third approximation of the mean field theory, the dependence of the interaction 
parameter on the concentration and M (MWD) of a polymer is taken into account, with 
the specific features of dilute solutions for systems with low polymer concentrations or 
with a low-concentrated phase during phase separation. 
15. The position of the phase separation region on the state diagram is mainly defined 

by the temperature dependence of the interaction parameter. Depending on the sign of 
the coefficients (Equation 3.6-85), this region may be located in the plane T us v2 in a 
characteristic way (see Figure 3.81) in accordance with the state diagrams known from 
experimental works. 
16. Mixtures of different polymers obey the mean field approximation almost exactly. 
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Due to the significant mixing entropy effects, the conditions of the phase separation in 
the system P1+P2 are observed at a markedly lower value of the interaction parameter 
x, in contrast with the system P+LMWL. 

Due to the more pronounced dependence of the interaction parameter on both concen- 
tration and molecular weight, the phase separation in polymer mixtures is very diverse. 

On combining the theory of light scattering with the state equations for polymer mix- 
tures, de Gennes deduced an expression for the correlation length of the concentration 
fluctuations &. 

Taking into account the relation of & to the thermodynamic potential expansion coeffi- 
cients in the general field theory (Equation 2.5-13), one can derive a state equation for a 
polymer mixture (Equation 3.7-36) with a gradient term, which involves the correlation 
of concentration fluctuations of the components. Using this state equation, in particular, 
an analytical expression for the coil relaxation time was obtained, which shows that near 
the critical point the effect of thermodynamic retardation must occur. 

Interpenetrating polymer networks form a special claw of polymer systems extremely 
expanding the field of application of polymer materials. 
17. The theory of corresponding states, developed for polymer systems, is in good 

agreement with experimental results in a number of cases. 
The direct relation of experimentally measured values to the molecular parameters of 

components is an advantage of the theory. Its restrictions are due to the necesity to 
introduce adjust able parameters. 
18. Relaxation thermodynamics (thermokinetics) includes an explicit dependenw of 

the thermodynamic potentials on the rate of motion of the configurative point. 
19. A three-phase equilibrium is observed in the system P+LMWL, if the polymer 

ha9 a very asymmetric MWD, or is represented by two polymer homologues with molec- 
ular weights differing more than ten-fold, or there is a square (at least) concentration 
dependence of the interaction parameter. 

In these cases at a certain temperature the CPC has a break (Figure 3.95), where 
the principal phase is in equilibrium with two different incipient (conjugate) phases (two 
SL), i.e. a three-phase separation (asymmetric tricritical point) begins (or ends) with this 
point. 

Depending on the MWD features, the critical point may be located on the continu- 
ation of one of the two branches of the CPC drawn inside the phase separation region 
(metastable critical point) or on the line connecting two cusp points with which the con- 
tinuations of the CPC branches end (unstable critical point). 

The features of the three-phase separation are discussed in detail in section 3.10. 

Thus, many properties of polymer systems can be sufficiently explained within the 
framework of the mean field approximation theory. 

With polymer mixtures the theory proves to be quite exact due to the low level of 
concentration fluctuations, which, in turn, is caused by steric difficulties. 

Anyhow, the mean field theories can play a dominant role in the development of the 
scientific basis for technologies for creating polymer materials, beginning with polymer 
synthesis (Budtov and Konsetov, 1983). 

Resides, the mean field theories are very important as models for comparison while 
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developing more rigorous theories, which are discussed in Chapters 4 and 5. 



Chapter 4 

Universality Principle. Scaling Ideas. 
Dynamics of Macromolecules 

4.1. Conformational problem of a molecular chain 
Wilson (1972) has calculated the values of the critical indices y and 77 for a system with 

the Hamiltonian 
'fl 1 2 
- kT = / [ r0s2(Z) + - 2 [V.q(Z) - VV2s(Z)] + uOs4(Z)} dds, 

where s(Z) is the spin with n-components si(;)); 

s2(Z) = E$, and s4(Z) = , 
I s 

ro and uo are constants. The term VV2s(Z) is included to  ensure the convergence of 
the integrals: i t  accounts for the elimination of fluctuations with a wavelength << 1 (the 
so-called cut-off). 

In that paper the correlation functions (the Green functions, the ordered Green func- 
tions, etc.) near the critical point were expressed as series in uo and E ,  where e = 4 - d. 
In particular, the Green function G($) for k = 0 was calculated, that corresponds to the 
permeability xT (see Equation 2.6-38), which, in its turn, is proportional to the scattered 
light intensity (see Equation 2.3-1 33) for which 

-. 

G(Z) - K2+" (2) 

holds (the k-dependence of the Equation 2.3-148 type). 

and the renormalization procedure. 
The correlation functions were calculated by Wilson using the diagrammatic technique 

As a result, the following expressions were obtained: 

€2 + 0 ( & 3 ) ,  
(n  + 2)(n2 + 2271 + 52) 

4(n + 8)" 
y=l+--- n + 2  e +  

2(n + 8) 

&3 + o(&~) .  n + 2  n + 2 [ 6(3n + 14) - '1 
9 =  2(n + 8)2E2 -t 2(n + 8)2 ( n  +73)2 4 

(3) 

(4) 



510 4.1.  Conformational problem of a molecular chain 

A problem of random self-avoiding walks on a lattice with interactions (with due account 
for the excluded volume) has been considered by de Gennes (1972) in his pioneering work. 

If I‘N(i) denotes the number of random self-avoiding walk trajectories (with interaction) 
of N steps (units), connecting the points 0 and z, then the Green function in momentum 
space takes the form 

where E accounts @ the interaction between units so that approaching some value of E,, 

the function G(E,  I C )  shows a singularity of the type 
+ 

€+EC lim G(E, k = 0) = const ( E  - E,)--’, (6) 

i.e. E can be related to the magnet temperature. It is also expected that at E = E, 

G(&,,k) = const (7) 

Further, the mean square end-bend distance (h&)’/’ is related to the spin correlation 
distance [ in the magnetic problem, where 

(8) 6 &-” - &-7/(2- ‘1)  

(cf. Equations 2.3-142 and 2.3-153). Correlating the two small parameters E with N-’ 
in these two problems, we obtain 

7 (h&)’” - N2” with v = -. 
2-11 (9) 

De Gennes compared the graphs of the Green function in the magnetic problem (Equa- 
tion l) (Wilson, 1972) with those of the macromolecule excluded volume problem (Fix- 
man, 1955; Yamakawa et al., 1966). He discovered that they coincide provided that the 
loops with their contribution being proportional to the number of spin components n 
are excluded from the “magnetic” graphs. Thus, to reduce the magnetic problem to the 
polymer one, the equality n = 0 must be formally accepted. 

Consequently, the results of the magnetic problem solution (Equations 3 and 4) can be 
used for the macromolecule excluded volume problem granted n = 0, ;.e. 

E 13 
8 28 y = 1 + - + -EZ + U(E3), 

17 = ; (1 + $) + O ( E 4 ) .  

For E = 1 (d  = 3) y = 1.176, 11 = 0.032, and 

2 u  = - 27 M 1.195, 
2-17 
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That the exponent in the last equation is practically the same as Flory’s, as stated in 
Chapter 3, is due to the compensation of the neglected contributions in the state equation 
for a molecular coil in the mean field approximation. 

Later, Emery (1975) found an analytical solution of both the magnetic and polymer 
problems at n = 0. 

The starting point of his consideration is the Hamiltonian of the form 

where JCJ is the interaction function involving temperature, N is the number of sites in 
the lattice. Here is the corresponding partition function: 

Emery goes on to transform this expression so that an explicit n-dependence should 
appear, which enables him to deduce 2, for some special values of n, involving n -+ 0. 
This can be achieved by means of an integral representation of the four-order term in the 
exponent e-’ 

To let this integral converge, we must accept u > 0. The correctness of Equation 16 
can be verified by replacing the integration variable by 

Substitution of Equations 14 and 16 into Equation 15 and castling 4; and s;, yield 

where 

The exponent in the right-hand side is the sum over a, and the integral is split into the 
product of n- and N-dimensional integrals with aIl the n integrals being the same (for iy 
is but an index of the integration variable). Hence, 
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i.e. a,[$;] does not depend on n, and all the n dependence of Z,, is reflected in Equations 17 
and 18. 

As the exponent in Equation 19 is a quadratic form in s i ,  calculating the integral gives 

where j and are matrices with the elements J,j and +;j. 
The free energy per component in the limit n --t 0 is written using Equation 17 

The correlation function is 

For n = 0, Equations 20 and 22 give 

Emery demonstrates that 

is the lattice walk propagator, i.e. the probability of a spin being in the cell j provided 
that there is a spin in the cell i. 

In field theory, the Laplace transformation of the propagator can be expressed via a 
functional (continual) integral. 

For instance, the Laplace transform of propagator (24) with respect to p = T + 3 5  is 
put in the form 

where N is a normalization constant, and the integration is taken over all the space-time 
trajectories connecting the end points. 

In view of Equation 25, the Laplace transform g;i of the Green function GJi (Equa- 
tion 23), on integration with respect to $, takes the form 
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Equation 26 agrees precisely with the continuous limit probability of finding the polymer 
chain end at the point ?j given the beginning is at the point 6 and the chain length is 
L = t (see Equation 3.1-205). 

To provide the complete analogy of Equation 26 with Equation 3.1-205, the interaction 
potential V from the latter is assumed as short-range 

v = 6s 2 (<(TI) - &)), 

and the lattice parameters are related through the Kuhn segment A using 
n 

2 J  (J la  = 2. 

(27) 

The properties of systems with a Hamiltonian of the type (14) have been under intensive 
investigation. The results can be applied to the study of the macromolecule's properties 
with n = 0 as de Gennes did to evaluate the index v (Equation 13). 

Let us mention Stephen's (1975) results as another example. 
As it follows from Equation 5, the Green function G(E,;) is the Laplace transform 

of I'(i). Hence, r(i) or any quantity proportional to it (the probability P(<,L)  for a 
polymer chain with the length L to have the end-to-end distance z) can be found by 
means of the inverse Laplace transformation of the Green function. 

Stephen examines the Hamiltonian 

which differs from that of Emery (Equation 14) by an additional term with 266, Le. 
Stephen's Hamiltonian (at n = 0) describes a random self-avoiding walk of structural 
elements (spins) or a polymer chain composed of segments with the length A ,  taking the 
excluded volume (pair interactions uq) and ternary interactions (266) into account. 

The twc-segment interaction potential expressed in dimensionless units is proportional 
to 

U4A4-', (30) 

where 

and a ' d  is a constant. The parameter 

u G A ~ - ~ ~  (32) 

corresponds to the three-particle interaction potential of three chain segments. The seg- 
ment length A is proportional to the diffusion coefficient D (see Equation 3.1-192). 

The Green function is defined as 

1 "  

n a=l 
G(")(Z,r,) = - ( s a ( 0 ) s , ( i ) ) .  (33) 
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The probability P ( &  L) is calculated using the inverse Laplace transform of the Green 
function with respect to 7-0 at n + 0: 

1 o+im 

o-;a, 
P(Z, L) - - dro exp(DLro)G(o)(&ro). (34) 

In the polymer modification of the theory, t (time) corresponds to L (length) and the 
diffusion coefficient takes the dimension of length (cm2/cm). 

The following result was obtained in field theory for the inverse susceptibility of the 
dimensionality (4 - E) at n = 0 up to O(E) (Stephen and Abrahams, 1973; Wegner and 
Riedel, 1973): 

On substituting Equation 35 into Equation 34 and calculating (h2)  by the standard 
method (eg. see Equations 3.1-121,-183,-203), Stephen obtained 

114 
(h’) = 8DL [1+ %(DL)‘la] 6~ E , 

For a very good solvent with fi4(DL)‘I2 > 1, this equation is followed by 
E (h’) N L2” with 2v = 1 + - 
8 (37) 

which is in agreement with de Gennes’ result (Equation 13). 
If &(DL)’/’ < 1, then Equation 36 gives a relationship for the segment free walk 

( h 2 )  N L N N .  (38) 

For magnetic systems, the configurative point with -+ 0 approaches the tricritical 

This corresponds to the absence of excluded volume (the 0 point) in the polymer prob- 

At d = 3, the tricritical point theory has to be modified with logarithmic corrections 

The reciprocal susceptibility of a disordered phase at n = 0 and 214 = 0 has the form 

point (see Equations 31 and 2.6-163). 

lem. 

(Riedel and Wegner, 1972; Stephen et al., 1975). 

49 
484 In ro 

G-’(k: = O,ro) = T = ro (1 + -) , 

G-’(k, ro = 0 )  = k2 

Using this results (Stephen, 1975) 

( h 2 )  = 6DL (1 + 

(39) 

which defines the molecular coil size at the 0 point with a logarithmic correction for 

u6lnDL > 1. (42) 
Otherwise, the second summand in Equation 41 has to be replaced by a constant. 
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4.2. Lagrangian formalism of polymer theory 

In order to study the properties of polymer solutions, des Cloizeaux (1975) writes the 
action in the absence of the field A(+} as 

44) = do{+} + AI{+}, (1) 

where 

where 1 ,  j = 1 . . . n, d is the space dimension. 
The mean value of a functional O{+} is defined as 

where &I(+} is an integration element of the functional integral. 
The Fourier transforms have the form: 

&(Z) = / 8 z  exp(iZz)@(Z)l ( 5 )  

After the mass renormalization in a space with d < 4, the short-range interaction 
potential is assumed to be 

V(4 = go. 

Therefore, the Lagrangian density takes the form 

d .  

"3 

The Green functions are defined by 

G!:!,,jq(ZI.. .Zq)  = (P(Z1) .  . .@(Zq) ) ,  

G!:!,,jq(ZI.. . gq)  = ($'(L,). . .@(Zq) ) .  

(7) 

1 2  

(9) 

Functions 10 can be expanded into a Taylor series in terms of the interaction parameter. 
If one employs the following expression for the free propagator 

as well as the Wicks theorem (see section 2.6), one can present the Green functions 
G:Y!,.jq(&. . . &,) as graphs (see Figure 4.la) in accordance with the following rules: 
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C 

Figure 4.1. Graphs of the Green function (Q)  and of the ordered Green function (6) 
for Lagrangian 4.2-8; graphs of polymer theory ( c )  (des Cloizeaux, 1975) [Reprinted with 
permission from: Des Cloizeaux. J .  de Phys. 36 (1975) 281-291. Copyright @ 1975 by EDP Sciences] 

1. a factor (k2 + mi)-' is associated with each part of the solid line; 

2. a factor v($ is associated with each dashed line; 

3. a factor d(6 + 2 + 3 is given to each vertex (the momentum-conservation rule); 

4. corresponding symmetry numbers are introduced, and all the free momenta are 
integrated in the dimension d; 

5. each solid line corresponds to a well-defined field component j ;  

6. for closed loops, summation over j is taken to yield the number n. 

Des Cloizeaux also introduces ordered Green functions G(aM)(&.  . . & M )  as a sum 
of graph contributions defined as follows. Each graph of the rank P is composed of P 
open lines and several closed loops: each closed loop is connected with, at least, one open 
line. Each line is m_a-rked with the index M, where M = 1,. . . , M .  The corresponding 
input moyenta_are k2M-l  and k 2 M .  Hence, the indices j do not appear in the definition 
of G ( 2 M ) ( k l . .  . k 2 M )  (see Figure 4.1b) but the ordered Green function depends on n (a 
power series n) ,  keeping its sense at any n, in particular, n = 0. 

On the other hand, if n is an integer positive number, then the Green functions are 
expressed as the ordered ones: 

-+ 

where PI,. . . P ( ~ M )  are the numbers obtained by rearrangement of P : 1.. . 2 M .  
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Thus, 

1 1 
(2M)!  G$Z,T)(O,. . . O )  = -G(2M)(0,. 2MM! . . O ) .  (13) 

The generating functional is expressed as the Green functions 

" 1  4 

2{ 2) = 1 + 1 1 ddk, . . . d k ~  Hi, ( - i 1 )  . . . Hi, (- & J ) G $ ~ . ! ~ ~  ( &  , . . . k ~ ) .  ( 14) 
N=l 

and the ordered Green functions 

" 1  2{2} = 1 + - 2 M M !  J d d k l . . . d d k 2 ~  [I?(-&) x I?-&)]... (15) 
M=l 

X [ Z ( - z z M - l )  X g ( - & M ) ]  G(2M)(Z1,. . . & M ) .  

The generating functional of the connected Green functions G$!..,jN(&, . . . &) is the 
free energy of the system (see subsection 2.6.2) 

" 1  
F{ I?} = 1 + - 1 ddkl . . . d d k ~ H j l  ( - & )  . . . Hj, ( - -&T)G$) . . ,~~  ( & ,  . . . , &),( 1 6 )  

N=l N !  
that can be expressed as the connected ordered Green functions in the following way 

/ d d k , . . - d d k 2 ~  [Z( - i l )  X Z(-&)] ... (17) 
+ - 1  

F { H } = l +  - 
M=l 2 M M !  

X [I?(-ZzM-1)  X z ( - & M ) ]  Gi2M)(zl , .  . . Z z M ) .  

The functionals 2{g} and F{i?} are related to each other by 

Z { @  = exp [ F { @ ] .  ( 1 8 )  

Correspondingly, the generating functional I'{ G} is expressed as the vertex functions: 

m 1  r{G} = N=l 1 , , J d d k l . . . d d k N M i l ( - ~ l ) . . . M ~ N ( - ~ ~ ) a ( ~ l  +...+i~) 

- 2 M M !  / d d k , .  . . ddle-[G(-&) x n?(-i2)] . . . 

(19) 

x r$r.!jN ( & ,  . . . , &I. 

r{n?} = 

or as the ordered vertex functions 

" 1  
( 2 0 )  

M = l  
-+ 

x [n?(-QM-,)  x a ( - i 2 M ) ]  6(21 + . ' .  + 2 2 M ) r ( 2 M ) ( Z 1 , . .  . k 2 M )  

Thus, the vertex functions I'$r,)iN(&, . . . &) and I ' ( 2 M ) ( & ,  . . . & 4 4 )  are obtained for 
N > 2 and M > 1 by cutting off the external lines from the corresponding one-particle 
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irreducible Green functions (see Section 2.6.2) and reversing the sign. For instance, for 
M = l  

G(z)(&, Z2) = s(& + [r(z)(&, Z2)]-' . (21) 

r{Gi + ~ { f i i )  = J c ~ d ~  d(qfi(z). 

The generating functionals I?{$} and F{@ are related by the Legendre transformation 

(22) 

with 

External constant field go having been introduced, the action is written as 

= A{d} - H i  1 ddx #'(3). (24) 
j 

The generating functional for the Green function is 

In order to define the relationship between HF{i?} and "r{d},  let us rewrite Equa- 
tions 22 and 23 with due account of the external field: 

We write F{&} and r{A&} in the form 

F { g o }  = VF(Ho) ,  (29) 

I?{ Go} = Vr(  Mo). (30) 

F{&} and I'{n?,} having their finite limits on an increase in the system's volume V + CO. 

Then, it follows from Equations 26-28 that 
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F(H,) + qM0)  - M ~ H ~  = 0. 

iio(i) = (2T)d/2Mos(Z),  

Using 

one can write, in accordance with Equation 20, 

519 

(33 )  

(34 )  

Now Equations 2&28 yield 

H 

are given, then the abovedefined functions in the presence of the field are modified so that 

The corresponding ordered functions can be defined as well. 
As n is an integer positive number, we can define one longitudinal ( L )  and (n - 1) 

transversal (2') functions. Eg, the second-rank vertex function implies 

In view of Equation 40, one can get the expression corresponding to Equation 12: 

These functions retain their meaning even if n is a non-integer number, or n -+ 0. 
We now go on to discuss a polymer system of M chains in the volume V .  Each chain 

is marked by its index n, L ,  being the length of the mth chain. The vector ?,(Am) 
characterizes the spatial arrangement of the mth chain, where A, is the length measured 
along the chain from its beginning to the point with the mark grn (0 < A, < L m ) .  
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Following Edwards (1965) (see Equation 3.1-205), des Cloizeaw (1975) writes the 
Hamiltonian of the cth conformation 

E(& ,... , L M ; c )  =iHo(Li ,..., L M ; c ) + E I ( L I  ,..., L M ; c ) ,  

where 

Hamiltonians 44 are dimensionless. The length 1 can be considered as the length of a unit 
though a continuous limit is meant in Equation 44. 

As it usually is, the mean value of the conformation functional O{c} is given by 

where 

Temperature is included into the Hamiltonian definitions. 
The main correlation effects in the system can be described using the probabilities of a 

given chain end conformation. That is why we consider the probability of the mth chain 
ends rm(0) and rm(Lm) being fixed at the points rzm-l and rzm, respectively, 

and its Fourier transform 

These quantities can be expanded into a series in terms of interaction which allows one 
to calculate the functional integrals in the following way. Consider a chain (for instance, 
M = 1) of the length L with sets of lengths XI,. . . , XJ and momenta G , .  . . ,&. 

Assuming the chain to be free (interaction-free), define the mean value 
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On the other hand, the interaction potential in X l ( L 1 , .  . . , LM) is expressed as its 
Fourier transform 

V[C~(,(X,) - ~ ~ j ( , ~ m f ) l =  JB'gij(gexp{--i<[Fm(Am) - i . 7 ~ ( ~ r n ~ ) l ) *  (50) 

The successive terms of this expansion can be found with equality 49. 
Define the ordered Green functions of polymer theory 

where 

L = L 1 + L z + . . . + L M ,  s=miL2.  

The diagrammatic technique should be employed with the very rules a.3 for the Green 

Each graph line corresponds to a polymer chain. To provide the calculation of the 
functions with the field Lagrangian 8. 

ordered Green functions, an intermediate expression is introduced: 

The only distinction of the polymer theory graphs (Figure 4 . 1 ~ )  from the field theory 
ones (Figure 4.lab) is in the absence of loops (in the former case), which means n = 0. 

Hence, des Cloizeaux has generalized de Gennes' (1972) and Emery's (1975) result for 
a single chain to an ensemble of M macromolecules. 

In infinite space, such a quantity as S(0 , .  . . , O ,  L1 , .  . . , L M )  is infinite as well and so 
loses its physical meaning. But for a big "case", these quantities can be given a reasonable 
interpretation, writing (see Equation 2.6-80) 

S(0) = V(2?r)-d. (53) 
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It follows from Equations 45 and 48 that the number of conformations Z ( L 1 , .  . . , LM) 
is defined by 

2(L1, ..., LM)=S(O,-..,0,Ll,...,LM)- (54) 

Des Cloizeaux introduced a grand canonical partition function 2( Ho) depending on 
two chemical potentials Ho and s = mil2 

x Z ( L 1 , .  . . L M )  

w i t h L =  L 1 + L z + . . . + L M  . 
Hold/'+' should be thought of as a dimensionless parameter and, hence, Ho can be 

interpreted as a magnetic field. The integral J 1-I dLpcorresponds to summation over all 
the units of chain p ,  since the number of units is Np = P 1 L p  by definition. In view of 
Equations 51 and 54, we write 

" 1  
M=O 2 M M !  Z(H0)  = 1 + ~ [ H 0 ( 2 7 r ) ~ / ~ ] ~ ~  G ( 2 M ) ( 0 , .  . . ,O). 

If we accept 

Hi(.) = HO&j, I?(i) = (2~)~"Ho&j6(lc ' ) ,  

for Equation 15 and go over to the limit n = 0, we can write 

~ ( H o )  = Z{E?,},=o, 

and, in view of Equations 18, 29, 30, 

~ ( H o )  = exp[VF(Ho)]. 

As E'(&) is the free energy per unit volume, then 

(59)  

x 
E = F(H0) .  (60) 

The concentrations of polymer chains cp and monomer units c are defined from Equa- 
tion 55, allowing for Equation 59 and using the standard formulae of statistical physics 
(see Section 1.7) 
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In particular, with no interaction, Equations 11 and 53 yield 

V(27r-d V(27r)-d62 
Gr)(0,0) = 7 = 

m0 S 

Hence (cf. Equation 2.6-98), 

1”: 
F (  Ho) = - 

2s . 
It follows from Fxluations 60, 62, 64 that 

and the average value of polymer chains is 

If an interaction is present, the vertex functions prove to be more appropriate, and it 

Combining Equations 31 and 33, rewrite Equation 60 as 
is reasonable to express all the active quantities as the potential I’(M0). 

and the concentrations of chains and units (Equations 62, 61) as 

Here, s functions as the temperature c of a magnetic system, since s = mg12 (cf. 
Equations 2.6-26,-36 and Equation 11) so 

4.3. State diagram: polymer+low molecular weight 
liquid 

4.3.1. Theory 
Equations 4.2-66.. .69 constitute a glossary between the quantities characterizing the 

properties of a magnetic and a polymer system (P+LMWL). Using it together with scaling 
(mainly intuitive at this stage), Daoud and Jannink (1976) have built a state diagram of 
the system PSLMWL. 
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In accordance with Equation 4.2-33 and the parity of I'(M0, Ho, T), we write 

r p 0 ,  H ~ ,  T )  = F ( M ~ ,  H ~ ,  T )  - M ~ I ~ ~ .  (1) 

and see that the singularities of the functions I' and F coincide. 
The free energy F(M0) below T, has a minimum at 

Mo = MOM N ( € I P  
(see Figure 1.14). Thus, if F(Mi,) is put in the scaling form 

F(M0) = E2-@fF(z), (2) 

z = Mo/lalB is the argument of f~(z). 
The factor is necessary to obtain a proper singularity for the heat capacity CH N 

(see Table 1.2), since CH is proportional to the second derivative of F(M0)  with respect 

When E > 0 and MO is small we can confine ourselves to one term of the f~(z) expansion 
to temperature (eg. Equation 1.6-11). 

with respect to 2. As F(M0) is an even function (see Figure 1.14), 

F = F ( ~ c ) l ~ = ~  + const (2) . 

(see Equation 1.6-13) it follows that 

x,, N &2P+a-2 and E2P+O-2 

and Widom's relationship (Equation 1.5-9) emerges 

CY + 2p + y = 2. 

The scaling expression 

(3) 

holds true for the potential I'(M0) as well. 
The following equation (de Gennes, 1979) applies for the spontaneous magnetization 

correlation function (&(O)A?O(F)), i.e. for the mean value of the product of the local 
magnetization Mo existing at two points separated by a distance 

- 

(see Figure 4.2, cf. Equation 2.3-149). 
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Figure 4.2. Spontaneous magnetization correlatior 
function 

The dimensionless function f~~ (z) obeys the following conditions: 

Thus, at long distances (x 4 m) the spontaneous magnetization correlations corre- 
spond to Ornstein-Zernike's function (Equations 2.5-7, 2.3-129) (when d = 3). The other 
limit (z + 0) corresponds to T = T, (e  -+ 00) and the correlation diminishes with 
distance as F ( ~ - ' + ~ ) .  

Near T +- T, 

5 'v (E ( - "  (9) 

(see Table 1.2 and Equation 4.1 8). 
In t_he c y  of the polymer problem, the segment concentration in a coil is an analogue 

for (Mo(0)M,-,(T))) (cf. Figures 4.2 and 3.8). In dilute solutions, E is associated with the 
polymer coil size R, and E with N-' ,  thus 

R ( N )  N N". (10) 

The susceptibility x , ,  is related to the magnetization correlation function as 

(see Equation 1.7-34). 
In view of Equations 7-9, we write 

XT,M t2-' 
(see Equations 2.3-150,-151) and 

e - 4 2 - v )  7 (13) 

(14) 

and another useful relationship between the critical indiccs appears 

7 = 4 2  - 'I) 
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(see Equation 2.3-153). 

tions 4.2-68,-70), we obtain 
Further, from the scaling expression for I?(&) (Equation 6) and the glossary (Equa- 

c N E 1 - U f c ( Z )  (15) 

and 

e, x f p ( 2 ) ,  

where x is a dimensionless parameter proportional to M/JEIP. Including Kadanoff's equal- 
ity (Equation 1.5-10; see also Equation 2.5-19) 

a = 2 - ud, (17) 

€ v d - l  f&) (18) 

cp x &"dfP(X). (19) 

Equations 15 and 16 take the form 

and 

Substituting Equations 18 and 19 into Equation 4.2-66, one obtains 

which means x is a function of one variable only: 

N E  = y .  (21) 

The coil-overlap concentration in the &dimensional space (Equation 3.1-220) is 

According to Equations 18 and 21, we write 

Hence, the c/c* ratio is a function of x (or y). Allowing for relationships 6, 4.2-68, 17, 
and 19, we have for the osmotic pressure (Equation 4.2-67) 

where fd (c /c*)  is a new dimensionless function. 
Fklationship 24 is the fundamental result by des Cloizeaux, stating the osmotic pressure 

7r of real solution to be expressed by the product of the osmotic pressure of the ideal 
solution 

Now we turn to the state diagram of a magnetic (Figure 4.3). Curve 1 shows magneti- 
and the dimensionless c/c* ratio. 
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- N S  
TC 

Figure 4.3. State diagram of a ferromagnetic in a zero field (1) and the isometric line (2) 
as an analogue of the state diagram of polymer solution (de Gennes, 1979) [Reprinted from: 
P.J. de Gennes Scaling Concepts in Polymer Physics. Copyright @ 1979 by Cornell University Press. 
Used by permission of Cornell University Pres] 

zation in the absence of the field Mo(0, TIT,) which, for the polymer analogue, corresponds 
to a single molecular chain. As to an ensemble of many chains (i.e. polymer solution), the 
so-called isometric line (curve 2) corresponds to it and brings into agreement Mo and 
1 / l c  in accordance with Equations 4.246 and 20 for a given N. 

It follows from the partition function 
(Equation 4.2-55) that the variant of extremely dilute solution should correspond to 
Ho + 0, i.e. the statistical weights of two, three, and more chains are small in comparison 
with that of a single chain. Moreover, the existence of a single chain on a lattice should 
correspond to the condition T > T,, since the polymer coil size is related to the correlation 
function of magnetization fluctuations, existing only when T > T,. In case of dilute 
solutions cp x 0, and, hence, Mo = 0 (Equation 4.248). The condition Mo = 0, Ho -+ 0, 
and T > T, is related to the abscissa axis in Figure 4.3, to the right of the point C. Now 
it is natural to admit that the isometric line intersects the abscissa axis at such point 
TIT, which corresponds to the relative temperature E that, in turn, corresponds to 1/N, 
therefore the distance CD on the abscissa axis - 1/N. 

In the other limiting case, namely, high concentrations of polymer solution c > c*, all 
the thermodynamic properties should not depend on N, which is formalized by N -+ 00 

and, according to Equations 4.2-67 and 19, cp + 0. In view of F4uation 4.2-68, this 
corresponds to Ho = 0, but Mo # 0, and the isometric line should be close to the 
coexistence curve MO(0, TIT,). 

r ,  I ,  

Let us discuss the isometric line behaviour. 

Under conditions of a semidilute solution e refers to the blob size and 

E M A(€(-”.  
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The number of segments per blob is g, so 

5-s” 
with 

9 = 14-1 
remaining valid. 

Then, the parameter y = Nlel is equal to the number of blobs per chain. 
The polymer system’s behaviour near the 0 point corresponds to that of a more general 

kind in the vicinity of the tricritical point (de Gennes, 1975) (see subsection 4.1.1) where 
thermodynamic functions are described by scaling fields (see section 1.6). 

Here the scaling fields p1 and pz have the meaning of the reduced temperature of the 
magnetic E and of the polymer system T = (T - @)/e ,  respectively. Then, in the vicinity 
of the  tricritical point, the potential F (Equation 6) is written as (Riedel and Wegner, 
1972; Wegner and Riedel, 1973) 

and the crossover line is defined by Equation 1.6-74 (Riedel and Wegner, 1972) 

rcr N &Qt, (29) 

where pt is the crossover index. 
In view of the equivalence E N N-’, for the crossover line we write: 

rcr N N-Q‘. (30) 

As for d = 3 pt = 112, then 

Trr x N-112. 

Figure 4.4 shows a state diagram of the system P+LMWL, based on scaling construc- 
tions using the analogy between a ferromagnetic and a polymer system. The following 
characteristic regions should be marked: region I of a dilute solution which is separated 
from the tricritical region I’ by the crossover line (Equation 31); region I1 of a semidilute 
solution and region I are separated by the molecular chain overlap line c* (Equation 22). 
The line c** is the crossover between the region of the semidilute solution I1 and the 
tricritical region of the semidilute and concentrated solutions 111. 

Thus, the crossover line (Equation 29) separates the tricritical region (I’ and 111), where 

7 

- << 1, (32) 
&‘pi 

from the critical region (I and IT) for which the reverse inequality holds good: 

7 

- >> 1. (33) E’Pt 
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Figure 4.4. State diagram of P+LMWL by the scaling theory (Dmud and Jannink, 1976) 
[Reprinted with permission from: M.Daoud, G.Jannink. Le J .  de Phys. 37 (1976) 973-979. Copyright 
@ 1976 by EDP Sciences] 

In the tricritical region, where inequality 32 holds, the potential (Equation 28) is written 
as (Daoud and Jannink, 1976): 

F(M0, E ,  r )  = €Z--atg(Mo/€@), (34) 

since the dependence on the second parameter of the dimensionless function (Equation 28) 
can be neglected due to its being small. Then, according to Equations 34 and 4.2-70, for 
a semidilute solution 

c = &'-at [(2 - a t ) f ( x )  - (35) 

holds, where x = Mo/cBt.  

Figure 4.3) so that z becomes constant (20) and 
In this concentration range the isometric line Mo and Mo(0) - eot almost coincide (see 
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or (see Equation 17) 

E ,+-4 = Cl/(vtd-l). (37) 

(38) 

For the crossover line (Equation 29) in the semidilute region c** we have 

c** - ,Jvtd--l)/~r ,. 
for d = 3, where ut = 1/2, pi = 1/2. 

Let us discuss the functional dependence of the osmotic pressure A in the tricriticd 
region. On the basis of Equations 4.2-67 and 34 one can write (Dmud and Jannink, 
1976): 

or 

where x = M O / E P ' .  
Having excluded z from Equations 35 and 40, we have 

(41) - 7r &at-2 = f ( C E * t - l ) .  

kT 
In the dilute solution region (where z + 0), the function f(z) is approximated as 

f(z) M z and, in view of E - 1/N, it follows from Equation 41 that 
C 

? T N -  
N '  

Regions I' and I11 are separated by the coil overlap line (Equation 22), which takes the 
dependence 

(43) C; N N l - v t d  N-112 

for the tricritical region and d = 3. 

cluding Widom's equality a - 2 = -vd (see Equation 2.5-19) yields 
In the tricritical region of semidilute solution 111, combining F4uations 37 and 40 in- 

for d = 3. 

tion 28 (Daoud and Jannink, 1976): 
In the critical region, where inequality 33 applies, the potential is patterned after Equa- 

This comparison allows onc to find x and y, and thc potential can be written as 
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Applying analogous considerations to the critical region leads to a relationship 

or, for d = 3, 
-E-9/5r3/5 ?r = f(CE-4/5r3/5). 

kT 
In the coil overlap region the argument of f(z) should be assumed to be equal to 1 (see 

Equation 24) from which we get 

(49) 

c* - r-3/5N-4/5 for d = 3, u = 31.5. (50) 

C* - T(~ t -” )d l rp tcud- l  

In the dilute solution region E - 1/N and 

Further, in this region f(z) N 2, then it follows from Equation 48, with allowance for 
E - 1/N, that 

7 r c  --- 
kT N ‘  

For semidilute solutions, Equation 4.2-70 with the potential from Equation 46 and the 
condition that a function analogous to h ( z )  from Equation 36 proves to be constant, as 
well yield 

(52) E - C l / ( v d - l ) , ( ~ - ~ r ) ~ l ( ~ d - l ) r p t  

In this concentration range, it also follows from Equation 47 that f(z) = const and, in 
view of Equation 52 

.rr C~d/(~d-l)7~d(~-~t)d/[~d-l)~tT(~t-~)d/~t = C~d/(~d-l)r(~-~t)d/(~d-l)rpt - c9/4r3/4 (53) 

for d = 3, v = 315. 
The difference in powers (81“ in Equation 53 and 2 in the Flory-Hugging approxima- 

tion, see Equations 3.1-66 and 1.2-27) is caused by consideration of the correlation effect 
of concentration fluctuations in Equation 53. 

The scaling dependence of x (Equations 50 and 53) is followed by temperature-concen- 
tration dependences of other .rr-dependent quantities. 

According to Equation 2.4-24, the Rayleigh ratio is 

and, in view of Equation 53, we get 

for d = 3. 
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If solutions are subjected to mechanical stress with such frequency that the time of 
load action would be less than the coupling lifetime (Equation 3.3-100) - t < T, - 
then they are expected to exhibit the properties of gels with the shear modulus p propor- 
tional to temperature and the bulk concentration of molecular chain couplings (contacts) 
(Equation 3.5-50). According to Daoud et al. (1975), the number of couplings in semidi- 
lute solutions N x / k T ,  and Equation 53 gives a dependence for the shear modulus in a 
thermodynamically good solvent: 

p - TcYI4, (55) 

p - Tc3. (56) 

and, in the tricritical region (see Equation 44), 

The general scaling expression (Equation 1.&76) for the correlation length 5 in the 
vicinity of the tricritical point leads to 

At about the critical point, as usual (Equation 1.5-2), 

[ ( E ,  7) = E-’5(1, 7 )  

E(&, .) w W & - Y 7 ( Y - Y ’ ) / 9 t .  

and, with due account of Equation 57, 

at about the tricritical point 

[ * ( E ,  T )  M (59) 
In dilute solutions, where E N 1/N, 

[ N’7(”-”t)/9t 

holds for critical region I; for d = 3, v = 315 

E N3/5,-1/5. 

for tricritical region I’ 

(62) & N Nut N N 1 f 2  

for d = 3. 
In semidilute solutions for critical region 11, where E obeys Equation 52, we can write 

[ c ~ l ( 1 - u d ) 7 ( ~ - ~ t ) l ( l - v d ) l p ,  

6 N c-3/4~-1/4 for d = 3, Y = 315, (63) 

and for tricritical region 111, where E corresponds to Equation 37, 

,ct C ~ l / ( ~ - v t 4  
(64) 
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and for d = 3 

[ t  - c-' 

In dilute solutions, [ corresponds to the molecular coil size (Equations 9 and lo), so 
Equation 80 yields 
- 

, (66) 

(67) 

R2 N 2 v r 2 ( v - - Y t ) l l p t  

and for d = 3, u = 315 
- 
R2 N 6 / 5 r 2 / 5  

in agreement wilh Flory's (Equations 3.1-115,-142) and Edwards' (Equation 3.1-216) 
relationships. 

Having taken Equation 66 into consideration, we obtain for the coil overlap concentra- 
tion 

and for d = 3, I /  = 31.5 

c~ - N-415 -315 7 

(cf. Equations 49 and 50). 

by N 2  (see Equation 1.3-40), R d / N 2 ,  it follows from Equation 66 that 
For the second virial coefficient A 2  which is proportional to the excluded volume divided 

(70) 

A2 w N-'I5r3f5.  (71) 

A2 ~ ~ d - 2 ~ . d ( v - - ~ t ) f l p t  

and for d = 3, u = 315 

Table 4.1 shows the basic properties of the P+LMWL system in different regions of the 
state diagram. Besides the dependences discussed, the table gives relationships for 22 in 
regions I1 and 111 derived by Daoud et al. (1975) and Daoud and Jannink (1976). 

The main feature of the magnetic+polymer system glossary (Equations 4.2-66. . .69) 
is in the fact that it brings the size of the region of magnetization correlated fluctuations 
( n ? o ( O ) & ( ~ )  near the critical temperature T, (see Figures 4.2 and 4.3) into agreement 
with the molecular coil size R far from the critical temperature T, of the P+LMWL 
system. 

The essence is that both these quantities, so different in their physical nature, prove 
to be highly fluctuating, and just this is the deciding factor in the realization of the 
universality principle (section 2.5). 

In this connection, the designation of regions I and I1 on the P+LMWL system state 
diagram (Figure 4.4), as critical and regions I' and I11 as tricritical, should not be taken in 
a literal sense: these denominations have been transferred from the language of magnetics 
where they play their real part. As to polymer systems, they denote regions of the state 
diagram where the characteristic quantities have different parameter dependences, and 
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Region R2 Formula in text 6 Formula in text 

I' N (62)  c l N  (42) 

I N6/5,-2/5 (67)  ClN (51) 

c9/4r3/4 (53) 11 N~-'/4$/4 - 

111 N c3 (44) - 

t2 Formula in text 

N (62)  
~ 6 1 5 ~ 2 1 5  (61)  

(63) 
C-2 (65) 

c-3/2r-l/2 

these regions are separated by crossover lines that are not phase transition lines (as they 
are defined in section 1.5) but, however, are lines of the changes in the behaviour modes 
of the characteristic values. 

The use of these terms (the critical and tricritical regions) is justified as the dependences 
elaborated for the true critical and tricritical regions and crossover lines are extended from 
magnetic and other systems to polymer ones (see section 1.6). This extension proved to 
be very useful within the framework of the universality principle, in particular, in drawing 
crossover lines in the single-phase region of the P+LMWL system. They are radically new 
properties of polymer solutions previously known neither in the Flory-Huggins mean field 
theory nor in the Edwards theory. As to the true critical phenomena in the PSLMWL 
system, they do, certainly, obey the universality principle but in a more natural way, 
without the help of a sophisticated glossary. In this case, the scaling approach leads to no 
unexpected results. Moreover, the first papers in this direction have derived their chief 
results mainly from some heuristical and a posteriori considerations. 

As an example, let us discuss the scaling relationships for the coil s i 7 ~  and location of 
the phase transition region (a true first-order transition) on the lower half-plane of the 
state diagram where T < 0. 

In the dilute solution region, there occurs globulization of coils (section 3.4). The 
homologous relation between the size R and N for globules is defined by the general 
relationship 

( 72) ~2 - ~ 2 1 3 .  

On the other hand, the scaling dependence for - R, valid near the tricritical point, 
is proposed (de Gennes, 1975; Daoud and Jannink, 1976) to be written as 

These two equations correlate well provided that z = -1/3. Thus, in region IV of the 
state diagram, the relationship 

R N (:)ll3 (74) 

holds. 
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Further, assume that during a phase transition the morphology of the second, polymer- 
enriched phase presents densely packed globules. The globule contact concentration, in 
view of Equation 74, is written as 

N 
R3 

C, N - N 7. (75) 

Daoud and Jannink (1976) have admitted that the line of Equation 75 separates the 
tricritical region and the first-order phase transition region (cf. Figure 1.39). The mor- 
phology of tho first, polymer-diluted phase is an ensemble of collapsed coils, for which 
Equation 74 is realized. 

Further, suppose the bulk effects in tricritical region 111, when r < 0, to cancel each 
other and, hence, 

R N'I2 (76) 
and does not depend on T .  

realized, i.e. 
The critical point is the only one where conditions 74 and 76 should be simultaneously 

The latter dependence is in agreement with the result of the Flory-Huggins theory (see 

So, the curve, bounding the phase separation region, has the line of Equation 75 and 
its asymptotes and, hence, can be approximated by a 

Equation 3.1-241), and Equation 78 corresponds to Equation 3.1-245 up to 1/N.  

the ordinate axis (where r < 0) 
hyperbola 

7 = -a ( c +  A) , 
where a is a positive constant. 

Equation 80 can be rewritten i r i  Ihe form: 

and in a more general scaling form: 

rN'12 = f (cN'I*). 

The utility of the latter notation is that the boundary of the phase separation region 
should obey the exponent dependence in accordance with the universality principle (Ta- 
ble 1.2) when Equation 81 does not show this dependence to an acceptable degree and, 
so, is a rather rough approximation. 

The function f in Equation 82 can be obtained, in principle, from experimental data 
plotted 

rN'12 v,? f (cN1l2) .  
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4.3.2. Experimental data 
The neutron scattering technique has played a significant role in correlating scaling 

constructions in wide temperature and concentration ranges (Table 4.1). It enables one 
to evaluate the parameters of deuterated macromolecules which form a certain, suitable 
under the given experimental conditions, fraction of usual (protonated) macromolecules.’ 
The total polymer concentration may vary in a wide range and is restricted mainly by 
purification capabilities and other preparative details. 

Just aq in t,he case of light scattering (see Equation 2.4-24), the following relationship 
(Daoud et al., 1975) is valid for neutron scattering 

ac 
limS(q) + Tc- = Tcx,, 
q-m da (83) 

where S(q) is the Fourier transform of the correlation function of concentration ffuctuation 
(cf. Equation 2.1-83) 

S(q) = / (ac(o)sc(q) e’VdF. 

Experiments (Benoit and Picot, 1966; Dmud et al., 1975) have shown that 

xi’ N cy, where y = 1.25 f 0.04, (85) 
in good agrecment with Equation 53 (see also Table 4.1) 

construction (Table 4.1) as well 
The concentration dependence of the coil size (Figure 3.6) corresponds to the scaling 

Cotton et al. (1976) estimated the radius of gyration of deuterated polystyrene macro- 
molecules in their mixture with protonated polystyrene in cyclohexane (the overall poly- 
mer concentration 15 g/dl falls within region 11) (Figure 4.5). 

As one can see, the temperature dependence of macromolecular sizes obeys the scaling 
(Table 4.1) 
- 

(87) ~2 - ~c- ’ f ‘ . r ’ f ‘ .  

The bend (Figure 4.5) corresponds to the crossover between regions I1 and I11 (see Fig- 
ure 4.4). 

The situation with the screening length 6 is much more complex. In defining 6 according 
to the DebyeEdwards construction (Equation 3.1-238) from light scattering data (Cotton 
et al., 1972), t f i  = const seemed to be valid in two polymer concentration ranges: 6 - R 
in dilute solutions and 5 - p in semidilute ones, as it follows from the Edwards theory 
(see Equation 3.1-234). 

However, more systematic measurements of [ in solutions by means of neutron scatter- 
ing (Daoud et al., 1975) have shown that 

(88) [ N co.72, 

‘In some special cases (eg. for block-copolymers), this “contrast condition” is even not necessary. Editor’s 
note 



4.3.2. Experimental data 537 

6 
100 

9, P 

0.125 f 0.005 

/ 0 

Figure 4.5. Double loga- 
rithmic curve R,  vs %r for 
the system Dpolystyrene+H- 
polystyrene+cyclohexane. The 
overall polymer concentration 
is c = 15 . g/cm3. The 
horizontal line defines R, in 
the % conditions (Cotton et al., 
1976) [Reprinted with permission 
from: J.P.Cotton, M.Nierlich, F.Bone, 
M.Daoud, B.Farnoux, G.Jannink, 
R.Dupplesix, C.Picot. J .  Chem. Phys. 
65 (1976) 1101-1108. Copyright @ 
1976 American Institute of Physics] 
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which is very close to the scaling construction (Equation 63). 
Specifically, Edwards' results (Equations 3.1-234,-238) hold only within the mean field 

approximation. Moreover, his calculations assumed the segment density distribution func- 
tion g ( 3  as one of ideal chains in external potential over all the range of T (see Equa- 
tions 3.1-218,-229) though in practice it is valid only at small distances r < 6. 

An appropriate correction (Daoud et al., 1975) has been introduced and led to the form 
factor 

c2 S(q) = const ~ 

42 + t - 2 '  

i.e. to a Lorentzian with its halfwidth defined by the screening length 6. 
It is Equation 88 that has just resulted from the halfwidth of the Lorentzian (Equa- 

tion 89) while determining 6. 
Figure 4.6 presents an experimental reduced-coordinates state diagram of Equation 82 

for the system polystyrene+cyclohexane (Cotton et al., 1976), which is in excellent 
agreement with the theoretically predicted one (Figure 4.4). 

Ito et al. (1984) measured osmotic pressure by means of a specially designed osmometer 
(Kuwahara et al., 1968) near the % point for two systems: polystyrene+cyclohexane 
and polyisobutylene+benzene; the reduced value r M / c R T  was found to be a universal 
functiou of the C/C* ratio, C* being the crossover concentration (of overlapping coils). At 
high concentrations (0.25 < c ,  g/cm3 < 0.32) osmotic pressure is proportional to c2.'* 
just as theory predicts (see Equation 44 and Table 4.1). 

Sttpanek et al. (1984) applied light scattering to measure the reduced osmotic com- 
pressibility (see Equation 83) in the % region and while going through the crossover (by 
temperature, c = const ) in polystyrene solutions in cyclohexane; they established that 
in the concentration range 2 5 c/cz < 11 at T = % 

1.94 
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I1 

Figure 4.6. State diagram of polystyrene+cyclohexane. The phase separation area is 
outlined using the data of Shultz and Flory (1952) for Ma lop3 = 43.6 ( I ) ,  89 ( 2 ) ,  250 
(3) ,  and 1270 (4). The gyration radius of macromolecules (6) and the screening length 
(5) have been determined by means of neutron scattering (Cotton et al., 1976) [Reprinted 
with permission from: J.P.Cotton, M.Nierlich, F.Bone, M.Daoud, RFarnoux, G.Jannink, R.Dupplesix, 
C.Picot. J. Chem. Phys. 65 (1976) 1101-1108. Copyright @ 1976 American Inatitute of Physics] 

holds (cz is the coil-overlap concentration in the 0 solvent - see Equation 43) and fits 
the theoretical dependence (Equation 44). 

According to Equation 53, while passing through the crossover line c** (or T** in con- 
nection with the ordinate axis) (see Figure 4.4) 

is valid, where z = 0.691 if v = 0.588 (from calculations). 
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Within 10 < r/r+* < 33 experiments have given the dependence 

0.68fO.OS (E) = 1.13 (E) , 

for the polymer weight fraction w = 2.57 . lo-’, M = 20.6. lo6 in good agreement with 
theory. 

The same paper also concerns measurements of the screening length 5 using the scat- 
tered light intensity ratio at X I  = 6328 8, and A 2  = 4880 8, (see Equation 89) 

where X = 0.299 was estimated by means of light scattering in benzene. The results ob- 
tained for three polymer concentrations w = 2.57, 3.28, 5.26 (wt %) obey the relationship 

t w  = (6.73 f 1.4) . cm . g/g, (94) 

and agree with the theoretical dependence (Equation 65). 
Solutions of polystyrene and its deuterated homologues (deuterated polystyrene) in 

deuterated toluene have been studied in a wide concentration range using low-angle 
neutron scattering (King et al., 1985), and the results differ from the intuitive scaling 
predict ions 

- 
(95) 

5 N c-0.7 (96) 

RZ C-0.156f0.012 

within 0.03 < c < 1 (cf. Table 4.1 12 - and Equations 86 and 87) and 

(cf. Equation 63, Table 4.1, and Equation 88). 

low molecular weights (say, M < 110,000). 

in toluene at 20 and 25°C (Bantle et  al., 1982; Huber et al., 1985a) and revealed that 

The authors believe that the intuitive scaling theory does not apply to polymers with 

Huber et  al. (1985b) put together the A2 us M dependences for polystyrene solutions 

A2 - M - t  (97) 

with the asymptotic value t = 0.2 for high molecular weights, which is in full agreement 
with the excluded volume model of the scaling type (Equations 70 and 71). 

The lower the molecular weight, the higher t .  

Now let us discuss the mechanical properties of semidilute solutions and gels in con- 
nection with scaling constructions (Candau et al., 1979, 1982). The elastic properties of 
semidilute solutions are controlled by two parameters: the screening length 5 correspond- 
ing to the mean distance between cross-links (see Subsection 3.1.1) and the cross-link 
lifetime T,. Any solution exhibits its elasticity only over intervals shorter than T, (see 
Section 3.5). Hence, semidilute solutions can not show mechanical elasticity since m e  
chanical measurements require much more time than T,.. 
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On the other hand, light scattering measures the high-frequency system response char- 
acterized by the elastic shear modulus p proportional to the cross-link number density 
(de Gennes, 1976a), i.e. 

p - (-3. (98) 

In view of Equations 63-65, 

p N $25 

p - c3 
in a good solvent and 

(99) 

in the 8 solvent. 
In the case of cross-linked gels having swelled in a good solvent up to equilibrium, T, is, 

of course, infinitely long. Hence, both mechanical measiirements of compression,/tension 
and light scattering relate to times shorter than T,. Munch et al. (1977) have shown that 
the distance between cross-links in gels at the equilibrium concentration cf in the good 
solvent also obeys its scaling expression 

So, both the mechanical pl and optical p shear moduli in gels are related to each other 
and 

Strictly speaking, axial compression and light scattering do not measure the same mod- 
ulus. The kinetics of gel swelling/compression is a very slow process and upon mechanical 
gel deformation, the liquid does not shift with respect to the network. Axial compression, 
therefore, takes place under conditions of constant volume, and the Young modulus obeys 
Equation 3.5-58 E = 3pl. 

On the other hand, light scattering owes its origin to the longitudinal modulus (Equa- 
tion 3.5-59) M = K + 4p 13, which involves changes in the network local concentration. 

However, both the multifold compression modulus K and the shear modulus p are 
proportional to the cross-link numerical density (de Gennes, 1976a) and scaling behaviour 
of both the mechanical pl and optical p moduli with respect to polymer concentration 
must be the same. Indeed, an experiment with polystyrenebenzene networks (Candau 
et al., 1979) has shown the validity of Equation 102. 

At the same time, for polyacrylamide gels in the poor 0 solvent (water+methanol, 3:1 
by volume) 

P - (33.07*0.07 

was found (Geissler and Hecht, 1978), which fits Equation 100 excellently. 
Thus, the experimental data obtained confirm, on the whole, the theoretical predictions 

arising from the analogy of magnetics in their critical state and the system P+LMWL 
through the glossary. 
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4.3.3. Further developments 
An extended description of the macromolecule solution in terms of the magnetic analogy 

is given by Nikomarov and Obukhov (1981). 
It should be noted that the same limiting dependences of characteristic values (see 

Table 4.1) in the form of scaling relationships are led to by scaling transforms of the 
expression for 

0 the partition function Z ( L ) ,  

0 the probability function P ( i ,  L ) ,  

0 the root mean square distance (h2) ' /2 ,  

etc. in the model of continuous Gaussian chains with excluded volume (see Equations 3.1- 
173,-179, 3.1-201.. .205) (Kosmas and Freed, 1978). All the results of this theory are 
obtained without resorting to any analogy with critical phenomena in magnetics and any 
renormalization technique. Moreover, there is no need to assume the space dimensionality 
d to be a continuous variable and to get expressions as a series of (4 - d). The main 
expressions are deduced in more natural discrete space dimensionalities 2, 3,4,  and so on. 

For the scattered light intensity, this analysis uses a dependence of the Equation 89 
type. Turning to the Edwards-type continuous Gaussian chains will play a part in a 
further development of polymer theory. 

Dayantis (1982) has made an interesting correlation of the above considered theories 
and approaches (mean field of Flory-Huggins, corresponding states, and scaling) in the 
phase separation region. 

Solving Equation 3.1-239, with respect to vzsp, leads to 

1 1 1 
visp + V z s p  (< - ~ - 1) + 2x,z = 0. 

2X,Z 

If we neglect the term 1/22 in Equation 3.1-245, we derive 

Tc - 0 1 r c = - z - -  
T C  *I 2112. 

The same neglection in Equation 3.1-242 yields 

The two latter equat,ions produce 

1 x,, = 5 - TC*l  

and 
1 
2 

x, = - - T*l. 

Substituting Equation 108 into Equation 104 gives 

+ = 0. 
1 - 2$1r2 1 
z - 2+1rz z - 2$1r.2 vi,,p - V2JP 
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re in Equation 105 can be assumed to be equal to r and 

17$11 x 2-lf2 

zr*1 x P. 
or 

The approximation 

1 << 2&rz and z >> z1f2, i.e. z >> 2$17z, 

allows one to simplify Equation 109: 

( 113) 
1 

V i w  + 2$'17V2sp -k - = 0, T < 0 
z 

and to convert it into an equation of hyperbola with its axes: the ordinate axis v 2 8 p  = 0 
and the straight line 

0 2 , p  + 2$17 = 0. (114) 

If one inserts new variables from the intuitive scaling approach (Equation 82) into 
Equation 113 

a' = 2)2spz1f2 and r' = r z 1 f 2 ,  (115) 

+ 2$',17'@' $- 1 = 0, T' < 0 (116) 

one gets the expremion 

which is the spinodal equation along the lines of the corresponding state equations. It 
coincides with the equation predicted by the scaling concept (Equation 81) provided that 
a is presumed to be 

a = (2&)--1 (117) 

and Equation 81 is considered as a spinodal, not binodal as in Daoud and Jannink's (1976) 
equation. 

Equation 81 with Equation 117 for spinodal (!) has a universal meaning for all sys- 
tems P+LMWL, i.e. satisfies the basic principle of corresponding states. The binodal 
curve, though not approximated rigorously by hyperbola (in general, by any second-order 
curve) even when N + 00, nevertheless, also reduces to a universal curve for all systems 
P+LMWL in the coordinates 

( x ,  - i) N-'f2 vs c N 1 f 2  

in accordance with the principle of corresponding states. 
Figure 4.7 sketches the binodal and spinodal positions satisfying the requirements of the 

Flory-Huggins mean field theory, scaling constructions, and the principle of corresponding 
states. 
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Figure 4.7. Binodal ('7) and 
spinodal (6) locations as (x,- 
1/2) us 212 and the charac- 
teristic curves: the limiting 
slope of the binodal envelope 
( I ) ,  the spinodal asymptotics 
(3, the median of the bin- 
odal (v211+v21)/2 (9 ) ,  the lo- 
cus of critical points (4, the 
spinodal axis (5), C denotes 
the critical point (Dayantis, 
1982) [Reprinted with permission 
from Macromolecules 45 (1982) 
1107-1110. Copyright @ 1982 
American Chemical Society] 

0 1 2 3 

(x, - $) .  1 0 2  

T ,  "C 

Figure 4.8. Phase separa- 
tion areas (binodals) in the 
polystyrene+methylcyclohexane system 
with the molecular weight of polymer: 

3.49 ( 4 ) ,  4.64 (5), 10.9 ( 6 ) ,  18.1 ( 7 ) ,  
71.9 (8) (Dobashi et al., 1980b) [Reprinted 
with permission from: T.Dobashi, M.Nakata, 
M.Kaneko. J. Chem. Phys. 72 (1980) 66924697. 
Copyright @ 1980 American Institute of Physics] 

M, . 10-4 = 1.02 (11 ,  1.61 (21, 2.02 (31, 

10 

0 0.2 0.3 

Careful experimental measurements of the binodal curves in the system polystyrene+me- 
thylcyclohexane by Dobashi et al. (1980ab) were of great importance for a further devel- 
opment of the theory of phase separation in polymer systems. The investigators strove 
for the complete equilibrium of two liquid phases in each experiment and then determined 
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::::: 0.10 - 

the polymer concentration by means of refractometry (Figure 4.8). 
The data obtained were processed using the Flory-Huggins theory (state equation 3.6-1, 

the interaction parameter from Equation 3.6-37) in the fashion of Koningsveld's construc- 
tions (see subsection 3.6.1). 

In this case, the conditions of spinodal and the critical state lead to the following 
relationships at the critical point (Gordon et al., 1969; Koningsveld and Kleintjens, 1971) 

; 

(see Equation 3.6-24). Equations 119 and 120 yield 

Y 
7 

x + cpcY = a+ -. 

Figure 4.9. Plot according to Equation 4.3-121 for the polystyrene + methylcyclohexane 
system using the data of Figure 4.8 (Dobashi et al., 1980b) [Reprinted with permimion from: 

T.Dobashi, M.Nakata, M.Kaneko. J .  Chem. Phys. 72 (1980) 6692-6697. Copyright @ 1980 American 
Institute of Physics] 

Figure 4.9 shows data according to Equation 121 and some experimental results (see 
Figure 4.8). a = -0.1091 and 7 = 0.2481 were determined. Then Po was calculated using 
Equation 120 for each critical temperature. 

The obtained dependence Po us 1/T (Figure 4.10) was approximated by 

(122) 
Po1 

Po = Po0 + + P02T 

(6. Equation 3.6-10 and 3.6-37), which leads to a state diagram with two phase separation 
regions (with UCST and LCST - see Equation 3.6-85 and Figure 3.81). 

= 278.6, 
and pOz = 1.695 - The least squares method applied to Equation 122 has given ,000 = 0.5832, 
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3.0 3.2 3.4 
T - 1 .  103 

Figure 4.10. Temperature dependence of the pa- 
rameter p0 from the relationship for the inter- 
action parameter of the Equation (3.6-37) type 
for the polystyrene+methylcyclohexane system 
(Dobashi et al., 1980b) [Reprinted with permission 
from: T.Dobashi, M.Nakata, M.Kaneko. J .  Chem. Phys. 
72 (1980) 6692-6697. Copyright @ 1980 American Insti- 
tute of Physics] 

Therefore, the interaction parameter is expressed as 

-0.5832 + 278.612' + 1.695 - 10-3T 
g = -0.1091 + 

1 - 0.24819 

(cf. Equation 3.6-37). 
The 8 temperatures (T, at p + m) follow from Equations 123 and 3.6-1: 0 " ~ s ~  = 343.4 

and 81,~s~ = 479 K, which agree with independent experimental data from the literature. 
Of great interest is the fact that the existence of 8LcsT and the determination of its 

value proved to be possible on critical evidence for the UCST. 
The general expression for the Gibbs potential as a Taylor series (Equation 3.1-275) and 

the phase separation conditions (Equation 3.1-276) enable the phase separation region 
amplitude to be Calculated (Dobashi et al., 1980ab) 

and its diameter 

where 

These derivatives are calculated from Equation 3.6-1 and depend on the molecular 

On the other hand, near the critical point both the amplitude and diameter of the 
chain length. 

phase separation region are expressed by simple scaling relationships 

vir - pr = H--E)' (126) 
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and 

(cprr + cpr) - 2cp, = A( -E)”.  

For the system polystyrene+met-ylcyclohexane (Dobashi et al., 1980ab), the indices 
p and p do not depend on molecular weight and have the values p = 0.332 f 0.001 and 
p = 0.858 f 0.005, that differ from p = 1/2 (Equation 124) and p = 1 (Equation 125) as 
the mean field approximation predicts. 

B 

------- 
Figure 4.11. Comparison of the coef- 
ficients A and B from Equations 4.3- 
126,-127 with the theoretical coefficients 
(the mean field approximation, Equa- 
tions 4.3-124,-125 - dashed lines) for 
the polystyrene+methylcyclohexane sys- 
tem (Dobashi et al., 1980b) [Reprinted 
with permission from: T.Dobashi, M.Nakata, 
M.Kaneko. J. Chem. Phys. 72 (1980) 6692-6697. 
Copyright @ 1980 American Institute of Physics] 

0.5 :: 44] 1 O R @  
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Figure 4.11 compares the coefficients B (Equation 126) and A (Equation 127) with 
those calculated employing the mean field approximation (Equations 124, 125, and 3.6- 
1). The experimental values of B differ noticeably from the theoretical ones for high 
molecular weights. 

A correlation of the full phase separation region and the theoretical binodals calculated 
numerically by 

pol = po l l ,  p11 = P l I I  (128) 
and state equations 3.6-1 for two polystyrene samples are presented in Figure 4.12. The 
low-molecular sample shows the largest distinctions. For the higher-molecular-weight 
sample, the agreement between theory and experiment is quite satisfactory in general, but 
near the critical point, of course, a difference in the phase separation region amplitude 
manifests itself, which is associated with the difference in the amplitude exponent index 
p. It was found by Shultz and Flory (1952) and interpreted by Koningsveld et al. as a 
manifestation of polymolecularity (see subsection 3.6.1). 

Close p values have been obtained for some low-molecular weight systems as well: 
methanol + cyclohexane p = 0.326 f 0.003 at 1.1 < 0.06 (Jacobs et al., 1977); ani- 
line+cyclohexane p = 0.328f 0.007 at I E ~  < 0.03 (Balzarini, 1974); isobutyric acid+water 
p = 0.328 f 0.004 at 1.1 < 0.06 (Greer, 1976). These values are in good agreement with 
p calculated for the king model by means of the renormalization group method (Wilson 
and Kogut, 1974; Raker et al., 1976; Golner and Riedel, 1976; Ma shang-keng, 1976; 
le Guillou and Zimm-Justin, 1977). 
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Figure 4.12. Comparison of 
the experimental and calculated 
(by the Flory-Huggins theory) 
binodals (dashed lines) for the 
polystyrene+methylcyclohexane sys- 
tem for samples with Mw = 1.61 . lo4 
( 1 )  and M ,  = 7.99 . lo5 (2) (Dobashi 
et al., 1980b) [Reprinted with permission 
from: T.Dobashi, M.Nakata, XKaneko. J .  
Chem. Phys. 72 (1980) 6692-6697. Copyright 
@ 1980 American Institute of Physics] 
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So, both low- and high-molecular weight binary systems belong to the same universality 
class with respect to phase separation (see Table 2.5). 

Asymmetry is a characteristic feature of the binodals (Figure 4.8), which is inconsistent 
with the principles of universality and corresponding states. However, Sanchez (1985) has 
established that the data of Figure 4.8 and also from (Dobashi et al., 1980ab) allow one 
to choose such a parameter of order $ which provides 

111, - $4 = $0 [(-4N”IP (129) 

with a universal /3 value and a universal symmetrical binodal (Figure 4.13). 

Figure 4.13. Universal binodal (Equa- 
tion 4.3-129) and the data of Dobashi et 
al. (1980ab) [Reprinted with permission from: 
T.Dobaahi, M.Nakata, M.Kaneko. J .  Chern. Phys. 72 
(1980) 6692-6697. Copyright @ 1980 American In- 
stitute of Physics] (Figure 4.8) (Sanchez, 1985) 
mprinted with permission from: 1.Sanchez. J. Appl. 
Phys. 58 (1985) 2871-2874. Copyright @ 1985 Ameri- 
can Institute of Physics] 
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As a new order parameter, Sanchez proposed 

where R, is a constant with a vague physical meaning. 
Using 10 experimental binodals of the system polystyrene+methylcyclohexane (Dobashi 

et al., 1980ab) Sanchez has fitted: rc)o = 0.564f0.004, $, = 0.307f0.001, b = 0.313f0.004, 
and p = 0.327 f 0.002. His calculations involved 14 adjustable parameters (10 values of 
I&, $0, $,, b, and p) and 166 experimental binodal points. 

The value p = 0.327 f 0.002 is in excellent agreement with the latest calculations using 
the Ising lattice and the renormalization group method /3 = 0.3265 f 0.0011 (le Guillou 
and Zinn-Justin, 1980; Albert, 1982). 

If Equation 130 is expanded into a Taylor series near cp  = ‘pc 

*=*, [ 1+- R$ (E - 1) + . . . I ,  
then, for 1.1 + 0 and large N, 

and, in the mean field approximation (see Equation 3.1-288) 

Thus, the index bp  = 0.102 f 0.002 obtained in accordance with Equation 129 is much 

For the binodal amplitude index Dobashi et al. (1980ab) give 
lower than that of the mean field approximation. 

- PI N N-0.23, (134) 

cp11- PI - N-O.=. (135) 

(136) 

(137) 

and Shinozaki et al. (1982a) give for the same system polystyrene+methylcyclohexane 

Moreover, as reported by Dobashi et al. (1980ab) 

ip, N N-0.39 

and by ShincuAaki et al. (1982a) 
N-0.40f0.02 

(Pc 

Sanchez’ paper demonstrated the importance of a proper choice of order parameter 
when experimental values are compared with modern theories. 

Critical indices are thought, as a rule, as indices in the power dependences of tempera- 
ture E. In the case of polymer systems, of special interest is the power dependence of the 
factor lei" on N (Shinozaki and Nose, 1981): 

[ = tol€1-” - Nn(€I-” (€?O) ,  (138) 
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x = X,(&(--Y - N g ( & ( - Y  (&?O), (1 39) 

c = Q I € I - a  N Ncl€l-a ( & ? O ) ,  (140) 

Acp = cpzz - cpr = R ( E ( ~  - N b ( ~ I P  ( E  < 0), (141) 

= o o l E p - l ) ~  N"l&((d-')" ( E  01, (142) 

R = D ( A v ) ~  - N ' ( A v ) ~  ( E  = 0), (143) 

x ( k )  = Dkq-2 - Nkk"' ( E  = 0, T = 0). (144) 

The indices at N also have the meaning of critical ones (Shinozaki and Nose, 1981) 
and are related to each other by relationships with only two independent indices (cf. 
section 1.5, Equations 8-10 with section 2.5, Equation 30). 

This question is under intense investigation (Shinozaki and Nose, 1981; Shinozaki et 
al., 1982b). 

Shinozaki et al. (1982b) employed sophisticated equipment for measuring the critical 
indices Y and y in the system polystyrene+methylcyclohexane by means of light scatter- 
ing: 

&.!E= &=OX4 
(pc a.rr 2 ~ ~ n f ( a n / d c p ) ~ ~ g k T  

(cf. Equations 2.4-21.. .23 at  19 = 0), 

T - T ,  -7 

x = x , ( - - T _ )  . (147) 

The correlation length 6 was measured with the aid of Ornstein-ZernikeDebye's plots 
(cf. Equation 89) 

The critical index v was evaluated using the least squares method for the straight line 
In 6 us ln(AT/T,). 

The values of y obtained in solutions with different (within the range 9000 < A?, < 
1.26 . lo6) polymer fractions group together around the universal value 1.24 derived by 
means of the rmormalization group method (le Guillou and Zinn-Justin, 1977) as well 
as obtained in experiments (Kuwahara et al., 1975). The values of v are also near the 
universal value v = 0.63 (le Guillou and Zinn-Justin, 1977). 

(Equation 138) and x, (Equation 139) on N was 
evaluated at ln(AT/T,) = -5.0: 

The exponent in the dependence of 

6 0  - N0.zu*0.03 (149) 
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and 
~ 0 . 4 8 f 0 . 0 3  xo 

The value n = 0.28 f 0.03 is in good agreement with de Gennes’ predictions (intuitive 
scaling in the mean field approximation - see section 4.4) and the data by Vrij and 
van den Esker (see subsection 3.3.1). 

Table 4.2 gives the experimental values of the N indices from (Shinozaki et al., 198213) 
in comparison with the predictions of the mean field theory. 

Table 4.2 
Exponents N in the amplitude factor of the characteristic values (Equations 138-143) 
(Shinozaki et al., 198213) [Reprinted with permission from: KShinozaki, T.Hamada, T.Nose. J .  
Chem. Phys. 77 (1982) 4734-4738. Copyright @ 1982 American Institute of Physics] 

Amplitude factor Exponent Experiment Mean field theory 
€n n 0.28 f 0.03 0.285” 0.25 .” 
XLl 9 0.48 f 0.03 0.5 
B 6 -0.34 f 0.03 -0.23b -0.25 
00 m -0.44 f 0.03 -0.25 
( P C  2 -0.40 f 0.02 -0.3gb -0.5 

(Chu, 1969); ‘ (Dobashi et al., 1980ab) 

The differences are apparently caused by the fact that the order parameter fluctuation 
correlation is not taken into account. 

Stepanow (1987) modified the Flory-Huggins state equation in an interesting way, hav- 
ing gotten from it a Hamiltonian of the Landau-Ginzburg-Wilson (LGW) type, with these 
correlations allowed for automatically. 

If we choose 
P S P l l  - P S P I  - 

- P s p l l -  p c  2 
a =  

as a fluctuating order parameter, the spinodal equation in the Flory-Huggins approxima- 
tion can be put as 

x,) + N”*a2 = 0 

(see Equations 3.1-239,-258,-269,-270 and the assumptions accepted there). 

degree, molecular weight, etc. as accepted in the scaling theories. 

a Hamiltonian in the fashion of the Landau phenomenological theory (section 2.5) 

Here we assume z N N ,  where N is a quantity proportional to the polymerization 

If we integrate Equation 152 twice with respect to the fluctuating parameter @, we get 

To convert 3tl into the LGW Hamiltonian, a gradient term 

A2 
36@(1 - @) (154) 
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should be added (see Equations 2.5-1 and 3.7-36). 

Hamiltonian 
Then we replace @ in the denominator by cpc and assume (1 - cpc) x 1; the LGW 

emerges. 
The replacements 

(155) 

(156) 

transform Equation 155 into the standard Hamiltonian of field theory (see Equations 2.6- 
11,-129, 4.1-1) 

(158) 
1 P’ ‘?L. = ‘?7!N3/29z = -(V,M)’ + -M2 + 3 M 4  
2 2 4! 

with the free mass (Equation 2.6-26) 

and the interaction constant 

uo = 2. (160) 

The correlation length 6, related to 3t, (Equation 158) has the scaling expression (see 
Equations 2.6-39 and 4.3-12) 

t z  - P-” .  (161) 

The rmrelation lengths 6, and tr of systems with the Hamiltonians 158 and 155, re- 
spectively, are related to each other by (Stepanow, 1987) 

x r  _ -  
tz - P’ 

from which 

In the mean field approximation u = 1/2 and cpc N N-’/’, and Equation 163 reduces 
to 

€7 N ( x l C  - X,) -”’N’’~ ,  (164) 

which agrees with de Gennes’ result (see Equation 3.7-31). 
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The phase separation region corresponding to the Hamiltonian 158 varies in accordance 
with the scaling rule (Brezin et al., 1973ab) 

M (-PIP, (165) 

9 1 1  - pc N ( P ~ I I  - pe = CP N (x, - x , , ) ~ N - ~ + ~ ’ ~ ~ , ~ ~ + ~ ’ ~ .  (166) 

where /3 = 0.327. Equations 151, 156, 159, and 165 give 

Using the common approximation (Equation 3.1-283) 

e 
2x, = T’ 

we replace Ax, in Equation 166 by E .  If the mean field law cpc N N-’I2 holds for pC, then 

- pC - ( - E ) P N P / ~ - ~ / ~ .  (168) 

If the experimental value (Equation 136) is accepted for scaling cpc, Equation 166 is 
followed by 

Ap N (-E)PN-’.~* (169) 

in quite good agreement with experiment (see Equations 134, 135) or 

in agreement with the scaling of Sanchez’ universal binodal (Equation 129) 

b/3 = 0.327. 0.313 M 0.102. (171) 

The scaling law (Equation 170) is valid in the limit p + 0. From the definition of p 
(Equation 159) it follows that p decreases with increasing N at any fixed temperature 
E .  This means that the region of the realization of scaling (Equation 169) increases with 
molecular weight. This prediction agrees with Dobashi et al.’s results (1980ab). 

The critical region reducing is caused by the dependence of the Hamiltonian gradient 
term on molecular weight (via qC). 

Thus, away from the critical point, the experimental data on phase separation satisfy 
the universal approach of Flory-Huggins’ mean field, the principles of corresponding states, 
and scaling. 

Near the critical point, the concentration fluctuation correlations contribute signifi- 
cantly to the system state. 

4.4. Critical opalescence 
The intensity of light scattered on concentration fluctuations in the critical region is 

expressed as (see Equation 2.4-24) 
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Let us write scaling expressions for a*/& and 5. 
For low-molecular-weight mixtures, the law of corresponding states is written rn 

a* - = kT . f (E/T,V/vc) ,  
av 

v being the numerical concentration of molecules. 

critical region is comparable with their unperturbed sizes (see paragraph 3.3.1.2): 
For macromolecules, v = c / N ;  T, is close to 8. The size of macromolecules in the 

D being the attractive force range with the potential pit E (cf. Figure 1.40). 

Segment-segment interactions are described by the excluded volume P(T)  N A3(T - 

The effective interaction of a coil scgment in the point ?with another coil with the 

The interaction between two coils E is of the order 

@I/@. 
segment distribution density 47) is BkTcz(F) (cf. Equation 3.1-232). 

E' = Ek M NpkTc2 N NpkTc, N N1I2kT/3IA3. (4) 

Then 

e' 
_ N  E/T + z = N'I2p/A3. kT - (5) 

In polymer systems, some complication appears, related to the fact that under the 
critical conditions, in the expansion of ?r in terms of c - cc - N-'/*, the third virid 
coefficient &(T) is significant, since pc, - d3$ - N-' (see Equation 3.1-313). This 
circumstance causes introduction of the second dimensionless parameter y = d3(T)A-6 .  
Admittedly, the temperature dependence of d 3  is very weak in the critical region. 

so, 
a x  kT C k0 C 
- dc = - f ( X , - , Y )  N CC = F f ( x ' - , Y )  cc 

(cf. Equation 4.3-24). At the critical point T = T,, c = c,, and 2 = zc(y). 
A t  a temperature a bit higher than lc (c = c,; T = T, + AT): 
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The common power dependence is accepted for the fluctuation correlation length E: 
[ = a(z  - Z C ) + .  (8) 

Substitution of Equations 7 and 8 into Equation 1 in view of Equations 3 and 5 leads 
to 

Having assumed for 7 and v their values as the mean field theory gives: 7 = 1 (Equa- 
tion 1.5-17) and v = 1/2 (Equations 2.5-14, 3.7-94) (see Figure 2.44)' we have 

If this equation is compared with Debye's form of Equation 3.3-22 
T - T, l 2  

Z-'(q) = const - ( T, +,u') ' 
then 

12 N N'/2. (12) 
In subsection 3.3.1 were discussed experiments in the region of critical opalescence 

(polymer solutions), their results are rather inconsistent, but some of them (including 
Debye's et al., 1960b) corroborates Equation 12. 

In the same way, employing the principle of corresponding states and scaling plots, 
de Gennes has obtained Equations 11 and 12 in the mean field approximation. The 
equations differed essentially from Debye's results (section 3.3.1.2). Debye took a different 
approach within the framework of the mean field approximation (see the end of section 4.3, 
Equations 4.3-148 and further). 

4.5. Dynamic scaling 
The profile of concentration fluctuations of any complexity can be presented as a su- 

perposition of sinusoidal waves (the Fourier transform), so we write the local value of 
concentration for one q-component of the Fourier transform only: 

c(7) = c + &A?, t )  = c + 6cq(t)e'qz, (1) 
where the axis z is chosen as the direction of perturbation propagation (cf. Equation 3.5- 
12). The perturbation amplitude &At) decreases exponentially (cf. Equations 2.348, 
2.451): 

&At) = 6cAO)e-*/T*, (2) 

T< < T,. (3) 

where rq is the relaxation time; so 7-g' is the perturbation relaxation rate. 
In the following subsection let us consider those motion modes for which 

is satisfied, where T, is the relaxation time for the complete change of chain conformation 
(the relaxation time for complete disentanglement of one chain)'. 

'Evaluation of Tv will be performed later 
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9 

1 
R 
- 

4.5.1. Motion modes 
The properties of a molecular chain concerning its thermal mobility essentially depend 

on polymer concentration and wave vector of probing radiation q, since the perturbation 
front wavelength A is related to the wave vector immediately (see Equation 2.3-18): 

2T 

4 A = - .  (4) 

In other words, radiation with the wave vector q “sees” concentration perturbations 
with the wavelength A only. 

If the scale of each molecular chain or of their set is characterized (in the general case) 
by the screening length [, then different regions on the q us l/t diagram (de Gennes, 
1976a) correspond to essentially different motion modes of molecular chains or of their 
fragments (see Figure 4.14). 

t 

1 
- 

A R 

* 

Figure 4.14. Types of modes in the polymer solution. q is the wave vector, R the gyration 
radius of a coil. A denotes the macroscopic limit qR << 1. B denotes the multi-chain 
region: pseudogel solution behaviour qE < 1. C denotes the intramolecular modes q[ << 1 
(de Gennes, 1976a) (Reprinted with permission from Macromolecules 9 (1976) 587. Copyright @ 1976 
American Chemical Society] 

The regions A and B reflect the mobility of molecular chains taken as a whole (the 
collective mode) when 

q t  < 1, (5) 

the region C where 

q t  > 1 (6) 

provides every condition for observation of intramolecular modes of chain motion. 
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In the region of long-wave fluctuations ( A )  where 

q R < 1  and R < A  

hold, on the frequencies w small enough but higher than l/Tr: 

1 
w > -, 

Tr 

(7) 

the polymer solution behaves as a gel and should be characterized by the longitudinal 
modulus M and the friction coefficient f caused by solvent flow through the polymer 
network (see subsection 3.5.4). 

In accordance with Equations 3.5-50,-59, the modulus M is proportional to the numer- 
ical concentration of molecular chain cross-links (contacts), the distance between which 
is of the order of the screening length 6 (see subsection 3.1.1, Figure 3.7). Hence, the 
number of cross-links per unit volume is N t-3, and 

kT 
M N F .  

In view of Equation 4.3-63, 

M N c’/~. 

(9) 

Using the equation of the network motion (see subsection 3.5.4), for the interdiffusion 
coefficient we get Equation 3.5-126 

M D=r’ 
where the friction coefficient f is related to the segment friction coefficient c by means of 

f = cc. (12) 

With due allowance for Equations 10 and 12, Equation 11 yields the concentration 
dependence of the diffusion coefficient: 

D N c5I4. (13) 

In the case of d-dimensional space, with Equation 4.3-63: 

6 C u / ( 1 - 4  

(15) 
M t - d  C - u d / ( l - u d )  , y d / ( u d - l )  

At the crossover point c = C* (Equation 4.3-68) 

D C*l / (ud- ’ )  N - 1 .  
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Thus, at the crossover point the interdiffusion cmfficictnt D abuts smoothly with the 
diffusion coefficient for the maximum dilute solution Do: 

kT 
Do = CN' 

Equation 16 allows us to verify one of the main scaling relationships in macromolecule 
dynamics: 

where f(z) does not depend on N, and f ( 0 )  = 1. 
Suppose f(z) = zm, then 

1 
N 

N - 1 +m(ud- 1) p &"d-1) D(c)  N - c ~ c * - ~  = 

since -1 + m(vd - 1) = 0 and rn = l/(vd - 1). 
We see that Equation 20 agrees with Equation 16, and a scaling plot of the Equation 19 

type is justified and appropriate for predicting characteristic dependences in other cases 
it9 well. 

In the foregoing discussion, the hydrodynamic interaction has not been taken into 
account; it implies that the mth segment of a macromolecule moves in the field of solvent 
velocities which is perturbed by the motion of the nth chain segment (for details see 
(do Gennes, 197613, 1979; Gotlib et al., 1986)). 

On an increase in the polymer concentration in a solution, the hydrodynamic interaction 
weakens due to the hydrodynamic perturbation of the nth segment being suppressed 
(screened) by the neighbouring macromolecule segments (Freed and Edwards, 1974; Wang 
and Zimm, 1974; de Gennes, 1976b). 

Thus, hydrodynamic interactions also have their screening length i which special analy- 
sis (de Gennes, 197613) has shown to depend on concentration analogously to Equation 14: 

(21 1 i - C4(1--Y4 

i.e. both the static and dynamic i screening lengths are identical. 
Further analysis (de Gennes, 1976b) leads to a concept of hydrodynamic blobs of the 

size [ inside which the hydrodynamic interaction manifests itself, and a set of such blobs 
becomes independent both of bulk effects (subsection 3.1.1) and of the hydrodynamic 
interactions. That is the reason the diffusion coefficient D proves to be, in fact, the blob 
diffusion coefficient Dbl: 

i.e. (see Equation 21) 

D N ,f-' N ~ " l ( " ~ - ' )  N c3I4 for d = 3. (23 ) 
Tf wavelengths A are shorter (the region B), i.e. 
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many relations of the region A apply: the distance between cross-links in the dynamic 
mode is of the order of E x i. 

Let us consider at greater length the case of A - R and qR N 1, which is important for 
deriving characteristic dependences by means of scaling plots in the other limiting case 
qE >> 1 (within the region C). 

For the Rouse chain model in the absence of excluded volume and hydrodynamic in- 
teractions, the relaxation time of the first mode with ko = 1 (Equation 3.3-62) is 

12N2C 
71 = - 

h 2 k T  * 

In view of R2 - N12, we obtain 

PC 
71 - - 

12kT 
and, correspondingly, 

1 12kT kT12 
71 <R4 C ”’ - = AW,  N - N - 

On the other hand (see, for instance, Equation 3.3-60) 

from which 

kT12 kT12 kT q 2 - -  N- 

CR2 CN 
D - -  

(27) 

(cf. Equation 18). 

rate the foiIowing expression emerges: 
If now we take excluded volumes into account (de Gennes, 1976a), for the relaxation 

i.e. 81 - N1+’” while for the Rouse chain T~ - N 2  (see Equation 25). 

(de Gennes, 1976b): 
In view of the hydrodynamic interaction, for the first mode we get the relaxation rate 

Transfer to chain properties in the region C with q t  >> 1 is conducted by means of scaling 
plots. For example, considering the frequency difference in inelastic light scattering, 
de Gennes (197613) writes the dependence 

with the limiting values of the dimensionless function fs(z): 
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for 2 << 1 fs(x) = x 2  and, in view of Equation 30, 

kT 
Aw, = Dog2 and DO = ~ 

~ T ~ O R F  

that is the Einstein-Stokes formula for an isolated coil; 

0 for 2 - 1 fs - 1 and Equation 30 applies; 

0 for 3: >> 1 an expression independent on the chain molecular weight should be 
obtained. This condition is satisfied by fs - x3,  which yields 

kT 
Aw, e -q3 

6 W O  
(33) 

for d = 3 and 

Aw, - qd (34) 

for d-dimensional space. 

u being absent in the exponent attests to the absence of influence of excluded volume 

The crossover between the states of pseudogel ( q t  < 1) and of individual coils ( q t  > l),  
on light frequency changes in dynamic scattering in the intramolecular mode. 

i.e. near q[ - 1, is also described by the scaling plot 

where the characteristic frequency A is 

and the dimensionless function fm(x) satisfies 

0 when x -+ 0 fm(x) -+ x 2  in agreement with Equation 22, in view of Aw, = Dq2; 

when x >> 1 fm(x) -+ z3 in agreement with Equation 33. 

Thus, on the basis of the form of Equation 36, the quantity A can be considered as the 
blob relaxation rate (cf. Equation 30). 
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4.5.2. Reptation motion of macromolecules 
We now turn to discussion of the macromolecule reptation motion model which has 

already been referred to above. 
De Gennes (1979) has emphasized that, depending on the performance of an experiment, 

two different diffusion coefficients are observed in polymer systems, namely, the self- 
diffusion coefficient ( 0 2 )  and the interdiffusion one ( D ) ,  the latter also called by him the 
cooperative diffusion coefficient (cf. subsections 2.4.3 and 3.2.1). 

The interdiffusion coefficient D is measured when polymer is redistributed under a gra- 
dient of its concentration. Theoretical consideration of this process is based on the laws 
of unequilibrium thermodynamics (see subsections 2.4.3 and 3.3.1). If a labelled macro- 
molecule is present among their ensemble (see subsection 3.6.2) its motion is characterized 
by the self-diffusion coefficient ( D z ) .  Both those quantities coincide in dilute solutions 
D - Dz - Do, but the coefficient D rises with polymer concentration while DZ decreases 
significantly. 

It is apparently this circumstance that causes serious difficulties while interpreting data 
on dynamic light scattering in experiments like those described in subsection 3.6.2. 

When c + 0 (where D - D2 N Do) the experimenter’s main trouble is to eliminate 
the contribution of intramolecular motion modes by means of extrapolation q -+ 0. At 
finite polymer concentrations, measurements of the first cumulant give an average 
diffusion coefficient (see Equation 3.3-85 and curve 3 in Figure 3.41). 

However, sometimes there appear two peaks (eg, see Figure 13 (Kubota et al., 1983)) 
in the histogram technique or two values of relaxation time in gl(t) (see Figure 3.40) 
connected with the fast and slow motion modes. The highest value of the diffusion 
coefficient increases (curve 1 in Figure 3.41) and the lowest one decreases (curve 2) while 
raising polymer concentration. It is the latter quantity that is most often associated with 
the self-diffusion coefficient, its behaviour to be interpreted in terms of the chain reptation 
motion model by de Gennes (1971, 1976ab, 1979). 

Figure 4.15. Chain Cr, diffusionally reptates among the chains C1, Cz, C3, etc. During 
little time it can be considered as confined in a pipe of the radius ( (de Gennes, 1976a) 
[Reprinted with permission from Macromolecules 9 (1976) 587. Copyright @ 1976 American Chemical 
Society] 

Look at Figure 4.15. The fragments of the neighbouring chains CI-C, form a certain 
pipe, inside which the labelled macromolecule CL creeps. The diameter of this pipe is 
comparable with the distance between the chain contact points in the ensemble, i.e. with 
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[. Every blob has g segments and the size [, hence, the labelled chain has N / g  non- 
interacting blobs. So, in terms of dynamic properties, the labelled chain can be regarded 
Rousian consisting of N / g  segments of the length 6. 

The overall length of the elongated pipe is therefore Lpipe = ( N / g ) [ .  
Let us first presume the pipe to be motionless. In the range 

A?’ < t < Tt (37) 

the labelled molecule is supposed to have onedimensional thermal diffusional motion 
along the pipe with the diffusion coefficient Dpip, as the only possible one (T,. is the time 
of pipe conformational reorganization). 

Granted the coefficient Dpipe is known, the time Trep for the chain to have crept at the 
distance equal to the pipe length Lpipe can be evaluated. This time is also treated as 
necessary for a complete reorganization of chain conformation. Then 

where Dpipe Do is accepted (see Equation 28 for Do). 
As 6 - g” and, correspondingly, 

9 = t-”, 
substitution of Equation 39 into Equation 38 with Equation 21 allowed for, we gel 

~ 3 ~ 2 ( 1 - u ) / ( v d - l )  Trep - , 
which for v = 315 means 

Trep - N3c.  

Thus, the time necessary to have the labelled chain unravelled depends on N. 
Estimation of heat changes in the pipe itself Or (de Gennes, 1976a) leads to 

4- N Trep, 

so that 

1 1 1 1  

Now “turn onn hydrodynamic interaction and consider 

Tr = O l c p  (;) 
When c > c*,  hydrodynamic interactions are screened, and regarding T,. 

T,(N, c >> c*) - N 3  (c = const ) 

must be true. 
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When c < c*,  T,. must be comparable with the relaxation time of the first mode of an 
isolated coil 81 (see Equation 30 for d = 3), and in the general case 

81 - R$ - Nud,  

T,(c << c*) N NUd. 

cp(0) = 1, p(. >> 1) = zm. 

(46) 

(47) 

i.e. 

Therefore, for the dimensionless ,function p( z) the following must apply 

Comparison with Equation 45 yields 

from which 
3 - ud ( 3 - u d ) / ( v d - l )  

vd-1 
m=- and T , = N u d  (s) 

For d = 3 and rn = 1.5 Equation.44, with due account of Equation 30, produces 

Hence, the hydrodynamic interaction changes the concentration dependence of T, from 

The functional dependence of the self-diffusion coefficient Dz is obtained according to 
T, - c (see Equation 41) to T, - c1.5 (Equation 50). 

as R2 N Nc-'I4 (Table 4.1), RF - N3I5 (Equation 4.3-67), c' - N-'I5 (Equation 4.3-69). 
At the 8 state where v = 1/2, it follows from Equations 49, 51,4.3-68 that 

Dz II N-'c-~. (52) 

This relationship must be satisfied also in case of a good solvent in a concentration 
range wherein the excluded volume is fully screened by the presence of other chains, i.e. 
when c > c**, where c** is the screening threshold conrentration. 

Finally, de Gennes (197613) evaluates the solution viscosity according to 
3 

7 N MT,  N 70 ( f )  ($) 1'5 N c3.75N3 (53) 

(see Equations 9, 50, and 36). 
Analysis of the free energy in the continuous Gaussian chain model (see Equation 3.1- 

lS9), the complete equation for molecular chain diffusion (cf. Equation 3.1-190), and the 
diffusion coefficient (d. Equation 3.1-192) (Adler and Freed, 1979) has led to equations 
of dynamic scaling that agree with de Gennes' results. 
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Currently there are insufficient experimental data for systematic comparison with the 
theoretical dependences of the dynamic scaling, but the data already obtained are either in 
agreement with the theoretical predictions or close to them. For example, by Equation 32 

Do N R-l N N - ” .  (54) 

The dependence 

D,O = (3.7 f 0.1) ~ 1 0 - ~ ~ - ~ ~ ~ ~ ’ * ~ ~ ~ ~ c m ~ / s  (55) 

has been obtained by the dynamic light scattering method for polystyrene in toluene 
at 30°C using the first cumulant kc1 measured (Equation 3.3-85) (McDonnell and Rai 
manathan, 1984). 

Due to the low fraction polymolecularity IC, E 0, and K2 was small, but its value was 
used to estimate the polymolecularity of polystyrene samples (M,/M, N 1.05.. . l . 1 5 ) .  

The value 17 = 0.587 f 0.002 in Equation 55 is in good agreement with v measured 
in static experiments designed to determine the dependence of the gyration radius of a 
polystyrene coil in benzene on molecular weight: v = 0.595 f 0.005 (Miyaki et al., 1978) 
and v = 0.58 (Fukuda et al., 1974) and also with the theoretically calculated v = 0.588 
(le Guillou and Zinn-Justin, 1977). 

Thus, in accordance with the thcoretical predictions of the dynamic scaling, the expo- 
nent of both dynamic fi and static v quantities has the same value. 

Wiltzius et al. (1983, 1984) have compared the dynamic [and static correlation length 
within a wide range of polystyrene concentrations in benzene and methylethylketone. [ 
was determined using Equation 22, and 13 measured from the first cumulant K1(q -+ 0) 
of dynamic scaling (Equation 3.3-85). [ was evaluated by 

At low concentrations (c  + 0) 

t = R/&, (57)  

and then decreases as c increases: 

[ N C - E ,  (58) 

where z = 0.70 f 0.03, which agrees well with Equation 4.3-63 (see also Table 4.1) and 
with the above experimental data: Equation 4.3-88 (Daoud et al., 1975). 

+ RH - cf. Equation 57). 
Their ratio does not depend on molecular weight or solvent concentration. The equality 
[ 2-‘ E expected from scaling is satisfied in dilute solutions only. 

At present, it would be difficult to comment on these features. They may be related 
to imperfections in theory and experiment, especially if we take into account the way of 
measuring [ employing the Debye-Edwards formula (Equation 56) ,  which is not rigorous 
(see comment to Equation 4.3-89). 

In Figure 4.16, and < are directly compared (when c + 0, 
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0.01 0.1 1 

c, g/dl 

Figure 4.16. Dynamic e and static [ correlation length ratio in polystyrene solutions 
in toluene (transparent signs) and in methylethylketone (black signs) as a function 
of polymer concentration (Wiltzius et d., 1984) [Reprinted with permission from: P.Wiltzius, 
H.R.Haller, D.S.Cannel1, D.W.Schaefer. Phys. Rev. Lett. 53 (1984) 834-837. Copyright @ 1984 by the 
American Physical Society] 

As Schafer et al. (1980) have established, the exponent fi from dynamic measurements 
(Equation 32) 

(59) 
R~ ~ i 5 3 k 0 . 0 2  

somewhat differs from that from the static ones 

Difficulties also arise when one tries to comment on the exponent value 3 in Equation 53, 
that is a little less than the experimental values 3.3.. .3.4 often given in the literature 
(de Gennes, 1979). 

An experimental work (Adam and Delsanti, 1977) presents different dynamic modes of 
polystyrene in a good solvent (benzene) as a diagram qR us c/c* (see Figure 4.17). 

In the dilute solution region (c/c* < l),  a molecular coil serves as a morphological unit 
of the structure L = R, and in the semidilute region (c/c* > 1) L = [. 

The boundary of the mode change individual coil/internal motion modes is defined by 
the condition 

9maxL = 1, (61) 

qmax = R-’ - N - ” .  

so that at c/c* < 1 

(62) 

When c > c’, the screening length [ decreases in accordance with Equation 4.3-63. If 
we include [ x R at c rv c*,  then 

(63) R - C * 4 ( 1 - 3 4  

and 
u/( l - -3”)  
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Figure 4.17. Diagram of the dynamic modes of polymer solution: individual macre 
molecules (1,f 9; pseudogel (L?), and of the internal modes of molecular chains ( 3 )  (Adam 
and Delsanti, 1977) [Reprinted with permission from Macromolecules 10 (1977) 1229-1237. Copyright 
@ 1977 American Chemical Society] 

and when c/c" > 1 

N R-' ( %ax - 

(see the curve qmaxR in Figure 4.17). 
The elastic properties of the solution manifest themselves when 

i.e. when 

where Dr(c )  = M/f (see Equation 3.5-126). 

view of Equation 64, we get 
Substituting the values of D and T, from Equations 23 and 51 into Equation 67 and in 

R-1  ( c / c * ) - 1 . 1 2 5  

R"c/c*)'."c/c*)".'5 9min I 

which predetermines the dashed line in Figure 4.17, and 

Thus, region 2 on the diagram (Figure 4.17) corresponds to the pseudogel mode, and 
region 3 to the internal motion modes where, in particular, Equation 33 is satisfied. 
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Adam and Delsanti (1977) report a study on polystyrene solutions using dynamic light 
scattering in different regions of the diagram (Figure 4.17) with the molecular weight, 
concentration c and scattered light angle q being varied. 

Experimental data were used to determine the dynamic indices ri, p, and y in the power 
functions of the hydrodynamic radius 

RH - M’, (70) 

the diffusion coefficient 

D - 2 ,  

and the relaxation time 

7-1 N 4’. 

To study a dilute solution at qR << 1, a homodyne variant of dynamic light scattering 
with a photon correlation w i ~ s  used (see Equation 2.3-33). The normalized function of 
time correlation of the effective field of the scattered wave had an exponential profile (see 
Equation 3.3-72) and the dependence 

r-l(q) = D(c, M)q2 (73) 

held. 
The diffusion coefficient D(c ,  M) obeys, in its turn, the relationship 

o(c, M )  = Do(M)[1 -I- b ( M ) c ] ,  (74) 

Do(M) = (2.18 0.32) lO-*M-’ cm2/s (75) 

(76) 

Do(M)  being the diffusion coefficient at c + 0, to calculate which a formula 

has been proposed, with 

fi = 0.55 f 0.02. 

For ~ D ( M ) ,  the relationship 

k D ( M )  = Mo.8 (77) 

has been found. 
So, the homology of the hydrodynamic radius 

RH - M’ with fi = 0.55 f 0.02 (78) 

differs from that of the geometrical gyration radius 

R -  M” (79) 
with an experimental value v = 0.6 from the same paper (Adam and Delsanti, 1977). 

71) is also of the exponential form with a direct proportionality 7-l us q2. 
In region 2 of the diagram (Figure 4.17) the dynamic structural factor (see Equation 3.3- 
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For the diffusion coefficient, the relationship 

has been obtained with /3 = 0.6750.02, which is different from the theoretical expectations 
according to Equation 23. However, the most important conclusion that Dr does not 
depend on the molecular weight in the pseudogel mode is confirmed experimentally for 
three samples with M = 1.27.  lo6, 3 .8 .  lo6, and 8 . 4 .  lo6. 

One blob contains 

segments, or (with allowance for Equation 4.3-63) 

Equations 22 and 80 taken together imply 

[ N c-' p = 0.67 f 0.02. (83) 

c N lV( t ) ' -3" ,  (84) 

r" N([)(3"-')00. (85 )  

( 3 ~  - l)p = 0.536 f 0.016 (86) 

If one substitute c from Equation 82 into Equation 83 

one obtains 

If the experimental value /3 = 0.67 is taken into account, then 

in conformity with a = 0.55 f 0.02 from Equation 78. 
in semidilute solutions and 

the hydrodynamic radius RH in dilute ones have the same homology in reference to the 
contour length. 

Finally, at qR >> 4 (region 3 in Figure 4.17) for two high-molecular samples ( M  = 24.106 
and 8 . 4 .  lo6) while varying the scattering angle ( q )  and concentration c,  the dependence 
of the relaxation time of the internal motion mode 

This comparison shows that the dynamic screening length 

T - l ( q )  N q' with = 2.85 f 0.05 (87) 

and no dependence on molecular weight has been established, which is in agreement with 
the scaling (Equation 33). 

The dynamic mode in the 0 solvent proved to be much more complicated in compar- 
ison with the dynamic behaviour of macromolecules in a good solvent (Brochard and 
de Gennes, 1977) due to the fact that in the 0 solvent, macromolecules get knottily with 
a high probability (Vologodsky et al., 1974; K.Klenin, 1988; K.Klenin et al., 1988), which 
leads to a more complex behaviour in dynamics. 

As measurements of the self-diffusion coefficient D2 is of specific character, interpreta- 
tion of such measurements causes certain difficulties. 
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Figure 3.41 demonstrates the exponent in the concentration dependence of Dz to be 
N -1.5, which is different from -1.75 as in Equation 52; however, this difference seems 
not to be so significant in view of the essential novelty of the theoretical approach and 
complexity of experiment. 

Maklakov et al. (1987) and Skirda et al. (1988) give a large body of experimental data 
on measuring the self-diffusion coefficient Dz of polystyrene, PEO, PDMS, and dextrane in 
different solvents within wide ranges of molecular weight, polymer volume concentration 
p, and temperature using NMR with an impulse gradient of magnetic field. They place 
emphasis on that the method measures the local mobility of macromolecular chains and 
carry out an empirical renormalization of Dz(cp) using the correlation times rC(cp) of 
segment small-scale motion and the relationship 

where D:(cp) is the self-diffusion coefficient normalized to the local mobility 

The values of ~ ~ ( c p )  were determined from independent measurements of the nuclear 
magnetic relaxation times TI and T z .  In most cases, the direct proportionality 7’1, Tz N T;’ 

applies. 
Further, employing the method of successive approximations, the authors find the uni- 

versal curve 

where Dz(0)  = limp+.o Dz(cp), @ is a certain threshold concentration depending on molec- 
ular weight. 

To obtain the molecular dependence @ ( M ) ,  the expressions for the chain reptation 
motion models (Equations 51-53) 

D z ( M )  N M - 2  (90) 

and 

f (;) (;)-3 

are used for large enough concentrations, where the excluded volume is screened. 
In the 0 solutions, 9 is interpreted just as the concentration of coil overlap 

@ = cp*(M) N MIh?, (92) 

but, in case of good solvents, @ is found from the condition of the function (Equation 89) 
being universal a priori with allowance for Equations 90, 54, and 91: 

(93) @ ( M )  M-(z-w3. 
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As a result, the plot of the universal function f(p/@) as 

has been obtained on a large body of experimental points concerning different polymers, 
solvents, and temperatures. The asymptotics of the function at high concentrations cor- 
responds to 

(;)-3' (95) 

Having noted an uncertainity in the physical meaning of the threshold concentration @, 
the authors, nevertheless, propose to treat it as a certain dynamic critical concentration 
defining changes in the macromolecular dynamic properties subject to 'p. 

Skirda et al. (1988) draw attention to the absence of any no-matter-how-extended con- 
centration area where f (cp/@) would be approximated by a power function with the ex- 
ponent -1.75 expected in accordance with the reptation model within p* < 'p < cp** 
(see Equation 52). In their opinion, the reason is in employing the static characteristics 
of macromolecules to describe the dynamic properties of polymer chains in reptation 
theory (de Gennes, 1976a, 1979). This is unlikely to be correct. It is a different matter 
that V = u appears in a particular case. 

Moreover, in deriving Equation 93, it is the results of reptation theory that have been 
used by the authors, in particular, Equations 90 and 91. 

Apparently, to interpret correctly the experimental data of Skirda et al. (1988) , no 
rejection of reptation theory is required but just some modification or updating. The 
more so that, except Equation 95, the molecular dependence D z ( M )  for high molecular 
weights satisfies the model of reptation motion (see Equation 90). 

To clarify the dependence of D2 on molecular weight, Equation 88 is rewritten as 

where f ('p/@) is approximated by a power function (cp/@)-" with a = 3 over the region of 
large 'p/@ values and a -+ 0 when cp/@ + 0. In view of Equations 54 and 93, Equation 96 
implies 

Di( 'p ,M)  - M-(3c+"(2-fi))/3 (97) 

Due to @ depending on molecular weight, every concentration has its own molecular 
Hence (see weight, for which the values of cp/@ fall within the region where a = 3. 

Equation 97), D2 - M-2.  
Indeed, the plot 

lg D: + comt US Ig(M,,/MKD) (98) 

at high molecular weights is a straight line with the slope -2. In Equation 98, A4K-D is 
the critical molecular weight corresponding to the intersection of the lines (Equation 98) 
with the slopes -2 and -1. 
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Thus, the comprehensive cycle of investigations considered can be interpreted in terms 
of the reptation motion model for polymer chains. The large scale and systematic char- 
acter of these investigations must play an important part in the final elucidation of the 
dynamic properties of polymer systems. 

4.5.3. Critical phenomena 
Now let us discuss the region of critical phenomena and dynamic scaling. 
The most general theory of the dynamic properties in critical phenomena (see subsec- 

tions 2.3.5 and 2.4.4) leads to scaling plots for polymer systems as well. 
According to the modified (Lo and Kawasaki, 1972) theory of connected modes (Kawa- 

saki, 1966, 1970ab; Kadanoff and Swift, 1968; Kawasaki and Lo, 1972; Lo and Kawasaki, 
1972; Swinney, 1974; Anisimov, 1987) the equality 

holds, where H ( q i )  is Kawasaki's modified universal function (Lo and Kawasaki, 1972), 
and the right-hand side is the dimensionless rate of the critical fluctuation fall (see F4ua- 
tion 2.4-74). 

The complexity of comparison of Equation 99 with experiment is due to the fact that 
the dynamic light scattering technique gives the value consisting of rC proper and the 
background value r b .  So, a special means for extracting rc from experimental r data is 
required. To do this, Lao et al. (1975) acted as follows. The scattered light intensity of 
polystyrene solutions in cyclohexane in the critical region was approximated by 

where A0 involves A i 4 ,  (anlac)', k, etc., 

( = io€-? (101) 

Equation 100 corresponds to the function of the concentration fluctuation correlations' 

A value q = 0.05 was chosen for the Fisher index 9. 

the slope 7 = 1.25 f 0.0_3. 

the straight line 

A plot lim+O(I/T)-' us e in the double logarithmic scale yielded a straight line with 

Since calculation of 6 by Equations 100 and 101 is sensitive to secondary scattering, 

lg t  us lge 

was corrected in accordance with the scaling relationship Y = 7(2 - 'I) and '1 = 0.64 f 0.02 
was obtained. 

~~ 

20ther analytical expressions of the correlation function (Zubkov and Fbmanov, 1988) are applied to 
describe the critical opalescence in solutions a8 well 
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In the formula for the Rayleigh central line width (Equation 2.3-162) 

the Onsager coefficient L9 was approximated as 

L9 = Lb + IJc,q, 

xq = xb + X c , 9 ,  

(104) 

(105) 

and, for the generalized susmptibility, 

where ‘b’ denotes the background value in the absence of critical anomalies, and ‘c’ denotes 
a value in the critical region. 

Further, as X ,  >> XI,, 

was accepted, where Xc,q is given with the Ornstein-Zernike form of the correlation func- 
tion, B is a constant. 

111 binary liquid mixtures, the Onsager kinetic coefficient Lq corresponds to the diffusion 
coefficient D, and the generalized susceptibility is expressed as 

with A to denote the chemical potential differenceof two components (see subsection 2.4.3). 
It follows from Fguations 103 and 106 that 

6nijrC 67rijI’ 674 
-- - -_ -BE’”( 1 + 9“). 
kTg3 kT@ kTg 

Figure 4.18 illustrates this dependence with respect to q i  for polystyrene solutions in 
cyclohexane (Lao et al., 1975)’ B = 7.48.  

The viscosity 6 was measured with a capillary viscosimeter. The c~rrelat~ion radius 
of the concentration fluctuations was determined from the radiation diagram (Equa- 
tions 100-102). 

Equation 108 corresponds to the theoretical expression of the connected mode theory: 

Thus, in the critical opalescence region, polymer solutions show the same properties as 
low-molecular solutions provided that the critical indices are the same as well (cf. data 
for the low-molecular-weight compounds (Zubkov and Romanov, 1988)). 

At ( -+ 00, D + 0 near the spinodal (as for low-molecular-weight solutions - Equa- 
tion 2.4-73 and in full accordance with scaling plots - Equation 22), which reflects the 
law of thermodynamic retardation (cf. Equation 3.7-81). 

Some specific features of the system P+LMWL manifest themselves in a scaling ex- 
pression for ( like that of de Gennes (1979) 

cm2/s. 

H(9t)l(903. 
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Figure 4.18. Dependence of 6mjI',/kTq3 us q for polystyrene solutions in cyclohexane 
(see Equation 4.5-108). M, = 1.96 lo5, M,,,/M, < 1.02 (Lao et al., 1975) [Reprinted with 
permission from: &.H.Lao, B.Chu, N.Kuwahara. J. Chem. Phys. 62 (1975) 2039-2044. Copyright @ 
1975 American Institute of Physics] 

where v is the index close to 2/3, i.e. to the universal value; at T = 8, the formula gives 

E = Rs, (110) 

which is in agreement with the data on critical opalescence presented in subsection 3.3.1 
and section 4.2. 

Chapter summary 

1. According to the principle of universality, the system's characteristic properties 
are defined by two parameters, namely, the space dimension d and the order parameter 
dimension n. 

Systems, having equal d and n values, are included in the same class of universality, 
with their properties in the critical state being analogous, 

The properties of molecular chain conformations or of random self-avoiding walks of 
linked segments belong to the class of universality with d = 3 and n = 0. It was first 
established by de Gennes, who brought the parameters of the magnetic problem into 
agreement with those of the polymer problem: 

[ ~ m  and E N N - '  

He has obtained the index value in the function ( h k )  N N2", having put n = 0 into 
the equation for the critical index of the magnetic correlation length [, the latter having 
been calculated by Wilson with the method of renormalization group transformations 
for a general-type system with arbitrary values_of d and n. We note in passing that 
de Gennes established the Green function G(&,k)  at n = 0 to be a representation of 
r N ( z )  in the Laplace transform, where r N ( z )  is the number of self-avoiding walks of N 
steps connecting the sites 0 and h' on the lattice, Hence, for a polymer chain with the 
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length L,  the probability P ( i , L )  for the end-bend distance to be h’ can be found by 
means of the inverse Laplace transform applied to the Green function at YZ = 0. Knowing 
the problem solution, in fact, Emery has transformed the partition function Z,, of a more 
general system with a finite n in such a way as to obtain an explicit relationship between 
2, and n,  that opened up the possibility to write Z,=, for n = 0. 

The analytical solution of the problem has lead to the fact that at n = 0, the Laplace 
transform of the Green function G:j is the probability to find the end of a polymer chain 
with t h e  length L = t (where t is time in the problem of the general type) in the point <, if the first segment is located at point <. As a matter of fact, it is in agreement with 
the formulation of the continuous-chain model by Edwards. 

These theoretical achievements opened up extraordinarily broad ways for the theoretical 
study of coil conformations, since statistical physics of general-type systems has been 
developed very well as applied to different thermodynamic functions. 

The results of these investigations can be extended to polymer systems with the simple 
substitution n = 0 (or the extrapolation n -+ 0). For example, in such a way Stephen 
analyzed the coil conformation at the 6 point, using the solution for general-type systems 
at the tricritical point. 

It was de Gennes who first pointed to the correspondence between the 6 point of t,he 
polymer problem and the tricritical state of general-type systems. 

2. The establishment of a glossary between the magnetic and polymer characteristic 
values for a wide range of polymer concentrations in the system P+LMWL (Equations 4.2- 
67. . .70) iising both the Lagrangian formalism of field theory a.nd the general relationships 
of statistical physics was the next great achievement of polymer theory. 

Using this glossary and the scaling rules established for general-type systems, a group 
of French scientists (Saclay) advanced a state diagram for the system P+LMWL. 

Distinctly from the mean field approximation in the Flory-Huggins theory (see Chap- 
ter 3), the lines of crossover (i.e. the lines representing the change of the conformational 
mode of macromolecules) are readily plotted on this diagram in the single-phase region 
(solution). 

The diagram is in good agreement with experimental results. 
The fruitfulness of the principle of universality was shown by Stepanow, who extended 

Flory-Huggins’ thermodynamic potential to the Landau-Ginzburg-Wilson Hamiltonian, 
which takes into account the correlations of the order parameter fluctuations. 

Having been performed over this Hamiltonian, the standard procedures lead to the 
critical index of the order parameter amplitude, that shows the binodal form near the 
critical point which is in agreement with experimental results. 
3. Application of the principle of corresponding states and scaling considerations for 

the description of the critical opalescence phenomenon (even within the mean field ap- 
proximation) led de Gennes to  a new relationship between the Debye length 1 and the 
molecular weight, which is in better agreement with experimental data than Debye’s initial 
formula. 

4. The ideas of scaling have also proved to be correct in studying the dynamic char- 
acteristics of macromoleailes in soliition. In particular, a dynamic state diagram was 
constructed in the coordinates q us 1/[ (Figure 4.14). Three modes of dynamic proper- 
ties can be observed. 
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In region A,  where qR < 1 ( R  < A) and frequencies w are rather low but larger than 
T;' (T, is the relaxation time for the full change of chain conformation), the solution 
behaves as a gel and is characterized by the longitudinal modulus M .  

In region B, where [ < 2 a / q  < R ,  the individual properties of coil manifest them- 
selves. It turns out that the hydrodynamic interactions have their own screening length 
( matching one for space interactions ( N [. 

In region C ,  where q[ >> 1, the internal modes of polymer chain show themselves. 
De Gennes has emphasized that one of the two different diffusion coefficients (of in- 

terdiffusion D and of self-diffusion Dz) must be used with the choice depending on the 
experiment performance. 

The former coefficient is measured in experiments with a polymer concentration grad- 
ent. The theoretical consideration of the process of substance redistribution is based on 
the laws of unequilibrium thermodynamics. The latter coefficient characterizes the moves 
of a single macromolecule (highlighted or labelled) if the experiment allows one to follow 
it. 

De Gennes has proposed and developed a mechanism of reptational motion of a macro- 
molecule in a self-like medium, which is in good agreement with experimental results. 

5. The most general theory of dynamic properties in the critical region, namely, the 
coupled modes theory, leads to scaling plots, that are justified by experimental data. 

0. The best agreement between the results of scaling plots and experimental values 
is found in the case of high-molecular polymer samples, that reflects the premises of the 
theory: M + 00. 



Chapter 5 

Methods for Renormalization 
Transformations 

Group 

As was repeatedly emphasized, away from the phase separation region (Le. at high tem- 
peratures for systems with a UCST), the intersegment interaction in a polymer chain 
reduces to the existence of segment excluded volume, which manifests itself by swelling 
(expansion) of polymer coils. These interactions also lead to a correlation of the segment 
density fluctuations as it occurs in general-type systems near the critical point. 

To study the properties of systems near the critical point, methods of the renormal- 
ization group approach have been developed (see section 2.5); therefore, the development 
of polymer theory has led to similar methods. 

The renormalization group approach features extraction, from a microscopic model 
of a system, of relationships for experimentally measured, macroscopic, thermodynamic 
(in the long-wavelength limit) quantities, whose principal property is their independence 
from any fine details of the microscopic pattern of the system (Oono et al., 1981). If a 
system (eg. a macromolecular chain) is rather large, then the macroscopic relationships 
among experimentally observed qiiantities must be invariant at any coarse graining trans- 
formation (eg. Kadanoff’s transformation, see: Kadanoff, 1966; Kadanoff et al., 1967, and 
section 2.5) which fuzzifies the finest details of a macroscopic model. Such an approach 
leads to a renormalization group transformation of the Wilson type (Wilson, 1972, 1979; 
Wilson and Kogut, 1974; Oono and Freed, 1981a). 

De Gennes (1979) was the first to apply the idea of coarse graining transformations 
in polymer theory: he grouped chain segments into blobs. Then, this approach was 
developed by Gabay and Garel (1978) but it could not provide a high accuracy. 

Oono, Ohta, and Freed have worked out a renormalization method of configurational 
space of polymer chains in several versions. 

Section 5.1 presents renormalization of the Wilson type following Oono and Freed 
(1981a), and renormalization by Gell-Mann and Low following Oono et al. (1981). In 
section 5.1, polymer chain renormalization in the momentum space of Kholodenko and 
Freed (1983) will be discussed. 
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5.1. Renormalization of the conformational space of 
polymer chains 

5.1.1. Renormalization of the Wilson type 
If a polymer chain model is microscopic, it must reflect the atomic discrete structure 

of a chain, i.e. there must exist a fundamental scale of length to meet this discreteness. 
For the model of continuous chains (see subsection 3.1.1), this gives rise to the necessity 
to cut-off a length a, the minimal length along the chain, within which no integration 
is taken when the probabilities of different chain conformations are calculated. Such a 
cut-off is also necessary from a mathematical angle to obtain mathematically well-defined 
quantities. On the other hand, the introduction of the cut-off immediately leads to the 
need of the renormalization group approximation, as the value of a relates to the finest 
details of a model. 

Let N denote the number of segments, of length 1 each, v2 be the excluded volume 
parameter, and a be the contour length cut-off. 

The mean-square end-to-end distance (h2)  is a function of N ,  I ,  and vz for a system 
with the cut-of€ a. 

Simple analysis of dimensions shows that this functional dependence in 3 0  space has 
the transformational property 

(h') = b2S2f ( ; , ~ b l - ~ ,  "> b2 , 

b being a positive real number, and f denotes a certain functional relationship with its 
properties being of interest. The quantity b always exceeds 1 and, in the most important 
case, b N N1I2. 

Thus, transformational property 1 relates the source system to the cut-off a in a scales 
stipulated, remains the same: 

Given N and 62 are chosen properly, the function f in Equation 2 will remain the same 
as in Equation 1. 

Figure 5.1. Scaling transformation of a molecu- 
lar chain: S, uniformly reduces all the chain + 
transfer from A to B. Kadanoff's transforma- 
tion IC, smooths the fine structural details, bring- 
ing the coil to the form C. The statistical form 
C may be similar to the form A' which is part 
of the source chain A (Oono and Freed, 1981a) 
[Reprinted with permission from: Y.Oono, K.F.Freed. J. 
Chem. Phys. 75 (1981) 993-1008. Copyright @ 1981 
American Institute of Physics] 

... "A . -%.& 
A' 

A R 
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The idea of the cut-off preservation is illustrated in Figure 5.1, where the form C follows 
the fragment A’ of the source chain structure A. Therein lies the fractal principle of a 
polymer chain. 

Generally, the relationships between N and N ,  02 and V z  are very sophisticated; how- 
ever, be N rather large, b can be chosen large enough to obtain a simple asymptotic 
relationship bztween the quantities with and without a tilde. 

For large N and 6 2  > 0, 6 2  turns out to acquire a constant value insensitive to 6,  
i.e. 62 approaches the fixed point v; (see section 2.5) and, besides, N - Nfb’l”. Then, 
Equation 2 reduces to 

This is the fundamental scaling law followed by 

(hZ) = PNz”j(v;, a ) ,  (4) 

if b’/” - N is chosen. 
Let us discuss another macroscopic variable Q depending on the set of macroscopic 

quantities MI, Mz, .  . . (such as an external force, the diameter of the embracing pipe, etc.) 
and on the microscopic quantities v2, a ,  etc. 

Like Equation 3, the introduction of scaling transformation and subsequent enlargement 
of the structural elements, with the cut-off value to be preserved, lead to a scaling law 

which for b N N” reduces to 

Q = N”‘~Q(v;, M I ,  Mz, . . . , a ) .  

As a and v2f are fixed, they can be absorbed in the definition of fQ. 
Equations 4 and 6 can formally be combined to eliminate N :  

This is the relationship between the macroscopic (experimentally measured) variables 
and the basic equation of de Gennes’ (1979) scaling approximation. 

Thus, the stage of enlargement of structural elements, corresponding to the Equa- 
tion l--+Equation 2 conversion, is due to the necessity of the existence of the cut-off 
length and to selection of macroscopic relationships insensitive to this cut-off. 

In the model of a continuous chain (see subsection 3.1.1), Kadanoff’s enlargement of 
structural elements is provided by integration over the small loops of the contour length. 

On developing this concept, Oono and Freed obtained unambiguous correspondence 
between the renormalization procedure of the conformational space of a polymer chain 
and the characteristic values in critical phenomena within Wilson-Fisher’s theoretical field 
approach (some differences do, certainly, exist and will be discussed at the end of this 
subsection). 

As an example of application of this procedure, the main terms in the E expansion of 
the index v are calculated using the simplest model of the short-range repulsion potential 
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(the 6 function). This potential quite satisfactorily describes the behaviour of a macro- 
molecular coil in the maximum good solvent but, naturally, cannot be responsible for this 
behaviour in the 0 state. 

To discuss the coil properties at the 0 point, a more realistic interaction potential was 
applied, including both repulsion and attraction (Lennard-Johns' potential, Figure 1.40a) 
and the contribution of three(and more)-body interactions (the interactions on simulta- 
neous contacts of three and more points along the polymer chain) (Freed, 1972). 

In the model of a continuous chain of length N, the microscopic state of the chain 
is described by the conformation E'(.) (0 5 T 5 N), with E'(.) denoting the spatial 
location of the point at a dimensionless distance T from the chain's end (Freed, 1972). 
Moreover, E'(.) = ( d / l ) ' / ' ? ( ~ )  is accepted, where I is an analogue of Kuhn's segment. This 
is introduced to simplify the Hamiltonian of the coil. 

All the detailed information concerning the statistical microscopic properties of such a 
polymer chain with its ends fixed at the points 0 and la in d-dimensional space is contained 
in the distribution function 

\ - -  I qo) = 0 

where Wa[q denotes the statistical weight of the conformation Z'(T) when there is no 
intersegment interaction (the "unperturbed" statistical weight), Vn[d is the interaction 
energy of the conformation c'; the integral sign denotes sum2ation over all the possible 
conformations satisfying the conditions 3 0 )  = 0 and q N )  = h. 

If the excluded volume interactions are defined by the mean-force pair potential p acting 
between two points on the chain, then V,[d is 

The subscripts by W, and V ,  mean the explicit dependence of the excluded volume 
interaction energy on the contour length cut-off, the condition IT  - 7'1 > a stands for the 
elimination of the self-interaction inside the same segment. 

To explain the renormalization transformation of a polymer chain, the simplest form of 
pair potential (see Equation 3.1-94) is accepted 

(P(r) = kTv26(4.), (10) 
where v2 is the excluded volume parameter. 

a non-perturbed Gaussian chain is (see Equation 3.1-205) 
Thus, the simplest model for the distribution function with excluded volume and with 

G(L, N )  = 
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where 4r) = dZ(r)/d.r. 
This distribution function comprises many details not reflected in experimentally mea- 

sured quantities. For example, the form of Equation 4 is not affected by whether the 
cut-off has the length a or 2a. 

Further, let us consider the problem of developing a method for extracting the cor- 
responding macroscopic relationships (quantities) from Equation 11. They result from 
calculation of mean values on distribution function 11, including integration over r and 
.‘(.)a 

The replacement of variables 

transforms Equation 11 to another one, identical in form and with variables I f ,  N’, a’, t ~ ; ,  

and h ’ providing for scaling transformations 
- 

s being a cert,ain positive scaling quantity, E = 4 - d, 7 ,  v are certain real constants. Let 
us denote the scaling transformation (Equations 12-13) by S,. 

Consider a certain macroscopic quantity Q explicitly depending on N, vz, and a: 

If the scaling transformation S, is applied to the quantity Q (a thermodynamic mean 
value), then an invariant relationship of the form results: 

where D is a real constant. 
Equation 2 for (h2) is a specific case of Equation 15. Further, we assume the long- 

wave properties of Q to be invariant in enlarging, the structural elements (Kadanoff’s 
transformation) K,. The transformation K, is chosen so that to  set K,&a equal to a, to 
restore the cut-off of the source chain (see Figure 5.1). 

Thus, the condition of long-wave macroscopic detection of Q implies the invariance of 
Q after the scaling and Kadanoff’s transformations of structural elements 

Q = s”D~~(K, sd (N- ’ , ,KFC,S , ( v2 ) ,a ) .  (16) 

Define R, E K,S, as a renormalization transformation. Equation 16 then takes 
the form 

Q = s””fQ(%(~- ’ ) ,  %(%), a)-  (17) 

It has to be specially noted that the set of S, for s real numbers is an Abelian group while 
that of ICa for s non-negative numbers is a commutative semigroup. S, and IC, commute; 
therefore, the set of R, for s non-negative numbers is also a commutative semigroup called 
a renormalization transformation group (renormalization group) . 
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Discuss (h2)  from which D = 2 as Q (Oono and Freed, 1981a). Renormalization 
transformation 17 gives 

(h2)  = ~ Z Y f ( h ~ ) ( ~ ~ ( ~ - ' ) , ~ s ( ~ 2 ) , ~ ) .  ( 18) 

The renormalization transformation R, converts the parameters N-' and v2 to R,( N-')  
When s is continuously varying in d(< 4)-dimensional space, and Rd(u2)  (Figure 5.2). 

N-1 Figure 5.2. Renormalization transformation 
R,(N-') and 72,(w2) (Oono and Freed, 1981a) 
[Reprinted with permission from: Y.Oono, K.F.Freed. J. 
Chem. Phys. 75 (1981) 993-1008. Copyright @ 1981 
American Institute of Physics] 

U S 'u2 

R, converts N-' and vz to points which move along the flux line in the (N-', w2) plane. 
U and S are fixed points for 72,. U is an unstable (fixed) point, as near it the points 
are transformed by R, at distances far away from U .  S is a saddle point: the flux 
lines approach it along one direction but recede from it along the other one. In d(> 4)- 
dimensional space, S and U are interchanged, and wi = 0, i.e. there arc no excluded 
volume interactions. 

For a sufficiently long chain, very large values of s can be taken so that the point 
(Rs(N-'),7Zs(v2)) will be in the region C classified aa critical due to its closeness to the 
saddle point S. 

As a result of the transformations, the point will be located in the region C regardless 
of the initial values of v2 and N-' ,  which predetermines the universality of the excluded 
volume problem: the transformation R, converts all the chains into the macroscopically 
equivalent ones in the region C. Near the fixed point, 72, can be assumed to be linearized, 
namely, 
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a being a function of v chosen in Equation 13. 
restriction on v, so that in the region C, Equation 18 should reduce to 

In turn, the choice a = 1 implies a 

A further choice of s of the order of N yields an asymptotic law 

(h’) - N2”.  (21) 

The value of v does not depend on vz(> 0); therein lies the property of universality. 
In this case, Kadanoff’s transformation Ks is proceeded as follows. 
1. The interactions within a small loop, where the interaction points are at a distance 

(along the contour length) shorter than a ,  are included into the redefinition of l 2  and N 
in the scaled chain. 

Therefore, the scaling value 1”N’, i.e. .s-’”b2N (see Equation 13) is transformed by K, 
to 

R , ( l Z N )  K , ( S - ~ ~ ~ ~ N ) .  (22) 

As the transformation S, is carried out first, then, in the scaled system, the interac- 
tions can be observed over contour lengths longer than the scaling cut-off as-(’-“)u (see 
Equation 13) but shorter than the initial cut-off a .  

2. If two pairs of interactions in the scaled system are separated by a contour length 
shorter than Q, these interactions are combined into a new effective binary interaction 
parameter 

R,(vz) 3 xs  (s(‘-”’v?12) (23) 

as well as higher-order interactions (Figure 5.3). 
The scaling transformation S, substantially reduces all the chain (see Figure 5.1). This 

is equivalent to looking at the chain from a longer distance when small details are in- 
discernible and the neighbouring interactions are seen as one effective interaction (see 
Figure 5.3). 

Partition function 11 can be expanded as a series in powers of v2 (cf. Equation 3.1-126) 

G ( L , N )  = Go(&N)-vz  JdTo J d r ,  Jdr‘,Go(?O,ro)Go(O,~1 - ~ o ) G O ( h - ? & N - ~ 1 ) ( 2 4 )  

+v,Z J d7o J ~ 6 7 1  J d72 J d ~ 3  J d ~ o  J d~ GO(G, 7 0 )  ~ O ( O ,  71 - TO)GO(?I - G ,  72 - 7 1 )  

+ 

a<r0+a<q<N 

3a<r0+3a<71 +ZaSq+a<r3 <N 
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J3 v2 Q 
N 

Figure 5.3. Re- 
duction of com- 
posite twwbody 
transformations 
vg to simple 
two-body ones 
v2. The small )LQ loops include the 
contour lengths 
less than a (in 
the scaling units) 

%(4 (Oono and Freed, 
1981a) [Reprinted 
with permission 
from: Y.Oono, 
K.F.Reed. J. 
Chem. Phys. 75 
(1981) 993-1008. 
Copyright @ 1981 

American Institute 
of Physics] 

I 

Gob-2 - 

Figure 5.4. Elements for constructing diagrams (Oono and Freed, 1981a) [Reprinted with 
permission from: Y.Oono, K.F.Freed. J .  Chem. Phys. 75 (1981) 993-1008. Copyright @ 1981 American 
Institute of Physics] 

where the unperturbed distribution function in d-dimensional space is 

In terms of diagram elements shown in Figure 5.4, series 24 is written in the diagram- 

The interaction points between solid Go and dotted v2 lines are termed interaction 
matic form (Figure 5.5). 

vertices and integration is to be performed over all the interaction vertices r‘and T. 
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A B C 

Figure 5.5. Diagrammatic representation of the perturbation series G(& N )  (Oono and 
Freed, 1981a) [Reprinted with permission from: Y.Oono, K.F.Freed. J .  Chem. Phys. 75 (1981) 993- 
1008. Copyright @ 1981 American Institute of Physics] 

The points, where the straight line Go contact the dashed line of interaction v2, are 
called interaction vertices . The diagrams shown in Figure 5.5 imply integration over 
all the interaction vertices r' and T .  

To represent a renormalization or scaling transformation in the diagrammatic form, the 
following definitions are introduced. 

Def. 1 A diagram is called connected if each of its part is connected to other parts, at 
least, by one polymer line or interaction line. 

Def. 2 A subchain is a part of a polymer chain between some neighbouring interaction 
points along the chain. 

Def. 3 An irreducible diagram (I-diagram) is the one which cannot be divided into two 
separate noninteracting pieces by cutting any subchain. 

Def. 4 A short subchain is the one whose contour length is shorter than a (or any 
certain prescribed length). 

Def. 5 A locally-interacting irreducible diagram (LI-diagram) is an I-diagram, each 
subchain of which is short. 

Def. 6 An effective r-body interacting diagram (an E-r diagram) is a connected 
diagram which 

1. has the properties of an I-diagram; 
2. contains only short subchains; 
3. if all the interaction lines are cut, then it is separated into exactly r pieces. 

Def. 7 The successive connection of two diagrams means a connection of two parts of 
diagrams with only a polymer line. 

Kadanoff's transformation means that the coarse-grained unperturbed distribution func- 
tion Go is 

Go = Go + LI-diagrams + successively connected LI-diagrams; (26 )  

the coarse-grained two-body interaction v2 is 

2)2 = v2 + E - 2 diagrams. 
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A coarse-graining procedure also produces "buildup" effective r-body ( r  > 2) interac- 
tions defined by 

5,  = E - r diagrams ( r  2 3). (28) 

This situation corresponds exactly to Wilson-Fisher's theoretical field E expansion (Wil- 
son and Kogut, 1974). 

Let us discuss the diagrammatic representation of 12,. The transformation S, converts 
Equation 24 to 

The second term in the right-hand side is divided into two parts, subject to whether 
the distance between the interacting points along the contour length is less or larger than 
a: 

x Go(h" - F,, N' - 7;). 

Due to property 1 of Kadanoff's transformation, the contribution of the first inte- 
gral must be included into renormalization of N and 1. Hence, the renormalized "non- 
perturbedn distribution function G o l  in the first order of 712, is defined by including the 
excluded volume interactions on small loops into Go: 

If small loops (short subchains) are represented by a wavy line, then Equation 31 and 
the higher-order terms can be expressed by means of the diagrams shown in Figure 5.6. 

There are two second-order interaction pairs; both can be separated as in Equation 30. 
These second-order terms (A-C in Figure 5.5) can be classified under 5 categories/classes 
(V>Go, Go, V:, V3, and e) as shown in Figure 5.7. The terms GO already comprise all the 
contributions with integration over all the interactions with two interaction points within 
short subchains. The second-order contributions of this type are shown in Figure 5.6 
and presented in Figure 5.7 as the G o  terms. The second-order terms V," constitute 
contributions where all the four interaction points are at a distance (along the contour 
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Figure 5.6. Diagrammatic representation of the perturbation series of the renormalized 
unperturbed distribution function G o :  notched line is Go, wavy lines are short subchains 
(Oono and Freed, 1981a) [Reprinted with permission from: Y.Oono, K.F.Freed. J. Chem. Phys. 75 
(1981) 993-1008. Copyright @ 1981 American Institute of Physics] 

v> G o  v 
e-. a + 
Go 

Figure 5.7. Classification of semnd-order diagrams. The contour length of straight lines 
Go between the interaction vertices is always more than the truncation a while, for wavy 
lines, 60 is less than the truncation a in scaling units (Oono and Freed, 1981a) [Reprinted 
with permission from: Y.Oono, K.F.Freed. J. Chem. Phys. 75 (1981) 993-1008. Copyright @ 1981 
American Institute of Physics] 

length) longer than a. The second-order terms V>eo contain integration over one small 
loop and are the first-order terms in the perturbation serim in the scaled interaction 
parameter. The V, terms denote the contribution of the three-body interactions into the 
two-body ones upon scaling. 

Property 2 of Kadanoff's transformation requires including additional terms p as a part 
of new scaled interactions. These terms have interaction points from different interaction 
lines with the contour length less than u.  An intuitive explanation of the terms p results 
from consideration of polymer conformations corresponding to the diagrams shown in 
Figures 5.8 and 5.9 (see section 2.6). The latter one compares different types of 
diagrams used in polymer theory and the theoretical field approach. Higher orders are 
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1 2 3 4 3 4 5 6 1 6 7 5 7 2  

a b 

Figure 5.8. Correspondence between chain conformation in actual space (Q) and diagrams 
(6) (Oono and Freed, 1981a) [Reprinted with permission from: Y.Oono, K.F.Freed. J .  Chem. Phys. 
75 (1981) 993-1008. Copyright @ 1981 American Institute of Physics] 

represented similarly. 
The renormalized terms of the interaction R,(vz) are obtained from the row of diagrams 

(see Equation 27), which must have only two interaction points if all the wavy lines 
contract into a point (Figure 5.10). In this scaling procedure of structural elements Go 
and Rs(v2), the new renormalized series of perturbation takes the form 

where Rd(v2)  collects all the contributions in the scaled interaction row which contains one 
interaction between any points separated (along the contour length) by a distance longer 
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a 

Q 

@ c 

Figure 5.9. Bringing different types of diagrams into agreement (Oono and Freed, 1981a) 
[Reprinted with permission from: Y.Oono, K.F.Freed. J .  Chem. Phys. 75 (1981) 993-1008. Copyright 
@ 1981 American hstitute of Physics]: Oono and Freed (a ) ,  Yamakawa (1971) ( b ) ;  actual con- 
formations of molecular chains (c); ‘p4 field diagrams contributing to the vertex function 
r4 (4 

Figure 5.10. Diagrammatic series RR,(v2). Wavy lines denote summation over all the 
local conformations of small loops (Oono and Freed, 1981a) [Reprinted with permission from: 
Y.Oono, K.F.Freed. J. Chem. Phys. 75 (1981) 993-1008. Copyright @ 1981 American Institute of 
Physics] 



588 5.1. Renormalization of the conformational space 

than a in the scaled system. For example, the feu! terms in Figure 5.10, beginning with 
diagram A, originate from the four contributions V in Figure 5.7 (see also Figure 5.9). 

Thus, with the aid of the renormalized distribution function G o  (see Figure 5.6) and 
the renormalization parameter RS(vz) (see Figure 5.10), the perturbation series (see Fig- 
ure 5.5) is representable as the diagrams shown in Figure 5.11. 

X X X X X  

-=-+-+ ... 
Figure 5.11. Diagrammatic representation of the renormalization perturbation row 
through the first order in the renormalization interaction (see Figure 5.10): cross-dashed 
straight line is the unperturbed distribution function (see Figure 5.6), crosses denote the 
“interaction line” R,(vz) (see Figure 5.10) (Oono and Freed, 1981a) [Reprinted with per- 
mission from: Y.Oono, K.F.Freed. .I. Chem. Phys. 75 (1981) 993-1008. Copyright @ 1981 American 
Institute of Physics] 

Further, Oono and Freed (1981a) derive analytical expressions for R,(N-’) and R,(vz) 
in the E = 4 - d order. In calculations, the integrals are taken analytically in 41) space 
(d  = 4): 

a , ( N - ’ )  = s2YN-1 [ 1 - v2 (m;2)22vlns+--.  - 1 , (33) 

These expressions enable the flux lines in Figure 5.1 to be drawn explicitly. In the E 

The fixed point of the interaction parameter v;(# 0) must obey 
order, the constant is equal to zero. 

%(vi) = v;, 

which, in view of Equation 34, yields 

* ?r214& 
v2 = - 

32 ’ 

(35) 

if two expansion terms of s-‘” are taken: a” = 1 + z In a + . 
From Equation 33, the following expression for the fixed point emerges: 

) (37) 
1 (N*)-’ = ( ~ * ) - ‘ s ~ ”  1 - -&vIns + e . .  . 

( 4  

As this equality must be satisfied over all the domain of s, the solutions are (N”)-’ = 0 

Linearization of Equation 33 near the fixed point (N*)- ’  = 0 and reversion of Ins into 
or (N*)-’ = 00; the solution N a  = 0 is trivial and of no interest. 

an exponent (which is correct in the E order) lead to 

(38) R,(N-’) = s2”-CU/4N-1  
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On the other hand, in accordance with the previously chosen identification of v (see 
Equations 19 and 20) in region C (see Figure 5 .2 ) ,  the asymptotic form 

R , ( N - ' )  N 8N-' (39) 

must be satisfied. 
Comparing Equations 38 and 39, we get 2u - E U / ~  = 1 and 

U p  to this point, our discussion has been confined to  the simplest pair potential of 
the Equation 10 type, which is widely used in traditional theories of polymer chains (see 
subsection 3.1.1). Of course, when the attraction component becomes significant, such a 
potential is no longer correct. 

If we apply more realistic potentials, especially, solid-core potential functions (see Fig- 
ure 1.40b), the distribution function G can no longer be expanded into a p-power series, 
as it was proved in the theory of real gas (Croxton, 1974). In this case, it is expanded 
into a Mayer-function series 

The details are given in (Yamakawa, 1971); here is the leading term of this series 

The lowest non-trivial order does not require any change in the diagrammatic repre- 
sentation of the coarse-grained transformation of structural elements. Hence, the above 
analysis remains valid for this case, if only the dashed lines in the diagrams (Figures 5.6 
and 5.10) are considered as f lines. Analysis shows that the scale change 

f'(.") = p + f ( S y  (43) 

keeps the distribution function G(K, N )  invariant after the transformation S,. 

Discuss an important case of a solid-core potential with Mayer's function 

where u is the solid core diameter. 
Owing to a formal similarity between series 42 and 24, the diagrammatic representation 

of KS, in the latter case, is identical to the diagrams shown in Figures 5.6 and 5.10 with 
the dashed lines to be iderpreted as (-f). 
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On executing the calculational &-order routine, we obtain 

Equation 46 provides the fixed point of the solid core diameter u* from the condition 
Rs(a*) = u*: 

The series of G in f includes diagrams with three-body irreducible integrals. For 
instance, the diagram in Figure 5.12a is defined by 

a b C 

Figure 5.12. Parametrization of integration variables in a diagram containing an irre- 
ducible integral (a); the corresponding conformation in actual space with a threebody 
interaction (6); diagrammatic representation (c )  (Oono and Freed, 1981a) meprinted with 
permission from: Y.Oono, K.F.Freed. J. Chem. Phys. 75 (1981) 993-1008. Copyright @ 1981 American 
Institute of Physics] 
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In pcrturbation theory for simple liquids, an irreducible cluster integral (see sec- 
tion 1.8) 

is defined, which is always positive for the usual pair potentials. 
With due account of conformations of actual chains (Figure 5.12b), the interactions, 

contributing to Equation 48, is a threebody one with its diagram of the type that shown 
in Figure 5.12~. 

Thus, the next approximation level makes it necessary to take account of the v3 inter- 
actions as well as the w2 ones. The idea of a coarse-graining procedure of the structural 
elements remains as in the case considered above. The coarse-grained propagator G o  in 
its diagrammatic form is shown in Figure 5.13, and the interaction line is in Figure 5.14. 

Figure 5.13. Diagrammatic perturbation series for the scaling propagator G o  in the pres- 
ence of three-body interactions (Oono and Freed, 1981a) [Reprinted with permission from: 
Y.Oono, K.F.Freed. J. Chem. Phys. 75 (1981) 993-1008. Copyright @ 1981 American Institute of 
Physics] 

The corresponding expressions are derived by almost the same methods as in the case 

Figure 5.14. Diagrammatic representation of the renormalization of ‘u2 in the presence of 
the three-body interactions. The wavy line denotes summation over all the possible local 
conformations of small loops (see Figures 5.6, 5.7, 5.10, etc.) (Oono and Freed, 1981a) 
[Reprinted with permission from: Y.Oono, K.F.Freed. J. Chem. Phys. 75 (1981) 993-1008. Copyright 
@ 1981 American Institute of Physics] 

of the two-body interaction. However, in the case of threebody interactions, the critical 
space dimension becomes d, = 3. The space dimension d, is called critical if it makes 
the parameter P limiting (marginal), i.e. 

S,P - PS”. (50) 

By virtue of d, = 3, the integrals in 3 0  space are evaluated analytically (Oono and 
Freed, 1981a) 

R , ( N - ’ )  = s2”N-’ {l-3(-&)3’2[’u2+4(~)v3]u1’2~u+~.. (51) 
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\ 

( 4 - 4 Y  [v2 + 4v3 (">,, + . . .] , 
2T12 

R S ( V 2 )  = s 

} EL}.-( 

Near the critical point (or in the region C (see Figure 5.2)), v is chosen so that 
R, (N- ' )  N sN-' (see Equation 39, cf. Equations 19, 20, and 39). 

For Equation 51 to lead to asymptotic formula 39, the expression in the square brackets 
in Equation 51 must contain only terms proportional to ( l n ~ ) ~ ,  as Rd( N-') is proportional 
to s. This implies that the coefficient by 8" in the square brackets should vanish near the 
fixed point 

v2 + 4v3 (") 3/2 = 0. 
2TP (54) 

This condition automatically gives (see Equation 52) 

i.e. the phenomenological two-body interaction asymptotically vanishes. The simulta- 
neous tending to zero of the interchain interaction, which, in fact, is the second virial 
coefficient of osmotic pressure, is explained graphically in Figure 5.15. However, as 

>( v2 

Figure 5.15. Renormal- 
ization of the interchain 
twebody interactions (cf. 
Figure 5.14, the second 
virial coefficient vanishes 
simult aneously with the 
renormalized vz (Oono and 
Freed, 1981a)) [Reprinted 
with permission from: Y.Oono, 
K.F.Freed. J .  Chem. Phys. 75 
(1981) 993-1008. Copyright 
@ 1981 American Institute of 
Physics] 

Oono and Freed (1981a) emphasize, Equations 51 and 52 are valid only after a sufficient 
number of renormalizations has been performed. Hence, v2 and 213 are not simple (original) 
interaction parameters. 
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In the lowest order of approximation, 213 is obviously invariant in 3 0  space, but, in 
higher orders, Equation 53 contains a term proportional to (-vi), whence an asymptotic 
tendency v; -+ 0 follows. 

Thus, there exists a temperature, at which a molecular chain asymptotically (i.e. on 
the whole) behaves in 3 0  space as a unperturbed (free) one, and this temperature can be 
defined as the 6 temperature. Indeed, a joint consideration of Equations 51, 39, and 54 
gives u = 112 at the 0 temperature in 3 0  space. 

Equation 54 points to the fact that the morphological state of a molecular coil is char- 
acterized by a balance among fine interaction effects at the 0 temperature. Therefore, 
the calculation of nonuniversal quantities (such as the mean square end-to-end distance) 
must not neglect the higher-order terms. But, on performing a sufficient number of 
transformations R,, the renormalized multi-body interactions R~(PI , )  ( r  2 4, where u, is 
the irreducible integral of r-body interactions) decay very quickly, and Rt(v2)  < 0 and 
Rs(u3) > 0 turn out to be non-equivalent. As a result, at k -+ 00, Rt(v2) -+ 0 and 

It follows from the foregoing that the local effect of the attraction component manifests 
itself stronger than the global effect, i.e. the chain contracts on local portions (vz < 0). 
Another important circumstance follows. The problem of the 6 state of a roil proves to 
be much more sophisticated than the problem of a self-avoiding walk on a lattice. And 
what is more, a study of conformations on a restricted chain fragment (eg, by neutron 
scattering) may lead to non-Gaussian local interactions in the 6 point. 

Most likely, there exist fine differences between the 0 state of a molecular coil and the 
tricritical state in the Q6 Lagrangian theoretical field model (see the end of section 4.1) 
(Oono and Freed, 1981a). 

In the most realistic case, the r ( 2  3)-body irreducible integrals v, shoiild be included 
into the above considerations. The scaling transformation v, upon action of S, is per- 
formed in the same way and yields 

Rf (u3)  -+ 0. 

vr. (56) v1 = S 4 2 r - 4 r - l ) l  SJv.) = 

R,(v,) s42m-4m-1)1 Ks(vm). (57) 

Then, with the known Kadanoff transformation K,(u,) ,  

At d = 3, v, (m  2 4) are renormalized to a constantly decreasing quantity. When 
enlarging, u, (rn > r )  enters into Ks(v,.) in just the same way as it happens in the 
simplest case (see Equation 52 and Figure 5.16). 

influence such quantities as the 0 temperature, 
the mean square end-to-end distance (h') ,  etc. Hence, macroscopic quantities in the 
6 state are very sophisticated functions of microscopic variables, and, at present, it is 
almost impossible to derive the microscopic interactions u, from experimentally observed 
quantities. 

k-tolerant walking (Malakis, 1976), i.e. random walking of structural elements on the 
lattice's sites with each site being permitted to be visited not more than k times, is an 
example of the manifestation of multi-body interactions. 

Hence, 1-tolerant walking is a self-avoiding walk. For k-tolerant walking, v2 = w3 = 

It is important that the 214, v5, . . . 

... = v k  = 0; uk+l > 0. 
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‘u4 

a 

B 
Figure 5.16. Transformation of multi(4,5)-body interactions ( a )  into an effective three- 
body interaction ( b )  (small loops have their contour length shorter than the cut-off a in the 
scaling system) (Oono and Freed, 1981a) [Reprinted with permission from: Y.Oono, K.F.Freed. 
J .  Chem. Phys. 75 (1981) 993-1008. Copyright @ 1981 American Institute of Physics] 

In the conventional tweparameter theory, v = 0.5 for IC 2 2. However, involving 
multi-body interactions means v = 0.6 (a self-avoiding walk) for every IC in the limit 
N + 00. 

The renormalization group approximation of conformational space can be performed, in 
principle, with any desired accuracy, but at present, calculations can be carried out near 
4 0  space only. As a result, theoreticians use expansion in E = 4 - d. This is obviously 
a temperature limitation of the method which is of rather general significance (Oono and 
Freed, 1981a). 

OoneFreed’s scaling transformation proves to be a more general procedure than Kada- 
noff’s transformation of spin blocks. Indeed, Kadanoff’s original transformation combines 
block spins from neighbouring spins. Hence, in the lattice problem, the most important 
(with respect to interaction) nearest spins are spatially neighbouring spins as well (see 
Figure 2.43). In the polymer excluded volume problem, chain-distant segments may turn 
out to be close in space and, therefore, interact effectively. Therein lies the difference be- 
tween OonGFreed’s renormalization and the previous renormalization schemes based on a 
literal analogy with the concept of spin blocks (the first g segments are combined into the 
first renormalization unit, the next g segments along the chain are into the second one, 
etc. until N source segments are converted into N / g  renormalized ones, i.e. blobs). This is 



5.1.2. Renormalization with dimensional regularization 595 

the very reason why de Gennes’ and Gabey-Harel’s renormalization group approximations 
cannot provide a higher accuracy than the first order in E .  

Oono and Freed (1981b) applied the renormalization procedure of conformational space 
to describe the dynamics of chains. They performed the scaling transformation of the 
complete diffusion equation with the free energy of a chain system written in terms of the 
model of a continuous chain. Besides, the static quantities in Equation 13, the friction 
coefficient of a chain fragment with its size less than a 

is also subjected to the transformation, where z is a new, specifically dynamic index. 
Kadanoffs transformation, besides static properties, provides for including the effect of 

hydrodynamic interactions between chain points separated by a contour length less than 
a’ into the redefinition of ca, 

When renormalizing the functions in the diffusion equation, Oono and Freed (1981b) 
used the ideas of renormalization schemes for the dynamic properties of substance in the 
critical region. Analysis of this situation, as well as intuitive scaling (see section 4.5), has 
led to an equality between the static and dynamic indices 

u = u. (59) 

The renormalization transformation in the problem of polymer chain conformations in 
the Kadanoff-Wilson fashion forms, in essence, a semigroup. A version of such trans- 
formations based on the true group (also called the renormalization group) was applied 
by Alkhimov (1991, 1994). This method provides an asymptotical solution of the exact 
equation for the end-bend distance probability distribution of a self-avoiding trajecto- 
ries. The following formula has been obtained for the critical index u in &dimension 
space: 

1 E  
2 12 

u = - + - + O ( E 2 ) .  

Klinskikh (1993) develops a continual model of a macromolecule with excluded volume 
with the variational principle of the free energy of a molecular chain underlying. As a 
zeroth approximation, the continual integral of Feynmann’s model for polarons in the solid 
body has been taken. The paper reports calculation of the free energy and the expansion 
coefficient of a molecular chain and the static and dynamic scattering form factors. 

5.1.2. Renormalization with dimensional regularization 
Two important consequences follow from the fact of the atomic scalc of length a being 

ipdistinguishable in experimentally observed quantities (Oono and Freed, 1981a; Oono et 
al., 1981). First, the macroscopic properties do not depend on the existence of the natural 
minimum on the molecular scale a, so, they must be well-defined in the limit a + 0. In 
the excluded volume problem of a molecular coil, the limit a -+ 0 should be regarded 
as a rejection of the consideration how a segment interacts with itself (the self-excluded 
volume). 
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Second, there is no natural unit length in macroscopic theory, and such a length L can 
be chosen arbitrarily regardless of the microscopic natural unit of length a’. 
Gell-Mann-Low-Oono-Ohta-Freed’s renormalization approximation (Oono et al., 1981) 

provides a method of constructing, in terms of a microscopic model, such macroscopic 
quantities which are well-defined in the limit a + 0. 

The scaling invariance of microscopic theory to the choice of the macroscopic unit of 
length L follows, which, together with the renormalization relationships of well-defined 
macroscopic quantities, leads to scaling laws. 

Oono, Ohta, and Freed have developed a renormalization method for conformational 
space of Gell-Mann and Low’s (1954) type for the excluded volume problem. In a number 
of cases, this approach proves to be more effective than Kadanoff-Wilson’s approximation 
(see subsection 5.1.1); it provides a higher accuracy of the calculation of such quantities 
as the end-bend vector distribution function, the scattering function, the conformation 
of a macromolecule as a function of polymer concentration, etc. 

As experimentally observed quantities must be well-defined in the limit Q 4 0, the series 
of perturbation theory for macroscopic quantities must be regular at E = 0. However, the 
microscopically-calculated (simple) series of perturbation theory are not regular at E = 0. 

The essence of the renormalization with dimensional regularization is in introduction 
of some relationships between microscopic and macroscopic quantities to reduce (absorb) 
these singularities and to make macroscopic quantities regular in E at E = 0. 

Polymer theory classifies the following quantities with macroscopic Q ;  the degree of 
polymerization N (the contour chain length), the dimensionless excluded volume param- 
eter per segment u,  and the unit length L for the chain scale to produce dimensionless 
quantities. The experimental results are therefore presented as Q ( N ,  u,  L ,  . . .). 

On the other hand, microscopic theories originate from a model of the system under 
study, which involves microscopic parameters. For example, the model of a continuous 
molecular chain uses the contour chain length No (No = nol), the excluded volume pa- 
rameter w ~ ,  and the minimal scale length a ,  which can be identified with the length of 
a chain segment. The microscopic model of a polymer chain with excluded volume is 
defined by a bare (i.e. non-renormalized) dimensionless Hamiltonian to be derived from 
the end-to-end distance distribution function (Equations 3.1-204,-205) 

?(No) = h‘ 

For the Hamiltonian to be dimensionless in d-dimensional space, the following trans- 
formations are carried out: the expression for GB (Equation 3.1-205) is written in d- 
dimensional space (see Equation 11); the pair potential cp (Equation 3.1-202) is ’ approx- 
imated with the 6 function (Equations 3.1-194,-195); a simple renaming s E 7, A G I ,  
and a new variable 

~~~~ ~ 

‘This circumstance is also reflected in the early versions of Flory-Huggins’ theory by an arbitrary choice 
of segments “to fit the solvent”. Editor’s comment 
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are introduced, where ?(T) is the segment coordinates in space. 
Then, the dimensionless bare Hamiltonian has the form (Kosmas and Freed, 1978) 

I T - T ' ~ &  

Here E'(.) is the conformation of a continuous chain in &dimensional space with the 
contour variable 7 E [0, No] ,  Z(T) dZ(7-)/&; 

- d / 2  

vo = p1-2 (i) , (63) 

where 

role in renormalization group transformations. 

of the Hamiltonian 62 being dimensionless 

has the meaning of excluded volume (see Equations 3.1-195 and 1.8-9). 
Then, the theory introduces an arbitrary scale length L which will later play a significant 

The dimensionality of the model parameters is expressed through L ,  using the condition 

(64) [No] = L ,  [d = L1/2, [vO] = L d - 2 - d / 2  - - Ldl2-2 - - L-'/2 

where E = 4 - d. 
The macroscopic chain length N is proportional to the microscopic one 

N = Z2No. (65) 

The microscopic vo and macroscopic excluded volume parameters are converted into 
dimensionless quantities by means of 

210 = I l O L E / 2 ,  (66) 

21. = vLCI2. (67) 

Microscopic theories lead to an expression for Q B ( N 0 ,  uo, a ) ,  which is, generally, not 
a true macroscopic quantity and contains many microscopic details insignificant in the 
long-wave macroscopic limit. In particular, this enables the pair interaction potential in 
the model Hamiltonian to be replaced by the short-range 6 function. 

The quantity QB is related to the corresponding renormalized quantity Q by the renor- 
malization factor ZB (eg. see Equation 65) Q = ZQQB. These factors ZQ play a key role 
in theory, as their analytical form is chosen (defined) from the condition of absorption 
(elimination) of divergences in QB. To apply the perturbation method, the microscopic 
quantity QB should be represented as a series in powers of no, ;.e. 

However, in d(# 4)-dimensional space, vo is not dimensionless, as it follows from Equa- 
tion 64. In this case, expansion into a series should be performed in powers of the di- 
mensionless parameter t10N$*. However, in the long-chain limit No + 00 for 00 > 0 and 
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E > 0, the parameter vON,"~ turns out to be large. indeed, the parameter voN;I2 can be 
associated with the similar dimensionless excluded volume parameter zd from parametric 
theory in d-dimensional space (Equation 3.1-153) 

TO overcome these difficulties, QB is expanded into a series near d = 4 ( E  = 0) by E 

expansion, i.e. is represented as a double series in vo and E 

where 00 is the dimensionless (at d = 4) interaction constant, the coefficients QL,, are 
calculated in 4 0  space; a continuous variation of the space dimension d is assumed. 

On elimination of the contributions of segment self-interaction, the coefficients of se- 
ries 69 do not contain divergencies while E > 0, even in the limit u -+ 0. i t  has been 
found, however, that at Ca, = 4 ( E  = 0 ) ,  i.e. at the critical dimension of the excluded 
volume effect of a polymer chain, Qk contains numerous terms with In u which diverge at 
u + 0 even after subtraction of the self-interaction. This means that the coefficients Qk 
( u  + 0) have singularities at E = 0, and the series of Qk in E, 

has its principal part, i.e. the terms with a negative power of n. Conversely, if series 70 
has its principal part for u + 0, Qk ( E  = 0) diverges in the limit u + 0. 

The macroscopic relationships for Q are assumed to be expandable into an asymptotic 
series 

Q = C Qmvm,  
m 

which, in turn, must be expanded in powers of the dimensionless quantity vNCI2; so, 
Equation 71 contains the same difficulty as Equation 68. Therefore, a double series in E 

and v is introduced 

Q = Qm,nvmEn. ( 72) 
m 

Macroscopic quantities are considered to be well-defined in the limit u -+ 0 at a certain 
dimension d. This basic statement of theory presumes Qm to be regular at E = 0, i.e. 

Qm = Qm,nEn 
n 

(73) 

has no principal part. 
The limiting procedure u + 0 proves to be very unnatural in the macroscopic context; 

so it comes as no surprise that there emerge many divergences. However, there must not 
be divergences in this limit in macroscopic theory, as long-wave properties do not depend 
on u by definition. Therefore, the divergences must be absorbed in the relationships 
between the microscopic and macroscopic quantities. 
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As the divergences u -+ 0 are found when the principal parts in the E expansion of QL 
appear, the very principal parts must be absorbed in the relationships between the micro- 
scopic and macroscopic quantities. Therein lies the method of dimensional regularization 
proposed by t'Hooft and Veltman (1972) in field theory. 

+ 
To have an example, let us discuss G( N ,  h ,  v; L )  (the macroscopic non-normalized end- 

b e n d  vector distribution function), where L is an arbitrary scale length (Oono et al., 

The series of perturbation theory (Equation 69) provides the definition for the bare 
distribution function GB(NGI, h,  wo; u )  in its expansion in vo and E .  

Provided that they are normalized, G and GB produce the distribution function of h, i.e. 
they must be proportional to each other. The factor of proportionality Z is chosen so that 
some remaining principal parts in the E expansion are absorbed. Therefore, Z ,  Z2, and 
the relation v us vo lead to micro-macro relationships, which absorb all the principal parts 
of the bare perturbation series, if there is a macroscopic distribution function with two 
macroscopically-controllable parameters, viz., the chain length and the excluded volume 
of a segment. Thus, 

1981). 

.+ 

.+ 

G ( N - ' , ~ , ~ ; L )  = a+O l i m ~ - ' ~ g ( N G ' , h t , v ~ ; u ) .  (74) 

G(N-' , ; ,v;  L )  = a+O limZ-'GB(Z2N-',ht,vo;u). 

In view of Equation 65, we rewrite it as 

(75) 

The ability of Z to eliminate the remaining principal part from series 72 should be 

To calculate 2, Z,, and u ,  and to demonstrate the absence of the principal part in the 

We write the dimensionless interaction constant introduced in Equations 66 and 67 

verified with respect to each power of v. 

E expansion of Equation 73 ,  the series of perturbation theory are employed. 

u = *L+,  uo = VOLE/2. 

ZG(Z;'NG', ht,u; L )  = G g ( N i l ,  Z, uo; u )  

Multiplying Equation 75 by Z yields 

( 76) 

in the liniit a -+ 0. The main property of Gg must be its invariance to the choice of L. 
Then, it follows from Equation 76 that 

or 

Having noticed that u,  Z ,  and Zz depend on L,  we rewrite Equation 78 as 

z2 + 2) G(t,  i, U ;  L )  = 0, L-+L--+ L- - L- 
8 du d a 1 n Z  

a L  a L a u  a L  a L  at (79) 
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where t e N - ' .  
This is a renormalization group equation which involves the principal statement 

that the macroscopic scale L is chosen arbitrarily and independent of the microscopic 
scale. 

The first point of the renormalization transformation (Amit, 1978) is determined from 
the condition 

where u* is the fixed point of the interaction constant (see the conclusion in section 2.5). 
Introducing then 

and 

we transform Equation 79 into 

(L$ + A - B + at G(t,&u*; L )  = 0. (83) 

The general solution of Equation 83 is 

G(t ,  z, u*; L)  = L-AF(h', Lt'lB), (84) 

where F is a function which is unknown but allows being well-defined, A and B are 
constants to be determined by Equations 81 and 82. 

To obtain the scaling relationship for G, Equation 84 should be combined with dimen- 
sional analysis of G in the following way. For the model Hamiltonian (Equation 62), GB 
is represented aa 

where D is the standard measure of a set of conformations (see Equation 3.1-189). 
The dimensionality of different variables and parameters follows from Equations 62-64: 

[ N ]  = L,  [GI = Lpdi2 .  (86) 

Hence, conventional dimensional analysis means that, for any s > 0, G satisfies the 
relationship ( t  N - ' )  

G(t ,  i, u;  L )  = s-d/2G(st,s-1/2i, u;  s-'L).  (87) 
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Assuming u + u' in Equation 87 and including Equation 84, one can write 

G ( t ,  i, u'; L )  = s - ~ / '  ( s - ' L ) - ~  F(s- ' / ' i ,  s-'L(st)'IB) 

- , - d / 2 + A ~ - A ~ ( ~ - 1 / 2 i ,  Ltl/B 1/B-1 s 1. - 

Choosing s so that the condition 

Lt'/Bs'lB-' - - 1 

is satisfied, let us transform Equation 89 to 

L B / Z ( B - ~ )  
N1/2(1-B)' 

G ( t ,  6,  ti*; L )  = L- € l ( d / Z - A ) / ( B - l ) ~ - ( d / 2 - A ) / ( B - l ) j  

(89) 

where f is a function which is unknown but permits being well-defined. 

follows. The mean square end-to-end distance is written as 
The relationships between A and B, and the usual (standard) indices are derived as 

whence, in view of Equation 82, we obtain 

E L -  2u - 1 B = -  
2u 

The index y is introduced similarly to determine the N dependence of the total number 
of conformations 

CN - Nr-'pN - / d L G ( i , N ) ,  (93) 

where p is a constant not to be discussed hereinafter. 
Substituting Equations 90 and 92 into Equation 93, we obtain 

as a way to determine y from 2. Substituting Equations 92 and 94 into Equation 90, we 
obtain a scaling law (for Z = 1) 

The distribution function G(  N ,  A, u; L )  must be finite in u, and the dimensionless quan- 
tities 2 and Z2 are defined as series in u, Le. 

2 = 1 + A U  + 0 ( 2 1 2 ) ,  (96) 
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2 2  = 1 + Bu + O(u2), (97) 

where A and B are dimensionless quantities to be determined. They can be calculated 
with the help of Equations 65, 96, and 97 from the expansion series for Gs,  which is 
well-defined in the limit a + 0 

the free Go(& i) is presumed to relate to a Gaussian chain 

On integration with respect to F, the second summand in Equation 98 is written as 

No 7 

-v0 1 d~ 1 dTt G, [ N ~  - (T  - T') ;  L] G ~ (  T - T', 0). (100) 
0 0  

If we introduce a variable z = T - T', then Equation 98 is rewritten as 

GB(N0, i, v0; 0) = G ~ ( N , ,  i) - U ~ L - ' / ~ I ,  (101) 

where the order of integration can be changed which yields 

I = a dz ( N ~  - z)~o(i ,  N~ - z ) ~ o ( ~ ,  .). (102) 

This integral, on replacement of the variable z = ./(No - z), is transformed into 

I = ( 2 ~ ) - ~ N : - ~ e - ~ G ( a ) ,  (103) 

where a = h2/2No, and 

G( 0) I& ( 1  + z)I-€ z e .  -az (104) 
0 

Integration by parts (t'Hooft and Veltman, 1972; Oono et al., 1981) gives 
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The first, snmma.nd in Eqiiation 105 is infinite. This divergence arises from segment self- 
interactions ( z  --+ 0), so the summand can be just rejected, which means the elimination 
of segment self-interactions. This operation corresponds to subtraction of mass in field 
theories (Amit, 1978). 

A more standard argument of dimensional regularization is in the following. If d is 
made rather small (d  < a), then the first term in Equation 105 vanishes. If the expression 
is then analytically extended to d > 2, we obtain 

G(a)  = (1 + %> [( 1 - E)J(E, a )  - ~ K ( E ,  a ) ] .  (108) 

The integrals J and h' can be expanded into a series in E 

(110) 
2 1  

K ( E , ~ )  = - + - - (T + l na )  + O(E),  

0.5772 is Euler's constant. 

E a  

where 9 

and 110 only. Hence, 
To calculate v and y in the E order, we need the principal parts of Equations 109 

(111) 
2 

G(a)  = -(1 - a )  - 2 - a + ( a  - I)(+ + l n a )  + O(E).  
E 

On the other hand, using Equations 96 and 97 in Equation 99, a u expansion results 
(hereinafter, a = h 2 / 2 N )  

so it follows from Equations 76, 103, and 101 that 

G ( N , L ) = ( l  -Au+...)Go(N,i) 

The quantities A and B are determined from the condition of lack of the principal part 
in Equation 113 in the E expansion, i.e. the term with the u power. This just means that 
all the singularities in microscopic theory must be absorbed by micremacro relationships. 
Therefore, 

1 2  A - 2 B  + aB + - . -(1- a )  = 0. 
(2T)Z E 
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This equation defines CY, and its solution is 

which drives function 113 to the form 

G ( N , i )  = (=) 1 2  e-a (1 + Eln21rN) 
2 

The relationship between u and uo folloy from another condition. 
The distribution function G@)(M, ?, N ,  h, v ;  L )  is introduced to fix a point inside the 

chain M, ?, in addition to the end-bend vector 

G@)(M,  F, N ,  Z, L )  = Z G ; G ~ ) ( Z , - ~ M ,  F, z,-'N, 2, v0; a), (117) 

Z(N0) = Z 
Gg'(M0, .', No, z, VO; u )  = J WIS [ ~ f ( ~ o )  - exp [-R,(C~I . (118) 

Z(0) = 0 

If we derive Gg) in the same way of perturbation theory as Gg and consider the terms 
with and without ?and h' in the expansion, we obtain three independent zonditions to 
eliminate the principal parts in the E expansion of the constant and the ?(or h)-dependent 
part, which can be used for calculating Z(2,, 2 2  and v. 

The calculation of 2, 2 2 ,  and v can be performed immediately with the help of G(2),  
but preliminary calculation of G provides a simpler way to determine 2 and Z2, as simple 
i ~ 4  the introduction of the dimensional regularization methods. 

Analysis of the perturbation series enables the terms to be rearraiiged as 
+ 

G~)(MO,.',N~,~,~~;U)=GR(MO,~',~O;U)GB(NO- M o , h - ? ' , ~ o ; ~ )  (119) 

+ some remaining terms, which involve the terms with their diagrammatic representation 
(Figure 5.17), and the terms not contributing with respect to v. The diagram b in 
Figure 5.17 has its analytical expression 

where 5 and y denote the integrals of the contour line between the neighbouring interaction 
vertices, p' is the spatial vector between them, and p'+ Fl = 6. 

The principal part of Ihe E expansion 120 arises from the contributions due to the local 
interactions arising from small values of x and y. Therefore, to extract the singular part 
of Equation 120 in the E order, one could, for example, expand Equation 120 in F2 and 
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c-. 

/ \ 
I \ 

I. 

a 

b 
c-. c-. 

c 

Figure 5.17. Diagrams for calculation of oo in the order vi: in Oono-Freed's ( b ,  left) and 
Yamakawa's ( b ,  center) notations, and the pattern of a chain conformation in actual space 
( b ,  right) (cf. Figure 5.9). Diagrams b and c are of the second order of oo: their singular 
parts are identical and defined by Equations 5.1-121,-122 (Oono et al., 1981) [Reprinted 
with permission from: Y.Oono, T.Ohta, K.F.Freed. J .  Chem. Phys. 74 (1981) 6458-6466. Copyright @ 
1981 American Institute of Physics] 

z powers. Involvement of higher powers of I, y,  or p" weakens the singularity of the 
integrand near I = y = 0. Moreover, the upper limit of integration over z and y does not 
affect the singularities with respect to E ,  so these upper limits can be chosen arbitrarily. 
Hence, the singular part of Equation 120 has the form 

where 

+ 
x Go(r'- Fl, Mo - nl)Go(T1 - F,nz - Mo)Go(h - Fl, No - nz). 
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Calculations show that the singular parts of the other three second-order diagrams (see 

The remaining terms in Equation 119 can be written in the ui  order up to non-singular 
Figure 5.17~) coincide with Equation 121. 

terms as 

(Le. the diagrams can be practically eliminated) + the singular terms already absorbed 
by 2 and Z2 (see Equations 96 and 97). 

Let uo be expanded as 

U O  = u - Du2 + .-. (124) 

We are able to choose D so that the principal part appearing in Equation 123 is absorbed 
in all the orders with respect to u. The principal part of the integral in Equation 123 is 
found to be 

The requirement that there should be no principal part in Equation 123 leads to 

Substituting the solution of this equation with respect to D to Equation 124, we get 

(127) 
2 

E X 2  
uo = u + -u2 + O(U3)). 

Using the rule of differentiating a composite function 

one can derive 

The non-trivial fixed point, according to Equation 80, is defined as 

E X 2  
u* = - 

2 '  
Applying the rule 
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to define Equations 81 and 82, and to expand Equations 96, 97, 127, and 130, Oono et 
al. (1981) have obtained 

Substitution of Equations 132 and 133 into Equations 92 and 94 leads to the following 
results in the E order: 

4 
8 - E '  

u = -  

E 
y = 1 + -  

8 - c '  

(134) 

(135) 

which agree well with other independent calculations. 

Crossover region of solvent strength 
The renormalization method for the conformational space of polymer chains has been 

applied to calculate the characteristic quantities in the crossover region, i.e. in the in- 
termediate area between the Gaussian behaviour and the limiting case of interaction of 
segments with excluded volume: a self-avoiding walk (Oono and Freed, 1982). 

Basic renormalization group equation 79 is written in a new notation 

where 

Any experimentally observed quantity must obey Equation 136 in the limit a l L  + 0. 
Previously (see Equations 128, 81, 82, 96, 97, etc.), the following relationships were 

derived for quantities equivalent to P ( u ) ,  rl(u), and ^/2(u) 

where the non-trivial fixed point u* is the solution of the equation a(.*) = 0 (see Equa- 
tion 130) 

1 
2 

u* = --ET2 + O ( E 2 ) .  
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The main solution of Equations 136 has the form 

where u1 is a constant, F is an arbitrary function which, in principle, can be well-defined. 
As Equation 136 must be satisfied in the limit a / L  -+ 0, the solution of Equation 140 

must not depend on a. Therefore, u1 cannot have the meaning of a microscopic quantity, 
i.e. Equation 136 is satisfied after a sufficient number of renormalization procedures have 
been performed. 

Thus, the renormalized interaction parameter u takes a value between 0 and u*, where 
u* corresponds to the limiting case of the maximum good solvent. Hence, the quantity u1 
must be chosen within this range: for definiteness, it is accepted (Oono and Freed, 1982) 
that 

U* 

2 
u1= -. 

Then, a crossover variable is introduced 

(142) 
U w=- 

u* - u '  
varying from 0 to  00. 

On introducing u, the solution of Equation 140 is transformed into 

G(6,  N ,  u; L )  = ("> 'I4 F (Lw-'Ic, N (L) 'I4, 2) . 
l + w  l + w  

If we choose 

s = N (-)'I4 2 
l + w  

(143) 

(144) 

as the arbitrary parameter s in Equation 87, then combination of Equations 143 and 87 
leads to 

G(L, N ,  U; L )  = N-2+s/2 (145) 

As w + 0, this equation gives the Gaussian limit, where the function G depends only 

If scaling variables 
on zN-1/2, and the other limit of a self-avoiding walk is obtained when w + 00. 



5.1.2. Crossover region of solvent strength 

hZ(1 + w)1/4 

2N 
X =  

arc introduced, then Equation 145 is transformed into a new form 

(148) G(i, N ,  u ;  L )  = N- ~ + ~ / ~ - ~ ~ / S ( ~ + ~ ) ~ ~ C I ~ ( I + C ) F ~  ( x ,  0, 

609 

(147) 

where the numerical factors are included into the definition of Fl. 
Equation 146 can be transformed in the E order 

For G (see Equation 148) to exist in the limit u + u*, F1 must depend on one variable 
only when tu 4 OZJ 

= ~ ~ - ( 1 + + 3 ) / 4  > (150) 

which is the only combination of X and C providing the limit w 4 00. 

fication and elimination of the higher-order terms, takes thc form 
With the aid of the above definitions, the solution of G from Equation 116, on simpli- 

(151) 
~ + E / ~ - E c / S ( l + c ) c f / 8 ( ~ + ~ )  [X(l + <)-1/4] Ec/s(l+c) 

G(i, N ,  u; L )  = (27rN)- 

In the limit C = 0, G (see Equation 151) reduces to the Gaussian distribution; in the 

With the help of Equation 151, Oono and Freed (1982) have obtained for ( h 2 )  
limit ( -+ 00, G describes a self-avoiding walk. 

(153) 

On the basis of Equations 152 and 151, the distribution function for r'= i/ (h2)l/' has 
the form 
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0 . 3  

f(r)  0.2. 

0.1. 
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Figure 5.18. Distribution function of segment density f ( r )  for the normalized end-bend 
distance, r' = i/(h'))'/ '  ( a ) ,  and distribution function of segment density versus distance 
Irl, 47rr2f(r) ( b ) .  Numbers at the curves relate to the crossover parameter C ( C  = 0 
corresponds to a Gaussian chain, C + 00 corresponds to a self-avoiding walk) (Oono and 
Freed, 1982) [Reprinted with permission from: Y.Oono, K.F.Freed. J .  Phys. A: Math. Gen. 15 (1982) 
1931-1950. Institute of Physics Publishing Ltd.] 

and is a universal function of the scaling variable C (Figure 5.18). 
Substitution of Equation 146 into Equation 153 yields the equivalent form 

(h') = 4 N  ( 1  + (27rN/L)'/'w) 'I4 ( I - - - - . -  E E ) +O(EZ).  
l + w  4 8 1 + C  (155) 
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For small w, Equation 142 leads to w - u. If N is sufficiently large, Equation 155 
reduces to 

2 r N  
(h’) N d e  N (d) till4, 

which, in the E order, serves as an equivalent of the following relationship of mean field 
theory 

(h*)  N N6I5u2l5. (157) 

The coil expansion factor a! 

has two equivalent forms 

i.e. ai is not a universal function of one variable, as in the two-parameter theory, where 
a: is a universal function of the excluded volume parameter z (see Equation 3.1-130). 

If w is small and N is large enough, then introduction of a new parameter i 

brings Equation 160 to a new form 

a;= (J4(1-&) l t i  E ? ( 1 + 2 ) 1 / 4  1 - - . -  ( ; 
which is a universal function of i only approximately. 

For the mean square radius of gyration of a molecular coil (R’), this approach leads to 

Combination of Equations 163 and 155 gives a universal function for the ratio 

At the same time, the expansion factor a:, 
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like ai, is not a universal function of one variable. 
Only if w is small and N is large enough, the approximate universal form arises 

a:, = (1 + 31'4 1 - -&+ 13 5 ( 96 l + z  ' 

In this approximation, Oono and Freed (1982) have obtained for the second virial 
coefficient 

1 1 

dz = 2 8 .(168) 
4MZ [l + ((1 + c)'1s]1/2 

NAN2-'/2 (1 + exp [ - -E  In 27r + - E ( (  1 + 4 In 2)/8( 1 + ()I 
In the limit of a self-avoiding walk, Equation 168 reduces to 

(169) 

N2-'/4 --- - N ~ v d - 2  
M 2  M 2  7 

which matches the scaling expression (Equation 4.3-70). 

have obtained 
For the coil interpenetration function II ,  (see Equation 3.1-159), Oono and Freed (1982) 

i.e. 4 proves to be a universal function of the scaling variable C only. 
In the limit of self-avoiding segments c -+ co, Equation 170 reduces to 

Eexp (-% + y )  
?y= 

2-42 ,  

16 [g (I - $z)] 

which at E = 1 and d = 3 gives II,' = 0.231. 
can be replaced by i in Equation 170. 

Applying Equation 167, we plot a common dependence 1c, us a i ,  as accepted in the 
twc-parameter theory (Yamakawa, 1971) (Figure 5.19). It is seen that renormalization 
group theory corresponds to experimental values better than does the mean field theory. 
Unlike different versions of the tweparameter theory, the renormalization group approach 
predicts a constant limiting value +* and needs no adjustable parameters. 

If w is small and N is large enough, then 
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11, 
0.4 

0.3 

0.2 

0.1 

0 

--- 

I I I I 

1 2 3 4 a; 

Figure 5.19. Plot 11, vs a i  in the 
case of the renormalization group 
approach (RG). For comparison, 
the same dependence for differ- 
ent versions of the two-parameter 
theory is taken from (Yamakawa, 
1971): Flory (1949b), Flory and 
Krigbaum (1950) li-, = [ln(l + 
2.3z/a;)]/2.3 with ai  - ai  = 
2.62 (4, Stockmayer (1960) II, = 
[ln(1+5.73z/a$)]/5.73 with ai-  
dR = 1.2762 (14, Kurata et al. 
(1964), Yamakawa and Tanaka 
(1967), Yamakawa (1971) 11, = 
0.547[1 - (1 + 3 . 9 0 3 ~ / & ) - ~ . ~ ' ~ ~ ]  
with ai = 0.541 + 0.46(1 + 
62)'.& (ZZZ). The experimental 
values are taken from (Norisuye 
et al., 1968) for polystyrene 
in trarat+decaline at different 
temperatures (I), polystyreneSp 
butylacetate at 25°C (4, and 
polychloroprene in CC14 at 25°C 
(3) (Freed, 1985) [Reprinted with 
permission from: K.F.Freed. Acc. 
Chem. Res. 18 (1985) 38-45. Copy- 
right @ 1985 American Chemical Soci- 
etyl 

Region of the  semidilute solution 
Ohta and Oono (1982) applied the method of conformational space renormalization to 

calculate the osmotic pressure of solutions and the sizes of macromolecules in semidilute 
solutions of polymers. 

In order to solve this problem, the authors also used Edwards' (1966) formalism, accord- 
ing to which the influence of the macromolecular surrounding %f a given macromolecule 
is equivalent to the existence of an external stochastic fieId @(R),  where conformational 
"diffusion" of the given chain proceeds (see Equation 3.1-205). 

The diffusion equation (see Equation 3.1-190) can be written as (Freed, 1972) 

a [z - I A 
-Vi+ 6 i@(Z) G(dO;L0[0]) = 6(L)6(d) ,  

where @(i) is the stochastic field, and the imaginary unit i is included for convenience 
of mathematical transformations. 
The correspondence between Green's function (Equation 3.1-205) and Green's theoret- 
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ical field function G([@]) is reflected in the identity 

G(d0;LO) E (G(&LO[4]))b, (173) 

i.e. G is the mean of G([@]) over the Gaussian statistically heterogeneous field @(E) 
possessing the following properties: 

(@(@)* = 0, (174) 

(4(EZ)0(2))@ = V ( E -  I?'), (175) 

In the case of macromolecules with excluded volume, averaging (Equations 174 and 175) 
is performed as integration over all the functions @(I?) (Gelfand and Yaglom, 1956; Freed, 
1972). To clarify this operation, consider a simple integral 

V =  

7 x2exp (-T) dx 

/m exp (- F) dx 

-m 

--oo 

which is generalized for many variables as 

(176) 

where 

V i ' v j k  = 6jk Or vV-' = 1, (178) 
i,i 

V-' is the inverse matrix to V .  

xi,. . . is accepted, then, on passing to continuous variables in Equation 177, we obtain 
If i, j,. . .in Equation 177 are associated with the points of field ai, dj,. . . and @(ai) = 

V (  d,g') = J/ / @(a)@( d')  exp [ - f / d d  / dd' 4(d)V-'(d, d')@(d')] 64, (179) 
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Equation 179 corresponds to averaging of Equation 175. Moreover, 

Af/@(E)exp [--if ddJdE'@(E)V- ' (ad ' )O(d ' ) ]  6@ = 0, (183) 

i.e. Equation 174 is satisfied. 

the partition function @ taking a value from @(@ to @(n') + 6Q: 
Comparison of Equations 174, 175, 179, and 183 leads to the probability (P[@]6@) of 

If the mean values (Equations 174 and 175) are represented as functional integrals (see 
subsection 3.1.1), then function 3.1-205 satisfies the diffusion equations 172 and 173. 'l'his 
follows from the equality 

where Af is from Equation 181, V-' is from Equation 180. 
Equality 185 is checked by the replacement 

in the right-hand side of Equation 185 with subsequent replacement of the integration 
variable @' by CP. 

Substituting Equation 185 into Equation 3.1-205 and changing the order of integration 
over 6@ and D[.'(s)], Freed obtains 

G( E O ;  LO) = Af / 6@ exp [ - 1 dF/ dF' @(F')V-' (F- .")@(?)I (187) 

F(L) = ii L 

X / D[F(s)] exp { - [ ds ( $?2(s) + i@[; ( .~) ] )  
F(0) = 0 

166 P[@]G(ZO; LO[@]) ( G ( [ @ ] ) ) + ,  

where P[@] is defined according to Equation 184. 

fulfillment of diffusion equation 172. 

(see subsection 3.1.1) (Ohta and Oono, 1982; Freed, 1983). 

Thus, Green's function G(f@]) in Equation 187 is Wiener's integral which implies the 

Let a box with a volume R contain rz macromolecules modelled by continuous chains 
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The chains have their length distributions: the a fraction has nu chains with length 
No,,, the set of chains is denoted by i, = 1,. . . ,nu. In principle, any distribution function 

(188) 
nu 

P(N0,U) = 42 
can be introduced into the model. 

00 is written as (Freed, 1983) (cf. Equation 62) 
The dimensionless Hamiltonian of the system with n chains with their excluded volume 

NO,- NO,@ 

(189) 
1 

NO,- 
1 

7-l = - I & ( ~ i ) [ ' d ~ i  + J dri J d r j S [ < ( ~ i )  - C ( T ~ ) ] .  
2 a i a  0 ,,in 0 0 

L V p  

The bare (non-renormalized) partition function of the system 2, is expressed as a 
functional integral 

where the integration { < ( ~ i ) }  is performed over all the volume R ( < ( ~ i )  E O ) ,  and the 
chain ends {<(O),<(No, , )}  are also located in the volume R. The partition function 
2~ is an explicit function of the numerical concentration of macromolecules cp = n/R, 
WO, {NO, , }  and Q + O+. Moving on to a variable conformation 4 (Equation 61) and 
considering the whole ensemble of macromolecules, Freed (1983) writes equality 185 as 

where 

D [ ~ I  [J  exp { -: J ddr J c ~ r '  ~ ( F ) v - ' ( F -  ?')a(?') 11 -l , (192) 

J b r ' V ( F -  F')V-I(F' - F") = 6 ( F -  7'). (193) 

V ( 3  = W O S ( 3 ,  v-yq = v,'S(q. (194) 

For the simplest case, the 6 function is employed as the potential V ( 3 :  

On substitution of Equations 191-193 into Equation 190 with changing the order of 
integration over @ and Zj, one obtains 

(195) 
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x exp { - f J ddr J c ~ r ’  Q ( ~ Y - ’ ( F -  F)Q(F‘ )  . } 
According to this formula, the partition function 2, describes a set of independent 

(disconnected) polymer chains interacting with the stochastic field @(,3. Therein lies 
the specific character of consideration of the intermolecular interaction in a semidilute 
polymer solution according to Edwards’ (1966) idea, when one considers disconnected 
macromolecules placed in the stochastic field due to the presence of other macromolecules. 

Transformation 191-193 just enable the chains to be separated in the partition func- 
tion 195, and the diffusion equation 172 specifies a “conformational flux” in a force field, 
which finally leads to an effective “shrinking” of conformations, i-e. to a decrease in the 
coil size. 

With the conformation variable Z, the distribution function 187 is written as 

In view of Equation 196, the partition function is rewritten as 

with the last multiplier to be expressed as 

Proceeding to !he continuous description (continuity) in Equation 198, one can consider 
the macromolecular length distribution (Equation 188) 

E exp [n (ln G( No, a))] . (200) 

Introduction of Equation 200 into Equation 197 yields 

2, = / n [o ]exp{~( InG(N, ,Q) )  - z S d d r J d d y ’ ~ ( T 3 V - l ( F - ~ ~ ) Q ( ~ ’ ) } .  1 (201) 

With potential 194, the bare partition function of the system takes the form (Ohta and 
Oono, 1982) 



618 5.1. Renormalization of the conformational space 

In the method of renormalization group transformations, the characteristic quantities 
are calculated as a series in powers of VO. 

In Equation 202, the measure vi'@' gives the order v ~ / 2  for @(q, and the first-order- 
vo theory requires expansion up to @'. To take higher concentrations into account, the 
quantity cpvo is accepted to be near 1 by the order of magnitude. 

Distribution function 187, 196 describes random walking of segments in the external 
potential field fi@, so G(&, @) is written as a series in ip on expanding the exponent in 
Equation 196 in i@ (Freed, 1972) (cf. Equation 24) 

with an "unperturbed" function (see Equation 3.1-104) 

The normalization condition (Equation 3.1-178) 

J ddr'Go(F- F'; T) E 1 (205) 

provides a possibility to calculate the integrals over F'j and 6 in Equation 203 (Freed, 
1983), which leads to 

G(N0, @) = O k i N o  / $dr a(?') -/ d% /d%'@(f)So(F-?'', N 0 ) @ ( F ' ) + 0 ( @ ~ ) , ( 2 0 6 )  

where 

Further expansion of the logarithm of G( No, @) yields 
2 

In G(N0, @) = In R f iNoR-'/ ddr a(?') + Ni(22R2)-' [/ ddr a(?')] (208) 

- R-' / ddr / dr' ip(F)So(F- r', No)ip(T") + O(ip3). 

To calculate the functional integrals, the Fourier transformation is applied 
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with due account of 

After spatial integration of Equation 201, in view of Equation 208, Freed (1983) has 
obtained 

(212) 
1 

n In R f in (NO)  K ' @ o  + - 2 nflp2@; 

where 

 SO(^, No) = 2N0q-2 + 4qP4 [ exp ( -- q2;)-1]. 

(21 3) 

The exponent in Equation 212 is interpreted (Ohta and Oono, 1982; Freed, 1983) in 
terms of Edwards' screening. All the terms with (8~1~ are combined into an expression of 
the type 

If only q-' commensurable with the coil size are considered, then Equation 214 can be 
approximated by 

So (q, No) M 2  NO^-^. (216) 
Returning from c'to r'through Equation 61, we find 

where 

i " -  ( d/l )d/2- '  
- 4c,Vq ( N o ) .  

The volume R is replaced by R(d/l)d12 by virtue of the variable replacement (Equation 61). 
Equation 212 is subdivided into components for each 4: As @(T) is the actual field, 

then 

@a=@:,-, @ d =  Rq+iI?, @-T= R g - i I f ,  (219) 
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and the integrals with respect to d@,-d@-a can be calculated for a fixed 4': 
03 03 S d ~ , - / d ~ - ~ e x p [ - ~ l @ ~ l ' ]  A? = / d R , - /  dl,-exp[-$(R$+I;)] A- =-. 27r (220) 

A,- 
-03 -03 

Thus, for f #  0 there appears a product (27r/A,-)'I2 for all f i n  the nominator of Equa- 
tion 212. Evaluating the integrals with respect to d@,- in an identical manner, extracting 
f=  0 separately, one obtains (Freed, 1983) 

According to Equation 214, 

-cpvo (Ni) + 2VoG (SO(0, No))  = 0, (222) 

and the infinite product ratio can be replaced by the sum of logarithms. Then 

x %(So(< No))]  + OCV;)}. 

For large 0, we can proceed to the limit 

On performing this operation, the (bare) free energy of the system is derived from 
Equation 223: 

(225) FB = - k T l n Z ~  = -kT nlnR-nZ(No)'Vo(2R)-' 

Correspondingly, for the (bare) osmotic pressure we write 
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In view of Equation 194, for potential 225 we have (Ohta and Oono, 1982) 

n"No)2vo R 
2 0  - - 2 ( 2 7 r ) d  J ddq In [ 1 + 2 (so(<, ,))I} . (227) 

Since there is no cut-off in Equation 189, integral 226 converges only when d < 2, so reg- 
ularization (bringing the expression with d < 2 to the dimension d < 4 )  is required. After 
this procedure (Freed, 1983), the following expression results for dimensionless reduced 
osmotic pressure 

M 

x / d z  z3{ln [l + 2Xog(z2)] - 2Xog(z2) [I + 
0 

- 2 X ; ~ - ~ ( l  - e-' 2)oX0(27r (No))E/2(27r2~)- ' ,  
)> - 

where 

ifB (Equation 228) is a function of microscopic quantities, whilc experimentally mea- 
sured quantities reflect the system's properties in the enlarged scale of length L .  That 
is why the macroscopic parameters N and v substantially differ from the microscopic 
ones No and vo: the microscopic model (Equation 189) has fine details not reflected in 
experimental quantities. 

Introducing dimensionless quantities u = vLE/' (Equation 67) and uo = vOL'/~ (Equa- 
tion 66) leads to the micremacro relationships N = Z2No (Equation 65) and 

where Z2 and 2, are dimensionless quantities depending on u ,  the only dimensionless 
quantity remaining in the limit a / L  -+ 0. 

Analytical expressions 2 2  = & ( u )  and 2, = Zu(u)  are chosen so that the perturbation 
series for the quantity under renormalization in u and E = 4-d powers has no singularities 
at E + O+. 

In particular, for reduced osmotic pressure 

i f(N,c, ,u) = .IrB(Z,-'N,C,,Z"U), (233) 
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where 
U 

22 = 1 + - + O(u2) 

2, = 1 + - + O(u2) 

2+€ 
(see Equations 97 and 115), 

2u 
??E 

(see Equation 127). 
The expression for ii( N ,  $, u)  is found in the scaling limit 

* E x 2  
26 = -  

2 
(see Equation 130). 

Finally, we obtain (Ohta and Oono, 1982; Freed, 1983) 

where Freed (1983) means that 
du 

X = 2 ~ 5 ,  (;) ( N ) d u ,  (235) 

while Ohta and Oono (1982) mean that 

(236) 
dw 7T2€ E x = cp ( N )  2 (Lay = 2 - - + O(eZ)), 

4 
i.e. X is a quantity proportional to %/e;, c; being the coil overlap concentration. 

dence of the mean square end-bend distance 
In the same approach, Ohta and Oono (1982) have obtained the concentration depen- 

Approximation of Equation 231 by 

g(z2)  = ( 2  + 2 q 1 ,  

where p = (No)2 / ( N z )  = Mn/Mw, provides an analytical calculation of Equations 234 
and 237 with a good accuracy. Equation 238 becomes exact for p = 112 given P is defined 
by the exponential distribution. 

Calculation of Equations 234 and 237 with the aid of Equation 238 has led (Ohta and 
Oono, 1982) to 

- x 1 
r=-- - 1 + -xexP{ [$ + $lnp + (1 - $) h ( X  + p ) ] }  , (239) 5,kT 2 
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x [In 2(X + p )  + +] + e2(x+p)  Ei( -2(X + p)) 
where + M 0.5772 is Euler's constant, 

E 
dv = 2 - - + O ( E Z ) ,  4 

00 
e-t 
t Ei(-s) = - 1 -dt. 

I 

Figure 5.20 shows the dependence of 7r/(cplFT) us X in comparison with experimental 
results obtained using a PcrMS solution in toluene at 25°C (Noda et al., 1981). For this 
comparison, Ohta and Oono (1982) have adjusted a proportionality constant between X 
and cJc;, where c; is the coil overlap concentration. A study was made (Noda et al., 
1981) on polymer samples with a narrow MWD. The agreement between the experimental 
values of x and the curve of a monomolecular polymer is very good except for large values 
of X ,  which is explained by the authors by the first order of approximation in this version 
of theory. 

Equation 239 gives if - X1+'14 at large X while experiment corresponds better to 
N X'/(d"-') with v = 0.585. The second-order approximation must improve the agreement 
with experiment. The behaviour of if - X1+€14 correlates with the results of intuitive 
scaling (see Equation 4.3-53). The theory (Ohta and Oono, 1982) shows a slight influence 
of polymolecularity on the osmotic pressure of a polymer solution. 

In contrast to this, the plot 

where 

exhibits a significant sensitivity to the polymolecularity of the concentration dependence 
of macromolecular sizes (Figure 5.21). 

The renormalization method of conformational space has been further developed by 
Ohta and Nakanishi (1983), Nakanishi and Ohta (1985), who defined analytical expres- 
sions for the structural factor of light scattering and screening length 6 in a semidilute 
polymer solution 



624 5.1. Renormalization of the conformational space 

a - 1 0 4  
0 a - 1 2  
a a - 103 
A a - 1 1 0  
+ a - 1 1 2  

Figure 5.20. Dependence of r/c,kT us The solid line corresponds to p = 1 (a 
monomolecular polymer), the dashed line corresponds to p = 0.01 (a very wide MWD) 
(Ohta and Oono, 1982) [Reprinted from: T.Ohta, Y.Oono. Phys. Lett. 89A (1982) 460-464. 
Copyright @ 1982 with kind permission of Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV 
Amsterdam, The Netherlands]. The symbols relate to experimental results (Noda et al., 1981) 
for PaMS in toluene at 25OC with different values of MW 

where K ( X )  and Rg are numerically calculated in (Ohta and Nakanishi, 1983). 
Equation 243 has been compared with the experimentally measured screening length 

(Wiltzius et al., 1983) obtained by light scattering from polystyrene solutions in toluene 
(a good solvent) and in methylethylketone (a marginal solvent). The same paper runs 

a correspondence between the theoretical variable X and the polymer concentration c,, 
which arises on expansion of Equation 239 into a series in X 

Thus, this formula allows direct comparison between theory and experiment (Fig- 
ure 5.22) without using any adjustable parameter (as in Figure 5.20). Very good agree 
ment between theory and experiment is evident. 

Moreover, Ohta and Oono (1982), using experimental data of light scattering from 
polystyrene solutions of different fractions (3 . lo5 5 M 5 2.6 . 10’) in toluene 
and methylethylketone (Wiltzius et al., 1983), have plotted a universal dependence of 
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0.7- 

0.6 I I I I 
1 2 3 

H 

Figure 5.21. Plot of ( h 2 )  / (hZ)Cp=o vs H as held by the theory (Ohta and Oono, 1982) 
[Reprinted from: T.Ohta, Y.Oono. Phys. I,et,t. 89A (1982) 460-464. Copyright @ 1982 with kind 
permission of Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands], 
p = M,,/M, = 0.1, 0.5, 1 

10 
Figure 5.22. Dependence of 
C/Rg90 vs X as held by the theory 
(Ohta and Oono, 1982) and the ex- 
perimental data obtained by light 
scattering of different-M W polystyrene 
solutions in solvents of different 

methylethylketone) (Wiltzius et al., 
1983) [Reprinted with permission from: 
P.Wiltzius, H.R.Haller, D.S.Cannel1. Phys. 
Rev. Lett. 51 (1983) 1183-1186. Copyright 
@ 1983 by the Anmerican Physical Society] 

t 
Rg .o 

1 

0.1 thermodynamic quality (toluene, 

loo 0.01 0.1 1 
x 

vs X (Figure 5.23) that checks nicely with the theoretical expression corre- 
sponding to Equation 239. The same experimental data (an/&,) us X (Wiltzius et al., 
1983) agree better with the theoretical dependence of the next order of accuracy (Ohta 
and Oono, 1982) 

A version of theory with explicit account of the chain segment density fluctuations with 
increasing polymer concentration has been put forward by Muthukumar and Edwards 
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Figure 5.23. Dependence of 
100 (dr/dc+,) us X according to 

- an Equation 5.1-239 (Ohta and 
8% Oono, 1982). Different sym- 

bols relate to polystyrene samples 
with different MMs in solvents of 
different quality (Nakanishi and 
Ohta, 1985) [Reprinted with permis- 
sion from: A.NakanLhi, T.Ohta. J .  
Phys. A: Math. Gen. 18 (1985) 127- 

10 

1 

'L 139. Institute of Physics Publishing 
0.1 1 10 loo Ltd.] 

0.01 
X 

(1982). The system P+LMWL with a volume V contain n chains of length No with the 
number of segments N ( N  = N o / l ) .  The distribution function is accepted in the form 

where (Y and p relate to different chains. Then, the free energy of the system is expressed 
as 

where integration is performed over all the conformations of all the chains. 

of others is reflected by introducing a field by means of Equation 185 
Equation 247 considers all the chains. When one of them is separated out, the influence 

As usual, a short-range potential of the form 

Vi.3 = d(i.3 
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is accepted, and it follows from Equations 246 and 248 that 

Here G(@) is Green’s function describing “diffusion of chain conformations” in the external 
stochastic field @ ( E )  (due to the presence of other chains) and satisfying the diffusion 
equation (see Equations 3.1-190,-211, 172) 

+ -+ 
where R and R‘ are the vector end coordinates of a chain with lcngth No. 

For a certain marked chain with segment I ,  the interaction of the segment excluded 
volume is modified by the presence of other chains and described by a new quantity of 
interaction A. Depending on the nature of A, the marked chain is characterized by an 
altered statistics, either Gaussian or non-Gaussian. Even if the statistics proves to be non- 
Gaussian, the end-to-end distance vector permits application of the Gaussian distribution 
function with a new effective segment 11, which must be a function of the original segment 
1 and motion of the chain in the stochastic field: the mean square end-bend distance 
must be Noli. 

Further, the theory envisages renormalization of the segment length and interaction 
with due account of the segment density fluctuations. Thus, the quantities A and 11 are 
the key functions of theory. Their definition provides a possibility to calculate the free 
energy of the system. Solving the problem has led to the following results (Muthukumar 
and Edwards, 1982) 

9 

1 + -  k2E2 

(254) Ak = ~ 1 ’  

where IC is the wavevector in momentum space. Therefore, the effective interactions decay 
with the screening length (. 

In coordinate space, 

(255)  

Generally, the renormalized quantities [ and 11 are related by integral equations. How- 
ever, in the limit where ( and l I  do not depend on wavevectors, their interrelation takes 
the form of algebraic equations 
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I ,  --- =ag[ 
3(: :,> (257) 

where CY is a certain number near 1 in the order of magnitude, c = N,/V is the segment 
concentration. In the “critical” limit (No + 00 and c + 0), the effective segment 11 and 
the screening length have the functional dependences 

provided that 

( [ k ( N J  - L ( 0 ) ] 2 )  = Noh. (260) 

Thus, in a good solvent, (h2)  decreases with increasing concentration 

(h2)  - c-lj4. (261) 
If we accept the temperature dependence 

T - 0  
9 - 7  - 7, 

then Equation 258 agrees with the conclusions of intuitive scaling (we Table 4.1). 
In the other limit (c  + oo), 

For the free energy F of a polymer solution containing n macromolecules in the volume 
V ,  the expression 

where Pl(t j .  m) is the free energy of an infinitely dilute solution, has been obtained. 

dependence 
In the limit (No -+ 00, c + 0), Equation 264 for osmotic pressure is followed by the 

_ -  .R cl 4 0 . ~  167ra3 1/4g3/413c914- 

kT NO 243 ( 9 ) ---+- - 

For a very concentrated solution 

i.e. x - 2. Corresponding calculations lead to an estimation of the second virial coefficient 

A2 - E T [ - ’ .  (267) 

A2 - c “ ~ .  (268) 

As 11 - c-’i4 and [ - C - ~ J ~ ,  then 
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5.2. Renormalizat ion of polymer chain conformat ions 
in momentum space 

The method of conformational renormalization of a polymer chain in momentum space 
turns out to be suitable in many respects for calculation of the characteristic quantities 
in polymer theory. This method is widely applied in the general field theory, and many 
ideas and methods can be adopted for polymer chains (Kholodenko and Freed, 1983). 

The chief significance in this approach is placed upon calculation of the distribution 
function Gg at a fixed end-to-end vector (Equation 5.1-85) and at an additional fixing of 
a point inside the chain (Equation 5.1-118). Using the Fourier transform 

F ( Z )  = / dddf (d )exp( - iZ .  d), (1) 

the average end-bend  distance (h"") is written as 

n = 1,2,. . . (cf. Equations 2.6-40,-41). 
Here the variable Zis transformed t,o r' by means of 

In Equations 3 and 4, 1 is accepted to be 1. 
As discussed above, the macroscopic properties of a system (in this case, (i2'")) must 

not depend on fine-scaled details. When Equation 4 is calculated on the basis of Hamilto- 
nian 5.1-62, divergences arise due to the fine details. To eliminate them, a renormalization 

The microscopic distribution function of the end-bend vector G(h, N ;  v ,  L ,  E )  differs 
procedure is required. -+ 

from that calculated using Hamiltonian 5.1-62 GB by the factor 2 (Equation 5.1-75) 

G ( ~ , N ; ~ , L , & )  = z - ' G ~ ( & z ; ' N ; ~ ~ ) .  (6) 

The arbitrariness of the scale length L leads to the arbitrariness in the numerical values 
of the final quantities, which remain even on elimination of singularities. This arbitrariness 
is eliminated by correlation of theory with experimental quantities (Oono and Frwd, 
1982). 
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Extending the renormalization method to momentum space (k, s) is accompanied by 
the representation of Gg through the inverse Laplace transform (cf. Equations 4.1-5 
and 4.1-34) 

1 
2Ti 

= - 1 ds’ exp(s‘&)Gg(z, s‘; VI)). 

The Fourier-Laplace transform GB for a free Gaussian chain in the chosen units gives 
-1 

GB=(;+S’)  , (9) 

whence it follows that the “mass operator” from field theory C(z, s’) (cf. Equation 2.6- 
36) arises from the excluded volume interactions. Substitution of Equation 5.1-65 to 
Equation 7 yields 

or, with variable substitution Zyls‘ = s, 

If both the sides of this equation are multiplied by Z-’ and Equation 6 is taken into 
account , we get 

In view of the bare (Equation 5.1-66) and renormalized (Equation 5.1-67) dimensionless 
excluded volume, the dimensionless quantities 2 and 2 2  can be dependent on u only. The 
new quantity 

i = 22;’ (13) 

is introduced. - 
The quantities 2, Z, Z2 can be represented as series in u: 

00 

i = 1 + U i U i ,  
i=l 
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The mass operator can also be expanded in uo powers 

i= l  

Then, a variable 2, 
m 

2, = 1 + C,ui 
i=l 

is defined so that 

u = uoz,-l, (19) 

i.e. u vanishes when uo = 0. 
The renormalized constants eliminate all the singularities in GB completely by means 

of defining the coefficients a;, bi,.  . . in subsequent orders of perturbation theory. 
As opposed to renormalization in coordinate space (see section 5.1), the renormalization 

in momentum space (k, s) is performed more rigorously, using the achievements of field 
theory. If G from Equation 6 is substituted to Equation 4, then (z'") proves to be a 
function of N ,  u,  L ,  E 

-. 

(""") = F ( N ; u , L , € ) .  (20) 

Dimensional analysis of Equation 5.1-62 for a certain I > 0 gives 

(21) 
(P) = l ' "F(--;u,C,E). N L  

For the case I = N ,  we have 

1 

(22) 
N 
L 

(P")  = N " F ( - - ; u , E ) .  

On the other hand, introducing the left-hand and right-hand sides of Equation 6 to 
Equation 4 by turns, we obtain 

F ( N ; u , L , & )  = &(No = ZTIN;vo). (23) 

Note that the right-hand side of Equation 23 is L-independent. Applying L(B/aL)  to 
both the sides, we derive a renormalization group equation 

a 
( L &  + /3(u)- + F ( N ;  u, L , E )  = 0, au 

where 

( 2 5 )  
a 

8 L  
p(u) = L-u, 
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(26) 
a 

d L  ~ ( u )  = L- In 2,. 

With the help of the differentiation rule of a composite function, we write 

If, for a certain u = u*, P(u*) = 0, then it follows from Equation 24 that 

F(N;u* ,L ,&)  = 0, 

which permits its solution to be in the form 

Comparison of Equation 29 with Equations 20 and 21 gives 

Let us choose I so that 

or 

For a fixed L, Equations 32 and 20 lead to 

(h'),. N2", 

where 

1 
2u = 

1 - y(u*)' 

(33) 

(34) 

Let us follow the regularization and renormalization of the distribution function GB 
(Kholodenko and Freed, 1983). The series for Gg (Equation 5.1-85) in vo powers contains 
the terms 
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= 1 - ‘0 pr j.,‘, [qr) - qr‘)] 
0 0  

2 

Substitution of this equation to  Equation 5.1-85 yields a series for GB in the form 

The following rules have been formulated for successive calculation of the terms of this 

1. The factor 1/2 before J,” d r  som dr’ in Equation 35 cancels due to the two possible 

2. In this, so-called “temporal” representation, interactions are displayed by a dashed 
In 

series (Reed, 1972; Kholodenko and Freed, 1983). 

sequence orders of r and T’ along the chain. 

line on the diagram, while the factors Go are shown by a solid line (Figure 5.24a). 

b 

Figure 5.24. Diagrams of the perturbation series GB (the complete GB-boldface line, 
Go-thin line): the “temporal” representation (a)-dashed lines show the arrangement of 
the interaction points along the chain and correspond to the contribution of the interaction 
--u0d(?- F’), the “spatial” representation (6)-an interaction is displayed by an intersec- 
tion point and reflects the topology of the interaction points of the chain when its parts 
come together (Kholodenko and Freed, 1983) [Reprinted with permission from: A.L.Kholodenko, 
K.F.Freed. J. Chem. Phys. 78 (1983) 7390-7411. Copyright @ 1983 American Institute of Physica](cf. 
Figures 5.8 and 5.9) 

the nth order, there are n! equivalent variants of the arrangement of the interaction 
lines relative to each other, and this factorial cancels by (n!)-’ before the corresponding 
expansion number GB (see Equation 35). 

3. A “spatial” representation of an expansion diagram GB (Figure 5.24b) finds use as 
well. Here, the interaction points reflect the actual coming together of the chains at 
the instant of their interaction (cf. Figure 5.9 and 5.17). The diagram topology in this 
representation coincides with the situation in the onecomponent (p*) field theory (see 
section 2.6) (Amit, 1978), but the combinatorial factors by the expansion terms differ. 
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Following these rules and using the casual character of the bare propagator, the contri- 
bution of the first-order Gg) can be written as (cf. Equation 5.1-98) 

where Go(?, T )  is the free propagator in r'-and-No space (see Equation 5.1-85 with wo = 0). 
The direct Laplace transform is defined by 

F ( s )  = Jmdz j(z) exp(-sz), 
0 

and the Laplace transform of a convolution is 

Using Equations 38 and 39, the Gg) from Equation 37 reads 

Gk)( i , s )  = -v,,/dFG(i - F,s)Go(O,s)Go(r',s). (40) 

Finally, applying the Fourier transform (Equations 1 and 2) to Equation 40, we get 

where 

and follows from comparison of Equation 40 with series 7 in vo powers, i.e. with the series 

GB(Z,S) = Go(Z,s) - Go(Z,S)C(Z,S)GO(Z,S) (43) 

where 
In order to calculate E('), the d-dimensional integral (Equation 42) must be evaluated. 

For d 2 2, this integral formally diverges, unless a cut-off is accepted in Equation 5.1-62. 
The d-dimensional regularization is a method for extracting a non-singular contribution 

and based is on the idea of using d as a continuous variable. The corresponding intcgrals 
are calculated for d < 2, and, then, such forms of their representation are sought for which 
can be analytically extended to any d. In particular, Kholodenko and Freed (1983) used 
this way to derive the expression 

denotes a series of the Equation 17 type. 
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By virtiie of the equivalence between the polymer theory of excluded volume and the 
onecomponent 'p4 field theory (except the numerical factor), the arguments of renormal- 
izability in field theory (Amit, 1978) are used in ( k , s )  space of the polymer problem. 

Field theory proves that the standard 'p4 theory is renormalixable when d = 4 (Amit, 
1978), i.e. a finite number of renormalization constants is required to eliminate all the sin- 
gularities in the expressions for characteristic functions. In polymer theory, the dimension 
d = 3 is of importance, and the parameter E = 4 - d is used in expansion into series 44. 
In particular, the €'-order term in Equation 44 has the form 

4 

where u;1 = u0/(27~)'; $ ( a )  = 1 - i ;  -$(l) = 7 is Euler's constant. 
From this point on, the prime is omitted, but the multiplier is meant as being included. 

With the use of Equation 45, the denominator of Equation 12 in the first order of u0, in 
view of Equations 14 and 15, takes the form 

(46) 
- k2 k2 

2 2 
2- + %s + ZZ(Z, Z 2 S )  = (1 + u1u)- + (1 + b1u)s 

This relationship must be renormalized, after which no singularities will be present. 
This is achieved by the proper choice of the constants a1 and bl to cancel the terms with 
E - ' .  Indeed, such terms cancel each other provided that 

which leads to ZZT' = 1 or 

2, = 2. 

Hence, in the first order of u, the renormalization constants, according to Equations 13- 
15, take the form 

(49) 

(50) 

2 
2 = 1 + -u + O(u'), 

2' = 1 + --u + O ( U 2 ) .  

E 

2 
E 

In the second order of u, we have 

8 fl = E? 

uo = u (1 + S U ) ,  
2u 1ou2 3 2  2=1+-+--- 

E E2 E '  
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226 5u2 1 0 2  
E &  &2 

2 2  = 1 + - - - + - + O(U3). (55) 

To calculate the higher-order terms, vertex parts and vertex functions (see section 2.6) 
must be introduced. The same functions are used to calculate the second virial coefficient 
which characterizes the intermolecular interactions. 

If two different chains with the interchain interaction parameter ~ 0 3  differ in their lengths 
Nol and No2 and their interaction parameters vo1 and vo2, then, on the basis of Equa- 
tions 5.1-62,-85,-118, a two-chain distribution function with fixed ends 

Gg)(l&, &; &, 2;; Nol, Noz; vo1, vo2,vo3) E Gg’ (56) 

is introduced, when the ends of chain 1 are at the points El and E; while those of chain 2 
are at the points R2 and 2:. As is accepted in the statistical physics of pair distributions, 
a connected two-chain distribution function with fixed ends 

+ 

GgL(Ei, g;; 22, E;; Noi, Noz; {voi}) (57) 

= ~ g )  - G B ( & ,  2;; N ~ ~ ,  v 0 1 ) ~ B ( 6 2 ,  6;; N ~ ~ ,  vo2),  i = 1. . . 3  

is defined. Then, the bare (non-renormalized) second virial coefficient in $-dimensional 
space is expressed as 

In turn, the connected functions are expressed through the vertex ones by means of 

No1 TI No2 7 2  

x / drl / dri / dr2 / dri GB ( gl - 6;  Nol - 7 i ) G ~  ( & - &; No, - r2) 
0 0 0 0  

The functions Ggl, d 2 B ,  and need renormalization. As an example, Figure 5.25 
shows diagrams for Gg; up to the third order of the interaction parameter in the “tem- 
poral” representation. 

Analysis of the singularities in the vertex portions does not practically depend on 
whether two different chains or two fragments of the same chain are considered. The 
renormalization procedure is very cumbersome. 

Finally, the renormalization of the functions under question yields the value of the 
second coefficient of series 18 which is needed to calculate the exponent 2u in Equation 34 
and (h’) in the second order of E 

64 21 A=-- - ; .  
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Figure 5.25. Diagrams up to the 
third order of u for the second 
virial coefficient (Kholodenko 
and Freed, 1983) [Reprinted with 
permission from: A.L.Kholodenko, 
K.F.Freed. J. Chem. Phys. 78 (1983) 
7390-7411. Copyright @ 1983 Amer- 
ican Institute of Physics] 

According to Equations 18 and 19 up to the third order, the authors write 

uo = [I + flu + ji.2 + 0 ( ~ 3 ) ]  . 

In view of Equation 5.1-66, the p(u) in Equation 24 is transformed to 

Substitute Equation 61 to F4uation 62: 
E PW = 2u [I - flu + 2(f; - j2)u2 + 0 ( ~ 3 ) , ]  

In order for P(u) to remain finite with E + 0, the terms with E-' miist cancel out, i.e. 

(64) 2 
f 2  = f, ~ 

Taking Equations 51 and 60 into account, let us transform Equation 63: 

1 p(u) = - [ 1 - -  u+-u2+O(u3) . 8 42 
2 E &  

Similarly, up to the second order of u2, the 2 2  (set: Equation 16) reads 

z2 = 1 + d lu  + dzU2 + o ( ~ " ) .  
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Applying the composite function differentiation rule to Equation 26 yields 

It follows from Equations 63, 66, and 67 that 

(68) 
E 

y(u) = - [dlu + u2(2d2 - d;” - dlfl) + O(u3)] . 2 

The existence condition for y(u) at E = 0 leads to the cancellation of the term with E-’ 

in 2d2 with the same terms in d: + dIf1. Substitution of dl, $2 (see Equations 16 and 55) 
and fl (see Equation 51) to Equation 68 leads to 

(69) 
5 
2 

y(u) = u - -u2 + O ( U 3 ) ’  

whence the exponent 2u, according to Equation 34, results in the form 

(70) 
3 
2 

2u = [I - y(u)]-l = 1 - - -2 + o ( ~ ~ ) .  
The fixed point u* results from the condition 

P ( U * )  = 0. (71) 

Applying Equation 71 to Equation 65 gives 

E = 826. - 42u*’. 

The solution is found in the form 

U* = U E  + b E 2 ,  

the substitution of which to Equation 72 yields 

At last, it follows from Equation 70, in view of Equations 73 and 74, that 

2v = 1 + :+E ( “ 2 ,  
8 4 8  

(73) 

(75) 

which is in agreement with the result in the limit n + 0 in field theory (Amit, 1978). 

k2  = $1’ only, one can write 

G(Z, S )  = G(k2, s). 

Then, in d-dimensional space, 

The quantity ( la’ )  can be calculated according to Equation 4. As G(L,s) depends on 

-G(k2,s)l a2 = 2d -G(k2,s)l a . 
kZ=O ;=, ak: k2=0 ak2 
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A fairly elaborate calculation (Kholodenko and Freed, 1983) leads to 

where N is the chain length. The term with E' is about 4% of that with E .  

Of course, besides the limiting value (h') (Equation 77) corresponding to p1 = u* and 
N --+ 00, the problem of calculation of (h') in the crossover region (Le. in the intermediate 
range of excluded volume with 0 5 u 5 u' and with a finite value of N )  is of great 
significance. That is why the technique of conformational renormalization of polymer 
chains in momentum space has been applied to the dependence u = u(T)  with u(6) = 0 
at a fixed N # N', and upon variation of N with a fixed u # u*. These two problems 
prove, indeed, to be interrelated (Kholodenko and Freed, 1983). 

In the second order in E ,  the crossover parameter is defined as follows (Kholodenko and 
Freed, 1983; Douglas and Freed, 1984) 

where 

1 7 ~  E' 
32 8 5' = -- + - + 0(&3), (79) 

Douglas and Freed (1984) introduce and discuss several crossover parameters. In par- 
t icular , 

2nN '1' 
Q = ( d )  u(1 -u)-l ,  

which relates to (1 (Equation 5.1-146) in the first order of E 

7 = (l(l + (1)"'s = ( 1 ( l  - E)-/*; (82)  

and to (2 (Equation 78) in the second order of E 

Correspondingly, the mean-square end-bend distance is expressed through cl and q 
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To make a comparison between the results of the renormalization group approach, the 
two-parameter theory and experiment, Douglas and Freed (1984) introduce a parameter 

where No = nol, no is the number of segments. For d = 3, the parameter ZB agrees with 
the parameter z from the two-parameter theory (Equation 3.1-153). 

With the aid of the renormalization parameter ZRG 

one can determine the renormalized quantities PRG, (h2)oRG, and n through 

N = nl, (90) 

In the second order of E ,  Douglas and Freed (1984), Freed (1987) have obtained the 
following expression for the second virial coefficient 

where 

is the effective index in the crossover region, and 

(at 17 -+ 00, E = 1, fa, = f;, = -0.235). 
The interpenetration function in d-dimensional space is defined as 

2 M2d2(d/3)d/2 
N A ( ~ T ) ~ / ~  (R2)d’2’ * =  (95) 

and, for d = 3, reduces to the standard form (Equation 3.1-159) accepted in the two- 
parameter theory. As fa, (17, E )  in Equation 94 is defined in the first order of E only, ( R2)d/2 
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must be substituted into Equation 95 in the first order of E as well (Douglas and Freed, 
1984) 

12 8 1+p1 

Substitution of Equations 96 and 92 to Equation 95 gives 

i.e. the interpenetration function is a universal function of 7. 
In the asymptotic limit of a good solvent, 

$(r/  -+ 00, d = 3) = $* = 0.269, 

which agrees well with the experimental data (see Figure 5.19). 

147) 
The dimensionless second virial coefficient in the tweparameter theory (Equation 3.1- 

has its analogue -the renormalized expression 

where 
E 7 7  h ( q ,  E )  = 1 + (4111 2 - 1 ) -  . - + O(E’), 
8 1 + v  

77 
c Y ( 7 / )  = (2 - dv)-. 

1+77 

For the whole region of change in the solvent strength, from the 6 point to the maximum 
good solvent Douglas and Freed (1983,1984), Kholodenko and Freed (1983), Freed (1985) 
have obtained expressions for (h’): 

2 ( 2 u - l ) / E  

(h’) = (h2)oRG (1 - .li + =) u* (1 - ;A), 
where, in the first order, 
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in the second order 

(h2) = (h”>.RG { 1 - u + 
U* 

Let us discuss three modes of the coil state. 
1. Weak interaction mode, where 

Equation 103 reduces to 

where (h2)oRG = N l .  
In the lowest limit, this state borders on the 8 state of the coil; in the highest o n w n  

2. Strong interaction mode, where C >> 1 or ZRG >> 1. 
Equations 103 and 107 reduce to 

ZB % U*. 

respectively. 
As ZRG - NCl2 and (ha)o,, - N, then 

( l a 2 )  - N Z y .  

3. Crossover mode, where C x 1. 
Here, the complete expression 107 should be applied. 

The quantity ZRG is not calculated in the theory of renormalization group transforma- 
tions and is assumed as an empirical parameter, like zg in the tweparameter theory. To 
correlate the conclusions of these two approaches, a new parameter is introduced (Douglas 
and F’reed, 1984) 

(d  - 2)(6 - d )  
ZRG, z =  (d - 2)(6 - d )  

4 Z B  i .??B = 

where d is not considered as a continuous variable. The factor in Equation 113 is chosen 
so that the leading expansion term a$ with respect to .?? should have the same form as in 
one of the versions of the two-parameter theory (see Equation 3.1-130), viz. a: N (4/3)2 
for d = 3. 
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This adjustment of the two theories concerning one property of the macromolecules 
shows their differences in other properties. The variable is also convenient for comparison 
between theory and experiment. 

Thus, the characteristic functions of 2 in polymer theory have the following form (Dou- 
glas and Freed, 1984) 

cy; x (1 + ;2)1/4 (1 - ;) M 1 + -2 4 + O(22). 
3 

Here (4/3)ZRG/U* = 32213 (in the first order in E ) ,  Z < 3u*/4 % 0.15 (in the second order 

in e), and X1 = 
32213 

1 + 32213' 

cy; M 1 . 7 3 , ~ O - ~ ~ ' ~ ,  (115) 

where 2 > 314 and (2 /~ ) (2u  - 1) = 1/4 + (15~/128)1d=3 = 0.3672; 

32 'I4 13 
cy; x (1 + 32) (1 - %XI) x 1 + 1.222+ O(E2) ( 5  5 0.15,a; 5 1.2); (116) 

3 
4 cy; z 1.71z0.3672 (z > -,cy; > 2); 

h ( 2 )  = 2A2M2 ( 1 + - Z  )-'I2 + 4 l n i -  1 A l l  M 1 - 2.972+ 
NA ~ ' P R G  

h(F) M 1.22 (y)-1'2 (z > -); 3 
4 

e 1 
8 d=3 8 

$(z) = 2Y(2) - 1 = y(z) - 1 = u(z)  = $*A, ($* = - 1  = -) 

(to the first order in E ) ,  

1 -t 6.442 
$ ( Z )  = 0.207X2 + 0.062Ai (A2 = 

(to the second order in E ) .  

The theory of renormalization group transformations of the conformational space of 
polymer chains contains the phenomenological parameters L and C which are not natural, 
experimentally produced ones. However, the results of theory are approximated, to a large 
extent, with the variable E which is written through experimentally measured quantities 
a3 

f=AM1+;), (122) 

where A is a constant depending on the polymer and solvent; in fact, it is an adjustable 
parameter. 
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Figure 5.26. Comparison be- 
dl tween the experimental data of 

Miyaki and Fujita (1981) re- 
5 lated to polystyrene in differ- 

ent solvents with the curves 
from the renormalization group 

4 

3 theory (Douglas and Freed, 
1984; Freed, 1985) ( I )  [&printed 

2 with permission from: K.F.Freed. 
Acc. Chem. Res. 18 (1985) 38- 

1 45. Copyright @ 1985 Amer- 
ican Chemical Society], simula- 
tion (Domb and Barrett, 1976) 
(4, from Flory’s theory (Flory, 
1953; Yamakawa, 1971) (3), 
and Yamakawa-Tanaka’s the- 
ory (Yamakawa, 1971) (4) 

0 5 10 15 20 2 

In Figure 5.26 is presented the CY; us Z dependence as given by the theory of renor- 
malization group transformations (Equations 116 and 117) in comparison with the two- 
parameter theories and experiment (Freed, 1985). 

Note that Freed (1985) has changed the empirical parameter Z (introduced by Miyaki 
and Fujita, 1981) by a fador of 0.906 (Z = 0.9062 (M.-F.)). They, in turn, have adjusted 
this parameter for the best fit to Domb-Barrett’s (1976) simulation. 

As is seen from Figure 5.26, the results of the theory of renormalization group trans- 
formations and simulations agree with the experimental data better than do the two- 
parameter theories. 

It follows from Equations 34, 75, and 77 that 

(h2)>,. - jp”L-(2”-1)* (123) 
Comparison of Equation 123 with the experimental data concerning macromolecular 

sizes in a good solvent (Douglas and Freed, 1983, 1984; Freed, 1985) has shown that 

L-112 N (1 - ;) , 

and this relates the theoretical parameter to experiment. According to the model of heat 
blobs (Akcasu et al., 1981) in a good solvent 

0.092 
CYR = 0.930 (g) , 

where nl = N, n, is the blob size, and, according to Equation 77 (Douglas and Freed, 
1983, 1984; Kholodenko and Freed, 1983) 

27r N osm 
CXR = 0.929 (G) . 

Therefore, L from the renormalization group approach serves as an analogue of the blob 
size in scaling theories of heat blobs (Akcasu et al., 1981). 
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5.3. Hydrodynamic properties of macromolecules 

When the ith element of a chain (a bead, a segment) moves in a liquid (solvent), there 
arises the friction force 

where [O is the friction coefficient of the chain segment, Zi is the velocity of this segment, 
i$’ is the velocity of the element of the liquid at the same point of space, where the ith 
segment is located, in the absence of this segment. The velocity has two components 

q = v’, + c;, 
where ~ 7 i  is the velocity of the liquid element in the absence of the whole macromolecule, 
i7/ is the velocity of the liquid element due to the presence of all the chain segments but 
the ith one. The perturbation is expressed by 

where Tjj is Ozeen’s tensor characterizing the hydrodynamic interactions of the segments 
of a molecular chain (Flory, 1953; Tsvetkov et al., 1964; Yamakawa, 1971; Raf?kov et al., 
1978; Oono and Kohmoto, 1983; Tsvetkov, 1986; Gotlib et al., 1986). 

Substituting Equations 2 and 3 to Equation 1, we get 

which is the key equation in Kirkwood-Raizman’s approach. 
The calculation of the hydrodynamic properties of macromolecules comprises Lwo stages 

(Oono and Kohmoto, 1983): first, Equation 4 should be solved with respect to F,; second, 
one can calculate a characteristic value containing F; as an ensemble average. 

The first stage presents significant difficulties, as Ozeen’s tensor T , j  explicitly depends 
on the chain conformation, so, f i  must be calculated for every possible chain conformation. 
To get around this difficulty, methods of preliminary averaging (preaveraging) of Ozeen’s 
tensor over the equilibrium distribution functions have been developed 

+ 

The approximate nature of different calculational procedures using preaveraging of 
Ozeen’s tensor is discussed in detail in the special literature (eg. see the aforecited papers). 

The method of renormalization group transformations has an advantage of the actual 
opportunity to calculate the characteristic values without preaveraging of Ozeen’s tensor. 
As a model, a continuous chain with its Hamiltonian of the Equation 5.1-62 type is 
accepted. 
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If an external force moves the centre of mass of a macromolecule with a velocity ii, then 
the friction coefficient of translation of the macromolecule is defined by 

where $(T)  is the friction force per unit length of the model chain at point T .  By virtue 
of the smallness of .', the force averaging can be performed over the equilibrium ensemble 
(Equation 5.1-62). 

For the continuous chain model, Equation 4 becomes 

where eo is a bare (model, microscopic) friction coefficient. The hydrodynamic interaction 
is described by Ozeen's tensor 

where qe is the effective viscosity of the medium, which may not coincide with that of 
the solvent qll; nevertheless, 7, w qs is often accepted. From Equations 6 and 7, for the 
friction coefficient f in the lowest non-trivial order we have 

Averaging is performed over the equilibrium ensemble with Hamiltonian 5.1-62. In 
order to  calculate 6 / q e  in the first order in E ,  it will suffice to apply Equation 5.142 
without the excluded volume interaction term. On averaging with the Gaussian distribu- 
tion function, Oono and Kohmoto (1983) have obtained 

The existence of a singularity here with E = 0 makes renormalization off necessary. In 
addition to the dimensionless parameter of excluded volume ~ ( 0  = woLC/' (Equation 5.1- 
66), the dimensionless hydrodynamic parameter 

is introduced, which characterizes the efficiency of the hydrodynamic interaction. This 
bare parameter is assumed to be related to the renormalized strength of the hydrodynamic 
interaction by the relationship 
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considering the combination of the hydrodynamic and thermodynamic interactions. The 
singularity in Equation 10 must disappear i f f  is written in terms of the renormalized 
parameters N ,  u, and E. This requirement defines a relationship between and Eo. 

Recall the interrelation between u and uo 

2 
uo = u 1 + -u + O(u2)] [ X2E 

(see 5.1-127), 

N = ZZNo 

(see 5.1-65), where 

1 
2+€ 2 2  = 1 t -u + O(u2) 

(see 5.1-97,-115). 

Equation 10 
First, a dimensionless constant of the interaction between 60 and N is introduced into 

The second summand here has a higher order of [, and Eo and No in it are just replaced 
by the renormalized < and N ,  as these bare and renormalized quantities coincide in the 
lowest order. 

From Equations 5.1-97,-115, 12, 13, the coefficients El and E2 are determined: 

3 1 
l o  = l (1 + mlt -u+ . .  (14) 

With the renormalized quantities, the friction coefficient is written (Oono and Kohmoto, 
1983) as 

1 3  f = N C  I--  { (2.rr)2 [P (?) - f l}  ' 
where C is the renormalized friction coefficient of a chain element 

c = r l e [L -E '2 .  (16) 

To analyze the universal properties of the friction coefficient f ,  one should write the 
basic renormalization group equation and choose fixed points. Solving this equation 
together with dimensional analysis (Oono et al., 1981) (see section 5.2) yields the scaling 
form of f. 

The renormalization group equation for f is derived on the basis of independence of 
the bare friction coefficient J from the macroscopic scale length L .  On the other hand, 
N ,  u,  and E may depend on L .  Then, 
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where 

No ,vo ,Eo 

These functions are calculated from Equations 5.1-127,-97, -115, and 14: 

The fixed points u = u* and 6 = 

Thus, four points 

are defined from the conditions &(u) = 0 and 
P d t ,  u )  = 0. 

(A) U* = 0 ,  r = 0; (24) 

(26) 

(27) 

8 
3 

(C) u* = 0,  y = -7r2€; 

are determined from Equations 21 and 22. 
Fixed points A and B are versions of free draining of the chain while C and D relate 

to a nondraining chain. The fixed points with u* = 0 correspond to the 6 state, while 
U* = 7r2&/2 correspond to the self-avoiding limit (the maximum good solvent). 

At the fixed points, the renormalization group equation 17 reduces to 

where 
1 

2u 
. * = I - -  (29) 
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(see Equation 5.2-34). Equation 28 restricts the functional form of f by 

f' = f(L, N,u*,l*) = f 1  (LN- ' / '* ,u*,c) .  (30) 

On the other hand, the scaling properties of f ,  following from Equations 15 and 16, are 
expressed in 

f ( S L ,  S N , u , [ )  = S(d /2 ) - ' f (L ,  N,u , [ ) ,  (31) 

where S is a certain positive number. Combining Equations 30 and 31 leads to 

At the fixed points, the expression for the friction coefficient f (see Equation 15)' in 
view of Equation 32, becomes 

In the case of a nondraining coil in the self-avoiding limit (point D) E* = 27r2&, so 

where 

(35) 
1 E  

y = - + -  
2 16 

(see Equation 5.2-75). 

4 
3 

In another fixed point (C) of a nondraining Gaussian chain, where = 87r2e/3, 

(36) 
1 

(u = -). 
(1E2) 2 

f* = -7rEqeexp - ( 2 7 r ~ ) ( ~ - ~ ) "  

The coefficient of translational diffusion is defined by Einstein's equation 

kT D=r' (37) 

According to Equations 34 and 36, expressions for D for a nondraining coil in the 
maximum good solvent (the self-avoiding limit) 

and for a nondraining Gaussian chain in the 8 state 
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are obtained. 

renormalized limiting number of viscosity 
Calculations done in the same fashion (Oono and Kohmoto, 1983) have led to the 

Special analysis (Oono and Kohmoto, 1983) has shown this function at the fixed points 
u* and to take the form 

In particular, at the self-avoiding fixed point D for a nondraining chain in the maximum 
good solvent, 

The calculational algorithm of the renormalization group approximation enables [q] to 
be calculated directly (without preaveraging), as well as with the preaveraging of Ozeen’s 
tensor. The ratio of the [q]’s calculated in these two cases shows the effect of preaveraging 

[411pre = exp { L} = 1.11 (point D) or 1.15 (point C). [VI 24 ( 2 ~ ) ~  (44) 

Thus, the preaveraging procedure of Ozeen’s tensor increases [q] by -10%. Indeed, 
Miyaki et al. (1980) have found the measured [q] in polystyrene solutions in the 0 solvent 
to be by -10% less than that calculated for a Gaussian coil with Ozeen’s tensor having 
been preaveraged. 

The hydrodynamic properties of macromolecules reported above have been calculated 
in the E order. The results contain the macroscopic scale length L which, in particular, 
depends on the chemical structure of a polymer. Of course, L-free expressions possess 
a universal meaning regardless of this structure. Such expressions can be obtained by 
combining the characteristic quantities [q] ,  f (or D), ( R 2 ) ,  and dz. 

In the case of a nondraining coil in the maximum good solvent (the self-avoiding limit), 
we have 

(45) 
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( P ) = - e x p  ( ----E ;;) L (2;N)2w; - 
37T 

in the nondraining Gaussian limit 

?-. '7"[7]0 = G e x p  E ( :E )  ( ~ T N ) ~ / ~ ,  

( R i )  = 5exp 2 (-f) N .  

NA Ve 

_ -  fe - -7Taexp 4 (&) ( 2 7 ~ N ) ( ~ - ~ ) / ~ ,  
77, 3 
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(48) 

(49) 

In the multipliers of Equations 45-51, all d's are represented as a series in the E order 
with subsequent exponentiation. For example, Equation 51 is derived as 

dN  EN^ 
6 4 6 3  

( R i )  = - = 4 (1 - -) . - = -Nexp 

In the case of a nondraining coil in the maximum good solvent, the following expressions 
are obtained. Combination of Equations 45 and 48 leads to 

with which Flory's parameter @ (Equation 3.6-67) is related by 

arises from Equations 47 and 45. 
Combination of Equations 46 and 48 yields 

(f /qe)l/(d-2) - (kT/Dqe)'/(d-2) 
(R2) lI2 ( R2)'I2 

- UjR = 

In 3 0  space, the hydrodynamic radius is derived as 

f 
67~71~ 

RH = -. 

Hence, for d = 3, 

(57) 

(58) 
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i.e. Flory’s hydrodynamic parameter P is proportional to U ~ R :  

The universal ratio also results from Equations 45 and 46: 

It corresponds to Flory-Scheraga-Mandelkern’s parameter /3 in 3 0  space as 

and to Tsvetkov-S.Klenin’s (1953) parameter as 

through 

It results from Equations 47 and 48 that (Oono, 1983) 

The given ratios are related to each other as well: 

U A , , ~ ~ R  = UAR, 

(66) I’d U V f U f R =  u, ,R * 

Tables 5.1 and 5.2 compare the predictions of OoneKohmoto’s (1983) theory with 
experimental results. Theory is seen to agree well with experiment. For the parameters 
and Ao, the experimental accuracy is, of course, insufficient to detect a very small effect 
(- 5%) of solvent strength. 

The ratio $/Be in the first row of Table 5.2 can be written as 

where 

(see also Equation 3.6-71). 
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Universal ratios (asymp- 
totic values) 

Table 5.1 
Universal relationships with hydrodynamic quantities (Oono and Kohmoto, 1983) 
[Reprinted with permission from: Y.Oono, M.Kohmoto. J. Chem. Phys. 78 (1983) 520-528. Copy- 
right @ 1983 American Institute of Physics] 

Oono and Experimen 
Kohmoto's 
theory 
(d = 3, 
E =  1) 

Nondraining Gaussian 
coil in the 0 solvent 

Oono and 
Kohmoto's 
theory 
(d = 3, 
E = 1) 

4.078 

Experiment 

4.5d 

3.5" 

3.4. . .3.8 

(53) 
w 7 1 1  

UqR = 
NA (R2)3/2  

- 14.7' 
UJR = f (56) 1 15.189 

7s (W2 N 17" 

N 6.22" 

N 6.12' 
5.768 

U,,, = (2)1'3~s/f (60) 1 0.1236 1 0.126b 

0.12' 

Nondraining self-avoid- 
ing coil in the maximum 
good solvent 

I 

1.3" 

1.2. .  . 1.4f 
1.196 

129 
12.067 I 
0.1297 I 

a polystyrene in cyclohexane (Miyaki et al., 1980), ' asymptotic estimations using data by Montecarlo simulations (Zimrn, 1980), 
Montecarlo simulations (de la Torre et al., 1982), 
poly(D-P-hydroxybutylate) in trifluoroethanol (Miyaki et al., 1977), 

" poly(D,L-P-methyl-P-propiolactone) in tetrahydrofuran (Miyaki et al., 1978), 
f polystyrene in benzene (Miyaki et al., 1978), 

PMMA in acetone (Ter Meer et al., 1980). 

Oono (1983) has applied the method of renormalization group transformations for hy- 
drodynamic quantities in the whole crossover region. In this case, the complete renormal- 
ization group equation 17 should be considered, with its general solution of the form 

Lw-'/', N ( l  + w)-"~, (1 + 
where 

u 
w = -  

21' - u' 
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Flory’s (54) 
constant 
ip .10-23 
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2.36 
@ e  

NA 
- = 0.3917 

Table 5.2 
Traditional universal relationships with hydrodynamic quantities (Oono and Kohmoto, 
1983) [Reprinted with permission from: Y.Oono, M.Kohmoto. J. Chem. Phys. 78 (1983) 520-528. 
Copyright @ 1983 American Institute of Physics] 

Flory-Schc (61) 
raga-Man- 
delkern’s 
parameter 
p - 10-6 

2.249 

Nondraining self- 
avoiding chain in the 
maximal good solvent 

Nondraining Gaussian 
chain in the 0 solvent 

Oono and 
Kohmoto’s 
theory (d  = 3, 
E = 1) 

Experimeni 

N 1.F  

N 1.4d 

4.9d 

Experimenl 

2.55” 

2.51b 

- 6b 

N 7‘ 

values) theory ( d  = 3: 

1.67 
@ 
- = 0.277 
N A  

4.926 Flory’s con- (59) I 6.201 
stant P 

2.2gb 

2.2“ 
2.36 1.049 

- 

1.05 3.29 (3.2 f 0.2)’ 3.13 (62) Tsvetkov- 
S.Klenin’s (63) 
parameter 
Ao . l o ”  

(3.2 f 0.2)s 

1.156f 1.562 1.555f 1.259 

Penetration (64) 1 0 
function Q 

0.219 0.22“d 

a polystyrene in cyclohexane (Miyaki et i 

asymptotic estimations using data by Monte-Carlo simulations (Zimm, 1980)’ 
poly(D-p-hydroxybutylate) in trifluoroethanol (Miyaki et al., 1977)’ 
poly(D,L-~-methyl-/3-propiolactone) in tetrahydrofuran (Miyaki et al., 1978), 

200 P+LMWL systems (more than 2,000 fractions), including 160 systems in the  B solvent 
f PMMA in acetone (Ter Meer et al., 1980)’ 

(750 fractions) (Tsvetkov, 1986; Tsvetkov et al., 1982). 
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u* and E‘ are the values at the fixed point D (Equation 27), 

crossover parameters C and 6: 
The hydrodynamic quantities and their ratios have been calculated as functions of the 

27rN E / 2  C = (,) w ( l  + w)--E/8 

(see Equation 5.1-146) and 

1 - 2  6 = (1 + w)3/4- A .  

z (73) 

However, the 6 dependence of the hydrodynamic quantities has proved to be weak, i.e. 
the draining effect of a molecular chain is negligible. 

As in the static case, when w + 0 (u + 0) and N -+ 00, the hydrodynamic quantities 
become universal functions of one variable (see Equation 5.1-161) (here Oono introduces 
a new designation i -+ 2): 

z = (T)E/2w. 27r N 
(74) 

Bearing in mind the dependence of a~ ws 2 (see Equation 5.1-167), Oono has recalcu- 
lated the hydrodynamic quantities as dependent on a~ (eg, see the dependence U A ~  us a i  
in Figure 5.27). 

UArl 

1.0 - 
Figure 5.27. Dependence U A ~  = 
dM/[v] us a& as held by Oono’s 
(1983) theory [Reprinted with permis- 
sion from: Y.Oono. J. Chem. Phys. 79 

American Institute of Physics]. EX- 
perimental values relate to a solu- 
tion of polychloroprene in decaline 
(Kawahara et al., 1968; Norisuye 

0.5 et al., 1968) (1) and poly(pcaru- 
methylstyrene) in diethylsuccinate 
(Tanaka et al., 1970) (2) 

(1983) 4629-4642. Copyright @ 1983 

0 - 1  
0 - 2  

0 

Despite the accepted assumption w -+ 0 (u -+ 0), the approximate version of theory 
fits the experimental data well in a wide range of (YR (therefore, of w as well). Oono 
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(1983) has also calculated and compared the indices v (static) and fi (dynamic) in the 
whole range of 2. In the limiting cases of small and large w ( Z ) ,  v and fi coincide, while 
they somewhat diverge in the crossover region, and fi us Z lies below v us 2 and with a 
smaller slope. 

5.4. Direct renormalization method 
Des Cloizeaux (1981) has offered another approach using the direct renormalization 

method on the basis of the continuous chain model in continuous d-dimensional Edwards- 
type space. 

Owing to the infinitc numbcr of macromolecular conformations, the analytical expres- 
sions of theory have different-type divergences at the first stage to be subject to renor- 
malization. In order to study the asymptotic properties of chains with a high molecular 
weight, three successive renormalization procedures must be performed on the whole. 

Unperturbed chains are Brownian chains, i.e. the continuous limit of chains with inde- 
pendent segments. The partition function (the functional integral) of a Brownian chain 
diverges due to the infinite number of degrees of freedom. To cancel this divergence, the 
first renormalization procedure is required. 

Introduction of interactions gives rise to “ultraviolet” divergences at short distances, 
which also need renormalization. 

Introduction of interactions to very long chains leads to “infrared” divergences requiring 
the third renormalization procedure of the analytical expressions. 

The probability distribution function of a unperturbed (Brownian) chain can be repre- 
sented as 

S 
P ~ { r } = e x p { - i / d s [ T ] ~ } .  d?( s) 

0 

As the exponent must be dimensionless, the parameter S has the dimension of area 
[SI - L2, where t is the chain length. 

Using Equation 1, the mean value of the exponent 

is calculated as usual 
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as 

657 

The expression in the square brackets in the nominator of Equation 3 can be written 
as 

By virtue of the invariability of the Gaussian integrals on a shift of the variables t i n  a 
complex plane, the Gaussian integrals in both the nominator and denominator of Equa- 
tion 3 cancel out and only 

remains. Calculating ((r'(S) - F(0))2)o in an identical manner, we get for d-dimensional 
space 

( h o ) 2  = ( ( r ' (S) - T j (o ) )2 )o  = Sd. 

Hence, the properties of a Brownian chain depend on one variable S only. 

actions should be introduced, which in the model of a continuous chain is written as 
To study the macromolecular properties in a good solvent, the two-body (pair) inter- 

s s  
dr'(s) 

S 

P { r }  =exp[-%(S,b)] =ex.{ - k [ d s  [-I - i / d s ' / d s"G(r ' ( s ' )  -7"")) 
0 0  

To ensure the convergence of the expressions based on distribution function 7, a cut-off 
so must be introduced, i.e. it is presumed that 1s"- s'J > so in the double integral, where 
so << S .  Physically, the cut-off prevents consideration of the self-interactions of segments, 
for which s' = s". 

It follows from form 7 that the parameter b must have its dimension 

b N Ld-4, (8) 

whence it is seen that d = 4 plays the role of the critical index in the problem. Then, the 
dimensionless parameter z 

(9) = bS2-d/2(2 -dl2 n) 

is introduced. Here, the quantities S and b can be related to more common ones 

S = N P ,  

b = C4, 
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where N is the number of segments with length I and v is the excluded volume. The 
quantities N, 1, and v have the meaning of phenomenological parameters of the system 
(cf. Equation 3.1-153). 

Let us consider a set of N macromolecules of different lengths. Each macromolecule is 
denoted by the index j with the corresponding area S,. The chain itself is denoted by the 
vector C(s) (0 < s < Sj). 

The probability distribution function associated with the conformations of the whole 
set of chains is written as 

Here the cut-off 1s” - 3’1 > so is also introduced to the integrals corresponding to the 
terms with i = j in the double sum. 

All the physical quantities of a polymer system can be expressed through the statistical 
integrals with an imposed constraint , The fixing of several p points relating to 
the given macromolecules may serve as such a constraint. Each of the point, called a 
correlation point, is denoted by the index q (1 5 q 5 p). The point with the index q is 
assumed to relate to the chain j ,  with the area S,, and the coordinate of the point along 
the chain is sq (0 5 sq 5 Sq), its spatial position is characterized by the vector Fq. The 
imposed constraint implies that the condition 

Cq(Sp) = Fq (13) 

is satisfied for every q within the range 1 5 q 5 p .  
So, the statistical integral with an imposed constraint is designated as 

+ S G ( ~ ,  - - - , CP; h, . . . , j,; s1, - - . , sp; SI, . . . , SN), (14) 

where the subscript ‘G’ denotes the general type of the integral, the plus means the 
introduced cut-off so.  Then, by definition, 

and the general statistical integral of the system (with no imposed constraint) has the 
form 

Thus, the statistical integrals are defined with the help of functional integrals. The 
denominator in Equations 15 and 16 is a normalizing factor which prevents the divergence 
of the statistical integrals-this constitutes the first renormalization procedure. 

Partition function 7 suffices to study the conformational problems of macromolecules 
in a good solvent (b > 0) in the limit of long chains. 
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To analyze the situation in a poor solvent, ternary interactions must be taken into 
account. Then, 

s s  
dr'(s) 

S 

P { r }  = e x p ( - i / d s  [-I - ~ J d s " J d s ' 6 ( r ' ( s " ) - F ' ( s ' ) )  
0 0 0  

s s s  
C - - / ds'" / ds" / ds' 6( F'(sN') - ?(st))&( qs") - r'( S I ) ) } ,  

6 O  0 0  

where the coefficient c characterizes the ternary interactions and has the dimension 

whence it follows that d = 3 serves as the critical value of dimension in this case. 
The coefficient c has, as well, the meaning of a phenomenological quantity which d e  

pends on the chemical structure of the polymer and solvent in a sophisticated and implicit 
way. 

Results of the studies of polymers with their partition function of the Equation 17 type 
will be discussed in detail in section 5.5; now, we return to the partition function of the 
Equation 12 type which can be expanded into a series in powers of b. The interaction 
term is written as a short-range action through the Fourier transform: 

Therefore, the expansion of the Fourier transform of the statistical integral contains a 
number of terms, each being the mean value of the exponent of the exp[iZ.F'(s)] type. The 
mean value is taken over all the set of Brownian chains and calculated from Equations 2 
and 5. 

The diagrams, displaying the nth-order terms, consist of N lines (the number of macre 
molecules) and n interaction lines which connect the lines of macromolecules in some way. 
As an example, shown in Figure 5.28 are five-chain diagrams. 

- - -  

Figure 5.28. Diagram for +34S1,. . . , Ss) consisting of 
two separated connected parts (des Cloizeaux, 1981) 
[Reprinted with permission from: J. des Cloizeaux. J .  de Phys. 
42 (1981) 635-652. Copyright @ 1981 by EDP Sciences]: the 
solid lines are macromolecules, the dashed lines are in- 

- 
\ , , teractions 
/ - 
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Of special interest are the contributions of connccted diagrams, as all the physical 
quantities can be expressed through the sums [+3G(. . .)lo, of the very contributions. The 
connected statistical integrals are denoted as 

+3(si,. . . , s N )  = v-' [+3~(s i , .  - e ,  s N ) ] c o n  ; (20) 

(21) + .  +3(?1,. . . ,rp;.li, .  . . ,&;Si,. . . , .$pi  si,. . . , SN) 
4 .  

= v-' [+3~(?, . . . ,rp;.7i,. -: , & S i , .  . . , s p ;  si,. -. , s N ) ] C o n .  

If the volume of the system V increases, statistical integrals 20 and 21 become independent 
of V. For further analysis, the dimension of statistical integrals, which follows from 
Equations 16 and 20, 

(22) +3(si,.-.,sN) p - d  = Ld(N-1) 

is of importance. 
The Fourier transform of the connected statistical integrals is defined as 

+ + 
+ 3 ( k l , .  . . , kp; j l ,  . . . , j p ;  s 1 , .  . . , sp; s1, . . . , SN) (23) 

= V-1 1 ddrl 

X+3(?1,. . . , T p ; J i , .  . . , j p ; s i , .  . . , Sp; si,. . . , S N ) .  

1 A, exp [i(i l  . + . . + zP . F ~ ) ]  

+ .  

If V becomes infinite, the integral 
+ 

+3($,,. . . , kp; j , ,  . . . , j , ;  SI,. . . , sp; SI,. . . , S N )  

k l + k z + . . . + Z p = O  . (24) 

remains finite and determined provided that 
- - . +  

If the endpoints of the chains axe fixed, the notation is simplified: the quantity 
4 s(&, 9 . .  h .M;  S I , .  ., SN) 

corresponds to the situation with p = 2 N  and 

(A,.. . ,  j Z N )  = (1 ,1;2 ,2; . . . ;N,N) ,  

(Sl, . . . , SZN) = (0, s,; 0,  sz; . . . ; 0, S N ) .  

In the long-wave limit, 

+3(0,0; ...; o,o;Sl, ...,SN)=+~(S~,...,SN). 

The terms of the expansion series of 'S(s1,. . . , S N )  or - 
+3(kl ,  . . . , Zp;j1,. . . , j p ;  s1, - * . , sp; 4,. . ., SN) 
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Figure 5.29. A diagram _with _correiation points with intro- 
duced external vectors (ICl + kz + k3 = 0) (des Cloizeaux, 
1981) [Reprinted with permission from: J. des Cloizeaux. J. de Phys. 
42 (1981) 635-652. Copyright @ 1981 by EDP Sciences] 

i 3  c - - -  

in powers of b are connected graphs, as the interaction is denoted by connection lines. 
These graphs (diagrams) are constructed in all the possible ways and calculated according 
to the following rules. 

1. The diagram consists of N lines representing N macromolecules; each line is denoted 
by the subscript ‘ j ’  and has the area S, (Figures 5.28 and 5.29). 

2 .  The macromolecular lines are connected by interaction lines which end on the macro- 
molecular lines at the interaction points. Actually, the endpoints of the interaction lines 
coincide in physical space, not in the diagram (cf. Figures 5.8 and 5.9). 

3. Correlation points are placed on the macromolecular lines. 
4. The interaction points and the correlation points separate the macromolecular lines 

into segments. Each segment has its area. The sum of these areas of the polymer segments 
per line j is equal to S,. 

5. Each polyFer se$ment and each interaction line contain a wavevector. External 
wavevectors (k1,. . . , I C p )  (see Figure 5.29) are introduced at the correlation points. Each 
segment at the free end of the polymer line is endowed with a wavevector 0. The flux of 
the wavevectors is preserved at the interaction points and at the correlation points. 

6. The factor (4) is associated with each interaction line. 
7. Each polymer segment with the area s endowed with the wavevector s‘, has its factor 

8. The product of all the factors is calculated over each independent internal vect,or 
exp(-sq2/2). 

and integration of the type 

is performed. One wavevector is attached to every internal loop. 
9. Integration like J d s . .  . is performed over every independent area s. The limits of 

integration are defined by the imposed constraints (see rule 4). 
10. In integrating, the area of every polymer segment is assumed to be larger than the 

cut-off area so, to avoid short-range (ultraviolet) divergences. 
A cut-off at short distances is necessary for convergence but inconvenient for two rea- 

sons: it brings an additional parameter and makes the calculation of diagrams more 
difficult. The procedure of cutting-off is replaced by renormalization, and the renormal- 
ized quantities can be calculated with rule 10 slightly modified. In particular, the cut-off 
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can be eliminated by the second renormalization of the integrals: 

 SI,. . . , sN)  = exp [(SI +. -. + SN)S;'C(ZO)] 3(&, . . . ,sN); 

+3(. . . , SI,. . . , sN) = exp [(SI + . . . + sN)s ; l~ ( zO)]  3(. . . , SI,. . . , sN),  

(27) 

(28) 

where 

zo = 

If so + 0, 3(&, . . . , SN)  and 3(. . .., S1,. . . , SN)  remain well-defined (while the exponent 
diverges). 

Thus, des Cloizeaux (1981) considers N polymer connected nth-order (n 2 N - 1) 
diagrams contributing to +3($, . . . , SN). 

Before integration with respect to the independent wavevectors and the independent 
areas, the contribution of diagrams constitutes the product b" as a dimensionless finite 
multiplier, which is a function of areas and wavevectors. The number of the independent 
areas is 2n. The number of the loops L (i.e. the number of the independent wavevectors) 
is n - Af + 1. On integration with respect to L wavevectors, a homogeneous function 
b"D{s} of internal areas is obtained: 

D{Xs} = X-(n-N+1)d/2D 1s). (29) 

Integration with respect to the internal independent areas {s} may lead to a divergence, 
if so + 0. 

To study this property, the concept of E'-reducibility should be introduced. A diagram 
is thought of as P-reducible if it can be divided into two separate non-trivial parts by 
breaking one polymer line. Otherwise, it is considered ag P-irreducible (Figure 5.30). 

::1: a 

- - .  --I - -  

b 

Figure 5.30. Connected diagrams: P-reducible (u)  and 
P-irreducible ( 6 )  (des Cloizeaux, 1981) [Reprinted with 
permission from: J. des Cloizeaux. J. de Phys. 42 (1981) 635-652. 
Copyright @ 1981 by EDP Sciences] 

If a diagram is P-reducible to parts 1 and 2, one can write 

D{si +sa} = Di{si}D2{~2}. 

The wavevector, related to the polymer segment connecting 1 and 2, depends on the 
external wavevectors only; hence, the integrals with respect to the wavevectors can be 
factorized. Then, the short-scale divergences, that exist in parts 1 and 2, are multiplied. 



5.4. Direct renormalization method 663 

If a diagram is P-irreducible, the number of independent “internal” areas appearing in 
D{s}  is (2n - N ) .  Therefore, such a diagram primitively diverges at short distances if 
(see Equation 29) 

d 
(31) 2 n - N S  T ( n - N + 1 ) ,  C = n - N + 1 > 0 .  

This expression can also be written as 

For d < 4, the product in the left-hand side is positive. This means that there is no 
primitively divergent diagrams for N > 1. 

For = 1, this conditions degenerates to 

At d < 2, all the diagrams converge at short distances, and there is no need either in 
cut-off or in renormalization. For 2 5 d < 4, the degree of convergence (in area units) 
is [l - n(2 - d / 2 ) ] .  In principle, one subtraction suffices to ensure convergence, if a P- 
irreducible diagram contains no P-irreducible insertions (Figure 5.31a). In this simple 

\ 
\ 

\ r /I::! \ / . ;:I \ ,’ Figure 5.31. A P-irreducible diagram with- 
out ( a )  and with ( 6 )  a P-irreducible insertion 
(des Cloiseaux, 1981) [Reprinted with permission from: 
J. des Cloizeaux. J .  de Phys. 42 (1981) 635-652. Copyright 
@ 1981 by EDP Sciences] 

’ 

a b 

case, the diagram diverges but contains no divergent subdiagrams, and subtraction can 
be performed as follows. 

Let the point with its coordinate s1 at the beginning of the chain be the point of the 
first interaction on a polymer line, and s2 is the coordinate of the last interaction point 
(near the other end of the chain). Assuming s1 and s2 to be fixed, one can integrate D{s} ,  
and this integral is convergent. 

Dimensional analysis leads to 
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If (sZ - sl) + so, then for = 1 

+ Ab" - l+n(2-d/2) -Z+n(Z-d/Z) = 
1 - n(2 - d/2fO 

Ab" 1 dsz Is2 - sll 
Jl+SO 

(35) 

+ regular terms. 
Thus, the integral can be written as, the sum of the regular so-independent components 

and the singular component which is, a power function of SO. This singular component 
can be isolated from the regular one and regarded as an "insertion point" (Figure 5.32). 

I 
I Figure 5.32. A diagram with four insertion points (des Cloizeaux, 1981) 

[Reprinted with permission from: J. des Cloizeaux. J .  de Phys. 42 (1981) 635-652. 
Copyright @ 1981 by EDP Sciences] 

' 
I 
\ 

Now let us discuss a diagram containing P-irreducible insertions (Figure 5.31b). Isolate 
the regular component from the so-containing irregular one in the internal P-irreducible 
insertions. The process is iterated step by step. Finally, the contributions of the maximal 
P-irreducible subdiagrams are replaced by their regular parts. On integration (and sub- 
tracting the divergent part, if the entire diagram is P-irreducible), one obtains the final 
contribution of the diagram. 

In such a way, the renormalized statistical integral 3(S1,. . . , SN)  is calculated. The 
same procedure is applicable to calculation of the statistical integral with an imposed 
constraint 3(. . . ; SI,. . . , SN). 

Indeed, the so-dependent terms are the same and do not depend on the external 
wavevectors. 

Now let us have a look at how the total non-normalized contributions relate to the 
renormalized ones. The sum of the divergent contributions of all the primitively divergent 
nth-order diagrams is proportional to z ~ s 0 '  as is seen from Equation 35. The sum of 
these terms over n has the form C(zO)"si1 and can be regardcd as an insertion point (see 
Figure 5.32). These points may be placed arbitrarily on the polymer lines. Inclusion of q 
points to a polymer line of the area Si gives the multiplier 

1 
-(sj)q (c(zO)s;1y. 
4 

Therefore, on introduction of insertion points in all the possible ways on all the polymer 
lines, the following multiplier emerges: 
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In just the same way, the so-dependent regularized statistical integrals are obtained as 
the product of statistical integrals renormalized by this multiplier. The results obtained 
have the form of Equation 27. 

be formulated as follows: summing over independent areas, one begins with the calculation 
of the maximal internal P-irreducible components (thus, the P-irreducible components 
are calculated consequently), the integral divergent at short ranges is replaced by its 
principal part; eg, for a certain n, 

- .  To calculate 35'1,. . . , S N )  or 3(&, . . . , k,; jl,. . . , j,; SI,. , . , sp; Sl, . . . , SN),  rule 10 should 

This rule defines the two-parameter model. The renormalized statistical integrals in this 
model depend on b and the are= SI,. . . ,SM of macromolecules only. If all the areas are 
equal to S, the physical quantities depend on one dimensionless parameter z (Equation 9). 

In what foilows, the properties of solutions of a monomolecular polymer, i.e. chains with 
the same area S, will be discussed. However, in principle, this method of des Cloizeaux 
is applicable to polymolecular polymers as well. 

The most important quantities of theory are: 

1. the one-chain 3(S)  and two-chain 3(S, S) statistical integrals; 

2. tho Fourier transform 3(z, -z; S )  of the statistical integral with an imposed con- 
straint 3(93,6; s). 

According to Equations 13, 23-26, 

j(rc', -,C; S I  = 3(s) (exp { i i [~(s )  - F ( O ) ] } ) .  (39) 

In particular, this function defines the mean square end-bend distance of an isolated 
chain 

On the basis of Equations 4.2-59,-60,-62, the first terms of the c,-expansion of 'IT have 
the form 

Des Cloizeaux introduced the concept of a critical object as applied to a polymer 
chain. Suppose the chain comprises N segments with excluded volume. Let us apply 
the following procedure to this chain: i) increase the number of segments; and ii) vary 
the segment length scale so that the mean square end-bend distance remains constant. 
Multiple repetition of this procedure leads to a continuous limit. Thus, we have obtained 
a statistical chain to be characterized by one quantity of length only, namely, by the mean 
square end-bend distance. Continuously increasing the length of such a chain, we proceed 
to an infinite chain whose scale proves to be invariant. By definition, such a chain is a 
critical object (des Cloizeaux, 1981). 
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The excluded volume interactions are characterized by the parameter z. If z = 0, the 
chain as a critical object is called a Brownian chain . When z 3 00, there appears 
a new critical object called Kuhn’s chain. So, this chain is the limit of a chain with 
interacting segments. 

There is a crossover region between these two limiting cases, with a finite value of z. As 
z increases at a given b (or S ) ,  all the physical quantities increase, too; however, one can 
expect the universal behaviour and fulfillment of scaling relationships in the asymptotic 
limit. To express these physical quantities, it is worthwhile to employ a new scale. 

For an isolated polymer chain with an interaction, the area “S can be defined by 

(h’) = ([r‘(S) - F(0)]2) = “Sd, (42) 

where 
“S 
S 
- = Xo(z).  (43) 

It is this area that defines the new scale. 

(S >> l’), the relationships 
With z -+ 00, factor X o ( z )  becomes infinite. For long polymer chains on a lattice 

S N N1’ (44) 

“S N N2”l2 (45) 

and 

hold true. Hence, 

(46) 
- N2V-1 S2V-1 .  

S 
On the other hand, for the tweparameter theory with a constant b, according to Equa- 

tion 9, 

Z N SE’2 ( E  = 4 - d).  (47) 

(2 -+ m). (48) X&) - 22(’V-1)lE 

Thus, one can expect the asymptotic behaviour of the function Xo(z) :  

At S = const, “S tends to infinity, if z 3 00. This circumstance shows the wisdom of 
choosing “ S  as a new scale, and Xo(z )  can be regarded as the renormalization factor. 

The statistical integrals, corresponding to a polymer chain, and the binary system 
P+LMWL, are functions of S and z and can be expressed in terms of the new variables 
“S and z. The physical quantities, deduced from the statistical integral, are also expressed 
through “S and z, and at “S = const they must reach their finite limit, if z + 00 (Kuhn’s 
behaviour). However, when “S = const, the statistical integrals turn out to be infinite, if 
z + 00. 

For example, discuss 3(S). As this quantity is dimensionless, then 
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On the other hand, the behaviour of the partition function of a discrete chain with N 
segments on a lattice is expected to follow the form 

3 ( N )  - N?-’pN. ( 5 0 )  

This result can be expressed in terms of the two-parameter theory provided that b = const 
and S is large, namely, 

3 ( S )  - sy-’. (51 1 

& ( z )  N z ( Y - ’ ) / E  (2 --f ( 5 2 )  

The coefficient p is absorbed on the first and second renormalizations. Due to Equation 47, 

can be expected. 
Now we are able to define the renormalized statistical integral 3R(eS),  which, like 3 ( S ) ,  

must be dimensionless. By definition, this statistical integral must depend on the physical 
scale “S only and, therefore, be a constant; then, 

3R(eS)  = 1 ( 5 3 )  

can be accepted. 
In accordance with Equation 49, we have 

3(S) = [Xl(z)123R(eS). (54) 

Thus, XI can be regarded as the second renormalization factor defined by renormalization 
condition 53. Such a renormalization is applied in field theory for d = 4 to eliminate 
“ultraviolet” divergences. 

In polymer theory, “infrared” divergences are discussed as well: the behaviour of the 
partition functions is analyzed at d < 4 and z + m. In other words, the dimension 
d proves to be marginal in polymer theory as well as in quantum electrodynamics and 
Landau-Ginzburg-Wilson’s field theory. In particular, this explicitly manifests itself in 
the definition of z (see Equation 9). 

Indeed, the “ultraviolet” marginal divergence can easily be transformed to the “in- 
frared” marginal one, as it follows from the example (A >> 1) 

Hence, the renormalization technique applied in field theory is suitable in polymer theory 
as well. The chief idea is in the “S dependence of the basic quantities at z -+ 00. However, 
these hopes are realized only partially. 

For this behaviour of physical quantities, the statistical integrals must be renormalized 
(once again!), and des Cloizeaux assumes that only few renormalization factors are enough 
for this. By analogy with field theory, these renormalization factors are associated with 
the end effects, i.e. with the vertex insertions (see section 2.6). 

More precisely, if a statistical integral is associated with the situation where M poly- 
mer segments with their areas SI,. . . ,Sm are attached to one point, the renormalization 



668 5.4. Direct renormalization method 

I I I 
I I I 
I I I 
I I I 

S s1 s2 s1 s2 s3 

X , ( Z )  X2(Z)  X d Z )  

Figure 5.33. Vertex func- 
I tions (insertions) and the 
I corresponding renormaliza- 

tion factors. The wavevec- 
tor is attached to the vertex. 
If the wavevector is equal 
to zero, the dashed line can 
be omitted (des Cloizeaux, 
1981) [Reprinted with permis- 
sion from: J .  des Cloizeaw. J. 
de Phys. 42 (1981) 635-652. 
Copyright @ 1981 by EDP Sci- 
ences] 

I 

X4(Z) 

SI A s2 s3 s4 

factor X M ( Z ~ ,  . . . , Z M )  must be introduced (Figure 5.33). In particular, such renormal- 
ization factors must be introduced to renormalize star-like polymers. Besides, they may 
be reasonable to study the contacts between the internal points of a polymer chain. 

If all the areas SI,. . . ,SM of the vertex point’s branches have the same order of magni- 
tude SI = nlS; .  . . ;SM = nMS (nl, .  . . ,nM are finite), more simple renormalization factors 
X M ( Z )  can be introduced. 

Thus, the statistical integral 3(C), corresponding to the ensemble of conformations C ,  
can be renormalized as 

S(C) = J-J Xi3R(C),  (56)  
i 

where the subscript ‘ i ’  denotes the external vertices. For instance, the statistical integral 
3 ( S 1 , .  . . , S N )  of JV macromolecules with their area Si is renormalized by the following 
procedure: 

3(si,.-.,sN) =~I(Z~)...XI(~N)~R(~S~,.. . , e S N ) .  (57) 

For N = 1, Equation 57 agrees with Equation 54. 
The renormalization factors can be exactly determined in all cases given adequate 

renormalization conditions are introduced, which the renormalized statistical integrals 
must obey. 

For X2(z1, z2 ) ,  the condition 

XZ(Zl,Z2) = 1 (58 )  

can be accepted. If the zero wavevector is introduced into a certain point of the macm 
molecule, a two-vertex insertion results (Figure 5.34). In the diagram, this point is 
located on the polymer segment with its area s with its own wavevector q. 

When there is no interaction, the factor associated with the segment is 

exp (-$) . (59) 
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(r’ 

669 

Figure 5.34. A twevertex insertion in a polymer seg- 
ment, which connects the interaction points A and H: 
a segment with its area s without inserlion ( u )  and a 
segment with a twevertex insertion s = s l  + 8 2  (6) 
(des Cloizeaux, 1981) [Reprinted with permission from: J .  
des Cloizeaux. J .  de Phys. 42 (1981) 635-652. Copyright @ 1981 
by EDP Sciences] 

d 81 

- - - -  
“ S  

d 82 

a b 

The two-vertex insertion divides the segment into two segments with the areas 81 and s2 
so that s1 + s2 = s. Then, the factors associated with these segments are 

exp (-+) exp (-$) = exp (-$) . 
Thus, the two-vertex insertion does not change the contribution of the diagram and, 

therefore, the value of the corresponding statistical integral. This means that Xz(zl,z2) 
must be equal to 1. 

By definition, 

XM N NUM (61) 

must be satisfied for large N. Then (see Equations 47 and 44), 

The critical index UM is defined as the limit 

UM = lim uM(z). 
Z + M  

a0 and 01 are the most important critical indices. Indeed, it follows from Equations 48 
and 52 that 

60 = 2 v  - 1,  (64) 

7 - 1  
2 .  

6 1  = - 

The functional “S dependence of the renormalized statistical integrals is defined by 

The renormalization condition to define X,(z) is 
Equation 23. 

3 R ( e S )  = 1, X l ( 4  = 3(S), (66) 
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while that to define & ( z )  is 

On the other hand, dimensional analysis (see Equation 22) shows that the renormalized 
statistical integral ~ R ( ~ S , ~ S )  can be written as 

3 R  ("S," S )  = - ( 2 7 r ) d / 2 (  eS)d/2g, (68) 

where g is a quantity having the meaning of the dimensionless second virial coefficient 
(see Equation 41). Thus, the first two terms of the virial expansion can be written in the 
virial form 

- 7r = cp [l + Z(2a)d/2gcp("S)d/2 1 + . . .] kT 

The fundamental idea of renormalization theory is in establishing relationships between 
physical quantities. For instance, if z = 0, then g = 0, but if z -+ 00, g has its finite 
limit g*.  Besides, for d 2 4, g* = 0. Hence, for small positive quantities E = 4 - d, g can 
be expanded into a series in powers of E .  The E expansion of the critical indices can be 
obtained identically. 

The renormalization strategy is as follows. Beginning with Equations 66 and 67, X o ( z )  
and X , ( z )  as functions of z and the effective critical indices a&) and cr1(z) are calculated 
by the perturbation method. Using Equation 68, g can be expressed as a series in powers 
of z ,  which can be transformed it9 to express z as a series in powers of g. 

Let us discuss the function 

47 
W(.) = EZ--. 

dz 

As is seen from the plot of g vs lnz,  if z -+ a, then g + g* and ~ ( z )  
expressed as a function of g, then 

0. If z is 

w[gl = 4.1. (71) 

w[g*] = 0. (72) 

Therefore, g* is determined from the equation 

As w[g] is defined as a series in powers of g, we get the expansion of g* in powers of E. 

The effective critical indices can be expressed through g 

ao[gl = ao(z), Ol[Sl = a d z ) ,  (73) 

and all the terms singular with respect to 1 / ~  disappear. 
Hence, the critical indices are defined by 

00 = ~~o[g*] and 01 = ~l[g*]. 

These equalities are used to obtain the E expansion of 00 and 01. 

(74) 
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In such a way, one can obtain the index which determines the degree of approach to 

Des Cloizeaux defines 
the asymptotic behaviour, i.e. determines the nature of the first corrections to scaling. 

uQ = 6'1. (76) 

In comparison with the second-order theory of critical phenomena, he has found that 

U, = 2wv = 2A1, (77) 

and calculated the terms of the expansion of 3(;, -i; S )  and 3(S ,  S )  in the second order 
of z and in the first order of ( k 2 S ) ,  keeping two leading (with respect to E )  terms in each 
coefficient. The diagrams contributing to 3($, -& S )  are shown in Figure 5.35. Let us 

k2S 
1 - -  

2 

1 
E2 
-(4 + 4 E )  

1 
-(-6 - 9 ~ )  
E2 

1 - ( 2 + & ) - -  - + o  '\ 1 kx ) ' E  

1 6 + 7~ 
E2 E2 
- ( -4 - 2 E )  --f -- 

(-8 + 4 ~ )  --$ 
(8 + : E )  2 €2 2 E2 2 2&2 

k2S 1 k2S 1 
(12 + OE) (-12 - -& 

k2S 1 

Fi~re-5.35.  Zeroth-order, first-order, and second-order diagrams contributing to 
3 ( k ,  -k; S ) ,  and second-order (with respect to (IC's)) contributions (des Cloizeaux, 1981) 
[Reprinted with permission from: J. des Cloiseaux. J. de Phys. 42 (1981) 635-652. Copyright @ 1981 
by EDP Sciences] 

write the result 
1 1 
E E 2  

3(Z, -z; S)  = 1 + 2-(2 + E )  - 2-(6 + 7&) 

1 
2 E 

- [ 1 + 2-(4 + O E )  - 

The diagrams contributing to 3(S ,  S) are either I-reducible (des Cloizeaux, 1980ab), 
by cutting the interaction line, or I-irreducible. The I-reducible diagrams are presented 
in Figure 5.36. Calculation of the contributions of these diagrams is performed in view 
of their product form. The I-irreducible diagrams are depicted in Figure 5.37. By 
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Figure 5.36. Their contributions are 
represented aa products and can be obtained from the contribution of the diagrams 
3(S) = 3(O,O,S) (see Figure 5.34). Third-order diagrams are not displayed here 
(des Cloizeaux, 1981) [Reprinted with permission from: J. des Cloizeaux. J. de Phys. 42 (1981) 
635-652. Copyright @ 1981 by EDP Sciences] 

I-reducible diagrams contributing to 3(S ,  S ) .  

summation of the contributions of the reducible and irreducible diagrams, des Cloizeaux 
has obtained 

1 3 ( S , S )  = -bS2 [1+  z(1 + 4In2) + z2 - (2  - 32ln2)] 
E 

= - ( ~ T ) ~ / ’ S ~ / ’  [z+zZ(1+41n2)+23-(2-321n2)] .  1 
E 

Equations 67 and 78 lead to 

1 1 
es _ -  E E 2  

1 1 
E E 2  

1 + 2-(4 + OE) - z*- 
- 

1 + 2-(2 + E )  - 2’-(6 + 7 ~ )  

and, therefore, 

‘S  1 
S E 

X ~ ( Z )  = - = 1 + 2-(2 - E) + z 
Equations 66 lead to 

It follows from Equation 62 and the results obtained for X o ( z )  and X , ( z )  that 

~ ( z )  = z (1 - i) + z2f (-8 + $ E ) ,  

q ( 2 )  = z (z 1 + 4) + 2- 1 (-4 - z&) 9 . 
& 

Now we express g through z.  According to Equations 68 and 57, 

( ~ T ) - ~ / ~ ~ R ( ~ S , ‘ S )  = - (eS)d /2g ,  

(79) 
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1 
- [ 4 + ~ ( 1  +4ln2)] 
E2 

1 1 
-[-32 +E( -8  + 32ln2)] 
E2 E2 

-[16 + ~ ( 1 6  - 32ln2)] 

4 _- 
E 

1 
-(8 - 4 ~ )  
E2 

1 
-[8 + ~ ( 8  - 16ln2)] 

1 
-[8 + e(4 - 16 In a)] 
E2 €2 

Figure 5.37. I-irreducible second-order and third-order diagrams contributing to 3(S, S) 
and their algebraic contributions (des Cloizeaux, 1981) [Reprinted with permission from: J. 
des Cloizeaux. 3. de Phys. 42 (1981) 635-652. Copyright @ 1981 by EDP Sciences] 

whence (see Equation 79) 

g = [X, (Z)] -~(~S)-~/ ’  [ - (2~)-~”3(S ,  S)] 

1 = [Xl(z)]-4[Xo(z)]-2+c/2 z + z2(1 + 41n2) + z3-(2 1 - 321n2) , 
E 

and, in view of Equations 81 and 82, 

1 1 
E E2 

9 = z + z2- [-8 + ~ ( 2  + 4In2)] + z3- [64 + E(-15 - 64ln2)] 
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According to Equation 70, 

(89) 
1 

w ( z )  = E Z  + z2[-16 + ~ ( 4  + 8ln2)] + z3-[192 + 4-45 - 1921n 2)]. 
E 

By inversion of Equation 88, one obtains 

E E2 
(90) 

g2 s" 
z = g + -[8 + E (  -1 - 4 In 2)] + -[64 + E (  -49 - 64 In 2)], 

whence (see Equations 89 and 90) 

w[g] = Eg + g2[-8 + ~ ( 2  + 41n2)] + g3(34) +. - a 

All the singularities in 1 / ~  are seen to disappear. 
Equations 72 and 91 yield for the first two expansion terms of g* in terms of E 

g* = E + ." (5 + ln2) + . . . . 
8 16 16 

In the asymptotic long-chain limit in good solvents, g = g* should be accepted in virial 
expansion 69. For d = 3 ( E  = l), it follows from Equation 92 that g* = 0.266. On the 
basis of Equations 83, 84, and 90, des Cloii~aux obtains 

Again, the singularities in powers of l / c  disappear. The series for a,[s] is derived from 
Equations 75 and 91 

= -~+g[16+~(-4-81n2)] -g~(102) .  (95) 

On substituting g for g* in Equations 93-95 and including Equation 92, des Cloizeaux 
obtains 

(96) 
E 15 
8 256 

a o = - + - E 2 + . . ' ,  

E 13 
16 512 

U a . = E - - &  + . - - .  
32 

al=-+-+ +... 

17 2 

(97) 

The values of the common indices 7 ,  u, and A1 = wu result on substituting the above 
results to Equations 64, 65, and 77 

E 15 u=-- 
2 2 (99) 

(100) 
E 13 
8 256 

7 = 201 + 1 = 1 + - + -E2 + . a *  , 
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and, at E = 1 (i.e. d = 3) 

u = 0.592, = 1.175, A1 = wv = 0.234. 

To reveal fine effects in the properties of polymer solutions, des Cloizeaux (1981) cd- 
culates the mean square radius of gyration of macromolecules, which is defined through 

where the integrand is expressed through the Fourier transforms of the statistical integrals 

0 < s1 < s2 < s; 2 = 4 5 . 2 ;  y = (S  - Sl)/S. 

First-order calculations in z have led to the following results: 

2 ( 1  - 4 3 - 4 2  + (1 - y)3-d/2 
- 

3 - d f 2  

y( 1 - z)2-d/2 + z( 1 - y)2-d/* 

2 - d / 2  
+ 2  

I -  x 3 - d / 2  + y 3 - d / 2  
- 

2(2 - d / 2 ) ( 3  - d / 2 )  ' 

( [ F ' ( S ~ )  - F(s1)I2) = S d [ l  - x - y - I(.,  y)]. (106) 

The diagrams contributing to the statistical integral 3 ( Z ,  -Z; SI, s 2 ;  S) are shown in 

Further, des Cloizeaux (1981) has calculated ( R 2 )  for d-dimensional space: 
Figure 5.38. 

d2 - 26d + 136 
(4 - d) (6  - d)(8 - d)(10 - d)'] 

(") = ; [I + 2 

and, in the E expansion, 

( P )  = g [1+; (1 - ; E )  4 .  
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Figure 5.38. Diagrams contributing to 3(i, --i; s1,sZ; S), in the zeroth and first order in 
E (des Cloizeaux, 1981) [Reprinted with permission from: J .  des Cloizeaux. J .  de Phys. 42 (1981) 
635-652. Copyright @ 1981 by EDP Sciences] 

On the other hand, 

3(i, -L; S )  k2S 
= 1 - - 2d ( [ r ' S )  - F(0)]2). 

3(0,0; S )  
According to Equation 78, 

(h') = ([r'(S) - ?(0)]') = Sd [I + 2 (1 - %) Z ]  
E 

So, it results that 

) w-l (  (h2) - s 12 
I - ? + . . .  . 

In the first order, z 21 g, i.e. 

In the asymptotic limit, g must be replaced by g* N ~ / 8  (see Equation 92). Then, in 
the first order of E ,  

E 

At finite values of z ,  the crossover effects are observed. In this connection, of great 
significance is the z dependence of g, which follows from Equation 70 

dg 
E2- = u [ g ] .  (114) dz 

If z -+ 0, g -+ 0, and w[g] N Eg. The solution of Equation 114 has been obtained 
(des Cloizeaux, 1981) in the form 

In z = Ing + [ dg' [i - I] 
4.41 9' 
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The series w [ g ]  in g is written just as Equation 91, whence 

u)[g*] = 0 

follows. This series has an approximate formula, 

where 

In accordance with this and in view of Equations 75 and 76, 

E 
0, = ~ 

1 + Ag* 
With due account of Equation 116 and 117, we derive from Equation 115: 

Equations 117, 92, and 118 lead to 

(121) 
E 

ua = ~ 17 ' 
1 + - E  

32 

Equation 121 agrees with Equation 95 and yields u, = 32/49 = 0.653. Substituting 
g* = 0.266 and &/ua = 1.531, des Cloizeaux obtains 

This relationship defines the function g(z),  whose plot is depicted in Figure 5.39. 
The g dependence of the renormalization factor X M [ ~ ]  is defined by Equations 62 and 70 

4l w 
dz E 

2- = -. 

They lead to 

d uM 191 -lnXJM[g] = 2--. 
$Y w M  
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.......................................................... 

9 
9" 
- 

Figure 5.39. The z dependence of g proportional to the second virial coefficient 
(des Cloizeaux, 1981) [Reprinted with permission from: J .  des Cloizeaux. J. de Phys. 42 (1981) 
635-652. Copyright @ 1981 by EDP Sciences] 

In the proximity g = g" (see Equations 72, 75, 76), 

491 = Oa(g* - 917 

OM 
- N  - OM kd 
wbI (9* - g>Oa' 

On the other hand, X M [ o ]  = 1. Integration of Equation 125 gives 

A reasonable approximation (Equation 129) results when simple expressions for o,[g] and 
w[g] are used. 

In the second order, the following relationships have been derived: 

OM Ld = a M Q  + b M S 2 ,  (130) 

491 = -2- (1 - ;) , 
1 +Ag 

8 
a, = - 

1 + Ag" 
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For the difference in the square brackets in the integrand of Equation 129, it has been 
obtained (des Cloimaux, 1981) 

(133) 

For E = 1, it follows from Equation 43 that 

and, therefore, a. = 0.5 and 
On the other hand, Equation 96 yields a0 = 471256 = 0.183. As earlier, era = 0.653 and 

g’ = 0.266 are assumed. Substituting these values to Equation 134, we have for M = 0: 

= -1.272. 

-0.562 

xo= ( I-- o.:66) exp(-1.113g + 0.6769’). 

Besides, Equation 122 leads to 
-1.531 

(137) 

These equations define the function Xo(z).  

Flory’s (1949b) equation (F) (see also: Flow and Fox, 1951) in the form 
Des Cloizeaux compares his result of the renormalization approximation (R) with 

3312 
(138) X i f 2  - x,”J2 = - z 

2 
and with Domb-Barrett’s (1976) phenomenological formula (D) 

(139) 
20 X i  = 1 + --z + 47rz2. 
3 

All these approximations are presented in Figure 5.40. For small z, according to 
Equations 136 and 137, 

3312 
[X, ] ,  N 1 + -2 N 1 + 2.62, 2 
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In Xo 

Figure 5.40. Dependence of In Xo us In( 1 + z )  for different approximations: Flory's (F), 
Domb-Barrett 's (D), des Cloizeaux' (the second-order renormalization) (R). The dashed 
lines correspond to the asymptotics (des Cloizeaux, 1981) [Reprinted with permission from: 3.  
des Cloizeaw. J. de Phys. 42 (1981) 635-652. Copyright @ 1981 by EDP Sciences] 

is satisfied, we have 

l n [ X o ] ~  = 0.367 ln(1 + z )  + 0.238, (144) 

ln[XO]p = 0.41n(l + z )  + 0.382, 

ln[Xo]o = 0.4 In( 1 + z )  + 0.506. 

(145) 

(146) 

The curves F and D are of significantly different shapes while the curve R occupies an 

Des Cloizeaux and Duplantier (1985), using the direct renormalization method (Du- 
intermediate position between (F) and (D). 

plantier, 1986a), have calculated the form factor of scattering 

s s  

(147) 
1 

~ ( 3  = J $st J cis'! (exp {iq~((s') - ~(stt)])) . 
0 0  
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If X is defined by 

([?(s) - T'(0)]2) = d . x 2  (148) 

(cf. Equation 42), then the function H ( 3  can be written as 

The function h ( z )  for small values of x has been calculated by Schafer and Witten (1977), 
and by Witten and Schafer (1981) using another version of the renormalization group 
approach 

h ( z )  = 1 - c 3 (1 - &) +; (1 -E). 
For large values x = q2X2/2 >> 1, the chain is assumed to be infinitely long, and 

Equation 151 is approximated by 

h(x), in its scaling form, is 

In particular, for a Brownian chain, 

(Debye's formula), 

Oh, = 2. 

For large f, we write 

where 3(& s) is the statistical integral of the chain, including the vectors {and -<at two 
points on the infinite chain, separated by the Brownian area s (see Equation 104). The 
contributions to the H(q3 expansion in the zeroth and first-order of b correspond to the 
diagrams shown in Figure 5.41 with the designations 

= bS2-d/2(2 - 4 2  r) 

(see Equation 9) 

y = -  q2 s 
2 '  (155) 
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-4- 

s- 

--- 

-e. 

5' - 
-L- 

a b C d e 

Figure 5.41. Diagrams representing the contributions to  H(q3 for large the zeroth (Q) 

and first (b) order of b (des Cloizeaux and Duplantier, 1985) [Reprinted with permission from: 
J .  des Cloizeaux, B.Duplantier. J .  de Phys. Lett. 46 (1985) L-457-L-461. Copyright @ 1985 by EDP 
Sciences] 

t = q 2 s / 2 ,  sf = t's, S" = t"s, where s ,  s', s" are the "areas" of the polymer segments 
(Figure 5.41). 

In the first order of 2, des Cloizeaux and Duplantier (1985) have obtained 

(156) 
2 22 

Y 
H ( 3  = - - y 3 - d / a ( I b  + IC + I d  + I e ) .  

Here zb-ze are the contributions represented by the diagrams (see Figure 5.41) 

exp [- (1 - A)] - e-' 

I ,  = I d  = T d t  dt' Tdt" (t' + t")+ = I +  ..., (158) 
0 0 0  

t + t' t 2  + t" )I - e - t  = 1 +  ... , exp [- (1 - 
I,  = r d t  rd t '  Tdt" 

(t + t' + t")d/2 
0 0 0  

and 
2 22 2 

H(q3 = - - - ( - + 4  - C )  , y y M 2  & 

where C x 0.577 is Euler's constant. 
If we introduce 

x2 x 
Xo(2) 7 = y, 
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then, according to Equation 81, 

Xo(2) N 1 + E(2  - E ) ,  
E 

2 22 
H(q3 = - + -(C - 5 + lnx).  

x x  

In accordance with Equation 88, 

z = g + " ' ,  

and, when 2 -+ 00, g -+ g* and (see Equation 92) 
E 

g -+ g* = S' 
Then, 

2 c  H(g3 N h(x) = ; + -(e - 5 + In x). 
42 

This equation can be also written as 

x1-~/8 h(x) = 

As 

(see Equation 99), comparison between Equations 167 and 152 gives 

Hence, for E = 1 (d  = 3), 

h, = 0.89. (169) 

Previously (Peterlin, 1955; Ptitsyn, 1957), the expression for the scattering form factor 
has been a generalization of Debye's formula and, in the notation accepted here, has the 
form 

1 

hA(x) = 2 J d t  (1 - t ) e ~ ~ ~ ' " .  
0 

If v = (1 + ~ / 8 ) / 2  is accepted for 0 < x << 1, then 

ha(x) = 1 - (1 - $) + g (1 - Z ) ,  
3 

and, for 2 >> 1, 

2 E 

x1-48 8 ha(x) = - [1 - -(I - C)] 
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Comparison of Equations 171 and 172 with renormalized Equations 150 and 167 shows 
a substantial difference. In particular, for E = 1, Equation 172 gives h, = 1.89. 

The matter is that these papers suggested the same swelling law for the internal parts 
of a macromolecule and for its ends. According to Equations 150 and 167, the internal 
swelling is stronger. This circumstance influences the expression for the radius of gyration, 
which is more sensitive to the internal part of the coil than ( h 2 ) .  Using Equation 150, 
des Cloizeaux and Duplantier (1985) obtain 

while it follows from Equation 171 that 

R i  = d X 2  (1 - 2) , (174) 

which turns out to be smaller due to an underestimation of the contributions of the macro- 
molecule’s internal parts. This also explains the lower value h, = 0.89 in comparison 
with h, = 1.89. 

Duplantier (1985, 1986c) examines this question more thoroughly. 

5.5. Tricritical state. Phase separation region 
In a very good solvent, a chain’s segments are repelled from each other, which is for- 

malized in the existence of segment excluded volume at the intramolecular level and of 
polymer coil excluded volume at the intermolecular level. In this case, very long chains 
obey the universal scaling laws characteristic of the proximity of the critical point in 
general-type systems. 

With decreasing temperature (the solvent strength gets worse), the segment excluded 
volume decreases, and the segments stop avoiding each other; as a result, the coil confor- 
mation becomes near to the Gaussian one at the 0 point where the second virial coefficient 
vanishes. However, the 8 point is a compensation point arising as a result of rather strong 
interactions of both positive (repulsion) and negative (attraction) signs. 

De Gennes (1975) was the first to show that the state of long polymer chains near the 
compensative 8 point is similar to the tricritical state of general-type systems in terms 
of statistical physics (see sections 2.6 and 4.1). By analogy with the tricritical behaviour 
of general-type systems, the Gaussian behaviour of the molecular chains is expected to 
be corrected (at d = 3) by different universal logarithmic terms, which may diverge (see 
subsection 4.1). 

Let us consider Duplantier’s (1980ab, 1982) theory based on the grand canonical en- 
semble of polymer chains with its chemical potential related to the number of segments 
and with the fugacity related to  the number of chains (des Cloizeaux, 1975) (see sec- 
tion 4.2). This ensemble is identical to the system in the Lagrangian field theory of 
Landau-Ginzburg-Wilson with n = 0. The tricritical Lagrangian contains the terms of 
binary ~ ( ‘ p ’ ) ~  and ternary interactions (cf. section 4.1). The first-stage theoretical 
expressions for physical quantities prove to be divergent, so a renormalization procedure 
is required to consider the specific features of polymer systems. 



5.5. Tricritical state. Phase separation region 685 

Suppose M polymer chains are contained in a box of a volume V .  Each chain is 
characterized by its Brownian area 

(h2)Br = d .  S. 

For a chain of N non-interacting segments of length 1 

S = N P .  ( 2 )  

The conformation of the mth continuous chain is described by the vector Fm(sm), 
where 0 < sm < S,. The set of M chains is characterized by the conformation {F) = 

The Lagrangian formalism represents the set of M chains as an action (Duplantier, 
{TI,. . . , F M } .  

1980b, 1982) 

where 

is the action of free chains, 

x 6 [Fm,(smt) - Fmtt(Sm,t)] 

is the action of interaction. 
The factors 1/4! and 1/6! are chosen by analogy with the corresponding expression 

in the general field theory (cf. Equation 2.6-149), and this choice is immaterial. The 
quantities and w are phenomenological parameters of the binary (90) and ternary (w) 
interactions of the chain segments in the presence of a LMWL. In this consideration, 
either go > 0 (repulsion) or go < 0 (attraction) while w > 0 always (repulsion), which is 
necessary to assume for the system with action 3 to be stable. 

For the model of the system (Equations 3-5), the partition function of M chains is 
defined by Wiener's functional integral with respect to all the conformations of all the 
chains 

 SI,. . . , S M )  = / d d { r }  exP (-A{+) , 

(0) = 3-'(&, ..., s~ ) /dd{r}O{r}exp( -d{r} ) .  

(6) 

and the mean value of the functional O{r} with respect to all the conformations {r} is 

(7) 
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The integral 3 is infinite for continuous chains due to the infinite number of degrees of 
freedom; that is why a regularized statistical integral 

is introduced (Duplantier, 1982), where 3, is the statistical integral of a free chain 

30(s) = / dd{.}  exP (--do{?}) , 

The mean value ( U ) ,  is defined as 

((3, = 30'(S) / &{.I O{.) exp (-do{fl). 

In particular (see Equations 5.4-2. . .5), 

(9) 

This equation provides the Gaussian correlation function in the Fourier transform for the 
ends of a free polymer chain. 

As all the physically measured quantities are derived from the chain statistical integral 
with an imposed constraint (see section 5.4), this integral is then introduced (Duplantier, 
1982) to express the fixing of the chain ends 

J m=l m=l 

where Zzm-1 and 2 2 ,  are the fixed points of the mth chain. The Fourier transform of 
Equation 12 gives 

+ 
(2r)db(i1 + ... + &~)'3(zl, .  . . , k 2 ~ ;  SI,. . . , SM) = (13) 

In particular, for one chain 

1 
'3(0,0; S )  = V+3(S), 

and the mean square end-to-end distance is expressed by Equation 5.4-40 

.- 1 
( h 2 )  = -2d 

+3(0, 0; S )  d(k2) 

(14) 

(15) 
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Just like des Cloizeaux (1975) (see Equation 42-55), Duplantier (1982) introduces the 
grand canonical partition function of polymer chains 

where h2/4 is the fugacity related to the number of M chains, a0 is the chemical potential 
amociated with the area of the chains S. Comparison of Equation 16 with des Cloizeaux' 
formula (see Equation 4.2-55) yields the interrelations 

L 

In the grand canonical ensemble, the average number of chains (M), the average chain 
area (S), and the osmotic pressure ?r are determined using the standard formulae (cf. 
section 1.7 and Equations 4.2-59. . .62): 

1 8  
( M )  = -h-lnZ(h), 2 8h  

a 
duo 

(S) = 2- In Z(h), 

7 r 1  
- = - h Z ( h ) .  
LT v 

The concentration of chains i+, the concentration of "areas" C, and the average con- 
centration of area per chain S are determined as follows 

c,, = ( M )  V-' ,  (20) 

For the model of chains with the segment lengths I, 

c = C P .  

where c is the concentration of segments. 
For the set of M chains, a symmetrical moment 

XZ(S1,. . . ' S M )  = 

M M / n ddX2m-ld d 22m [ (22m - 22m-l)'] +3(217 * , h M ;  SI,. - .  7 SM) 
m=l m=l 

is introduced. 

(24) 
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The total square end-to-end distance is defined as 

then, the square end-to-end distance of a chain is written in the form 

and can be calculated by the methods of field theory. 
The statistical integral of the n-component field (pj(z) with j = 1,. . . ,n has the form 

Equation 27 is equivalent to Equation 16 for a homogeneous field in the direction j = 1 
hj(x) = Sjlh and in the limit n = 0 as it follows from comparison between the expansion 
of Green's function (de Gennes, 1972) and direct analysis (Emery, 1975) (see section 4.1). 

For polymer chains generated by a spatial-dependent fugacity hj(z), we have 

X fi 1 dSm exp (-F) +3(&, . . . , &,f; si , . . . , L ! M ) ,  

m=l 

and for the homogeneous fugacity h (hj(2)  = 6jlh) 

Z{h^)(&, = Z{hI. 

Having defined the Fourier transform as 

one can write (cf. Equation 4.2-15) 
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X fi [xh’(r&m-i)h’(&m) G(2M)(Z1, . . . ,Z2~) .  

m = l  j I 
Here G(2M) is Green’s ordered functions defined in (des Cloizeaux, 1975) (see Equa- 
tion 4.2-51) 

.+ .+ 
provided that kl + ... + k2M = 0. 

tion 24) from 
Applying the Fourier transform (Equation 13), we calculate the moment X 2  (Equa- 

( 3 5 )  
d 

X’(S1,. . . , SM) = -MV2d ----‘3(Z, -Z,O,. . . , O ;  5’1,. . . , S M ) ~  , 
4 k 2 )  kz =O 

where the general translational invariant of the set of chains is used. Then, the X 2  from 
Equation 25, in view of Equation 34, is expressed in the following form: 

Green’s transverse functions are defined through the generating functional (Equation 33) 

Here the functional derivatives are taken with respect to the component hj ( j  # 1) 
perpendicular to the direction j = 1. On differentiation, the field fugacity h’ in the 
direction j = 1 is assumed to be homogeneous 

h’(i) = S( i )SJ lh .  (38) 

It follows from Equations 37 and 33 that 
m h2M 

Gg)(Z, -;; h )  = h-2 ~ 2MG(2M)($,  -& 0 , .  . . , O ) ,  
22MM! M=l 

and for h t 0 
4 -  1 

2 
Equation 37, in view of Equations 33 and 39, also gives 

G$?)(k, -k; h = 0 )  = -G(’)(Z, -Z). 

(39) 

(41) 
l a  
h dh 

Gg)(O, 0, h )  = V-’- . --Z(h). 

Thus, with the help of Equations 36, 39, 17, 41, for (h2)  we obtain from Equation 26 
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which defines the mean-square end-bend distance of the polymolecular grand canonical 
ensemble. 

For a single chain, using the Laplace inverse transform GP), including Equations 40 
and 34, we get 

0+im 
1 

27ra 
+3(,$, -i, S)  = - 1 duo eaoS/’G?)(i, -i, h = 0). 

0-iCC 
(43) 

This formula enables (h’) to be calculated according to Equation 15. Here the integration 
contour in a complex plane lies on the right-hand side of the integrand’s singularities and 
closes to infinity from the left-hand side. 

Functional 30 is a field statistical integral (Equation 27) with the action A (Equation 29) 
in the limit n = 0. Then, the free energy (with the sign ‘-’ omitted) has the form 

F{Q = In z{@ (44) 

(cf. Equation 4.2-18). 
The free energy F { z }  is related to the generating functional r{Z} by Legendre’s trans- 

form (Equations 4.2-22,-23). TheD, functions 17-22 can be expressed through the vertex 
functions (see Equation 4.2-67.. .69)  

with allowancz for :he difference between des Cloizeaux’ and Duplantier’s notations: f = 
Mo, ao = 2.5, h = H (see Equations 16 and 4.2-55). 

The transverse vertex functions I?!) are defined by Duplantier as 

where f(z) = ( 2 ~ ) ~ ~  J d d x  exp(-ik)f(i!) (cf. Equation 4.2-42). 

tion 37) and the equation of the Equation 41 type 
The transverse vertex functions are similar to Green’s transverse functions (Equa- 

is fulfilled for them. 
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Considering the interrelation between Green’s functions and the vertex functions (Equa- 
tion 4.2-21), we can write for the mean square end-to-end distance in the polymolecular 
grand canonical ensemble (Equation 42) 

In view of Equations 43 and 50, Equation 15 is satisfied for one chain 

The general-type 2M-order vertex functions are defined in k-space (Duplantier, 1982) by 
the functional derivatives 

i.e. they are the coefficients of the Taylor expansion series of r{f} with respect to S a n d  
have a fundamental meaning for the apgication 0: a renormalization procedure. 

In the case of a homogeneous field f j ( k )  = 6jlS(k)f, the generating functional r(f) has 
its expansion 

whcrc convcrsion 2.6-79 

v = (2T)”(i = 0) (54) 

is used. 
In what follows only those vertex functions will be discussed which include a symmetri- 

cal set of external moments only, and their dependence on indices is trivial and will not be 
discussed. These functions are similar and proportional to des Cloizeaux’ ordered vertex 
functions (Equations 4.2-20). 

In particular, transverse vertex functions 48 are related to the general-type vertex 
functions by -... rg)(k, -Ic; f = 0) = r$;)(Z, -i) 3 P)(i, -L). (55) 

The vertex functions can be expanded as a series in powers of the interaction parameter 
In polymer theory ( n  = 0), the and represented with the aid of diagrams (Figure 5.42). 

second term of the right-hand side is absent. 
The diagram calculation rules correspond to the form of action 28 and 29. 
1) each solid internal line between two interaction points gives the factor (q2 + ao)-l, 
2) there is an independent moment variable {for each closed loop, with respect to which 

where {is the wavevector going along the line; 

integration should be performed with the measure & q / ( 2 ~ ) ~ ;  
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I 
I 

k -k k -IC -ln k -  -IC 

Figure 5.42. Order go diagrams contributing to the vertex function I?(’). To the right 
is shown separation of the diagram to reveal its explicit dependence on the number of 
components n of the field vector. In polymer theory (n = 0 ) ,  the second term of the right- 
hand side (a  loop) is absent (Duplantier, 1982) [Reprinted with permission from: B.Duplantier. 
J. de Phys. 43 (1982) 991-1019. Copyright @ 1982 by EDP Sciences] 

3) the rule of moment conservation is fulfilled for each vertex; 
4) each vertex gives the factor (-go) or (-w) with the factor (-1) standing before the 

5) “symmetry weights” @(n), depending on the number of components n, are intro- 

“Ultraviolet” divergences appear for infinite values of the integration moments q. For 

whole diagram and including, at least, one interaction vertex; 

duced. 

example, in Figure 5.42, the contribution of such integration is proportional to 

This expression diverges for d 2 2. The renormalization procedure envisages the intro- 
duction of a short cut-off range so, where so is a small area, and the propagator 

Go(q) = (q’ + ao)-l 

is replaced by the regularized propagator 

Gso(q) = (4’ + ao)-l exp [-($ + a03503 , 
which can be rewritten in the form 

(57) 

Hence, G,, appears as Laplace’s specific transform of correlation function 11 for a free 
polymer segment. Go should be replaced by G,, in Rule 1, and 2s0 can be regarded as 
the minimal area between two interaction points along the continuous chain. 

An “infrared” divergence arises if the chain areas S, become infinite. The problem of 
“infrared” divergence was first solved in the statistical physics of critical and tricritical 
phenomena with the help of the regularization procedure based on action in Landau- 
Ginzburg-Wilson’s form (Equations 28 and 29). Substituting Equation 53 to Equations 46 
and 47, we obtain for the first expansion terms 
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and for the mean square end-bend distance (see Equation 50) 

693 

(60) 

The 6’ state is defined by the second virid coefficient being equal to zero for infinitely 
long chains ( ( h 2 )  -+ GO). According to Equations 60 and 61, the set 

W)(o ,o )  = 0, 
r(4)(0,0,0,0) = o 

corresponds to this condition and characterizes the tricritical point in field theory (see 
Equation 2.6-163). 

At zero moments, the vertex functions depend on the parameters ao, go, w, so. Hencc, 
two conditions 62 implicitly define the tricritical values QO,  go, i.e. 

aot(w, SO) and got(W, so). (63) 

With due account of the dimensions of aOt, and the dimensionless character of w, 
parameters 63 must possess the form 

aot(w, so) = SO’fi(W), got(w, so) = so”2f2(w). (64) 

These functions can be calculated from perturbation theory; at the first order in U J  

( d  = 3), the following expressions have been obtained (Duplantier, 1982) 

8 5  - 1  - 

w n + 4  1 1 + 0 ( w 2 )  f2(w) -- . - . -. ~ 

2 5 2 d d 2  $12 - 1 

The complexity is in the fact that the vertex functions have “ultraviolet” divergences 
at short distances (so + 0). So, a renormalization procedure is required to suppress 
divergences like the power function sio ( a  > 0). 

Renormalization scheme (Duplantier, 1982) 
The Lagrangian density has the form 

and the condition of the tricritical point is defined by 

r(2)(o, 0; aot,got, w ,  so) 
r(4)(o, o,o, 0; Q . ~ ~ ,  got, W, so) = 0, 
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where so is the ultraviolet cut-off appearing in regularized propagator 57. 
Equation 68 must lead to am and sot as functions of w and so 

aot = aot(w, so), got = Sot(w, so). 

As renormalization should be performed precisely in the tricritical point, we will discuss 
the vertex function I'(L*N,2M) with 2 M  external points, L insertions of the yz type, and 
N insertions of the (9'))" type, constructed with Z O ( ~ ? ~ ) ~  interactions. 

The diagram I ' ( L , N v 2 M )  comprises J internal lines and V six-point verteces. 
Counting the vertex-related points yields 

2 5 + 2 M  = 6 V + 2 L + 4 N .  (69) 

(70) 

On the other hand, the number of the conditions of moment conservation is written as 

N, = L + N + V - 1. 

Each integration along an internal lines contributes to the dimension as 

13. 
Therefore, the degree of the ultraviolet superficial divergence I'(L,N,2M) is written as 

6 = J ( d  - 2 )  - d . N,. (71) 

For d = 3, in view of Equations 69 and 70, 

6 = 3 - A4 - (2L + N ) ,  

which leads to a set of divergent vertex functions with 6 2 0 (the matrix for 6). 

For polymer chains, M 2 1, and the first column plays no role. I'(o*o*2), 1'(0*074), and 
I'(oJ*2) are seen to have a positive divergence degree 6 > 0. 

As it follows from the general field theory, a divergence can be eliminated by subtraction 
of the counterterms from the mass and interaction vertex. If we define the variations a 
and 9 by 

a = a0 - aot + (go -sot)% (73) 

9 = g o  - Sot (74) 
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(ct is a function determined by order in powers of w by a renormalization condition at 
the tricritical point, it accounts simply for the m a s  shift due to the (9’))” insertion, see 
Figure 5.42), then Lagrangian density 67 reads 

Now we define anew the vertex functions I’(LiN,2M) with L p2-insertions and N G4- 
insertions 

at the tricritical point by means of the functional derivatives 

where r { y ,  u,g} is the generating functional dependent on the spatially varying param- 

eters ~ ( x ) ,  g(z), y(z). In this case, the power divergences in 1’(0,0,2) and 1’(0,0,4) are 
eliminated under condition 68. The linear divergence of r(o~1~2) is removed by the proper 
choice of ct so that 

r(oJ,2)(o, . . . ,o;  sot, got, W ,  so) = 0. (77)  

Application of the perturbation theory method leads to the following expression in the 
first order for d = 3 

C t ( W ,  so) = S 0 ” ” 3 ( ~ ) ,  (78)  

n + 2  w 1 1 
f 3 ( w )  = - . -.  -. ~ + .  . . . 

3 2 2 d 7 r d l 2  d j 2  - 1 (79) 

The 8 point corresponds to 

a = O  and g = O .  (80) 

Thus, the phenomenological quantity g is identified as the deviation from the 8 point 
and is approximated by 

where (Y is a numerical constant. 
Expressed through the parameters a and g (instead of a0 and go), all the vcrtcx functions 

are regular for so + 0 except the logarithmic divergences which should be handled by the 
second renormalization series. 

In particular, the expansion series of r ( ’ ) (k ,  -IC) can be calculated to the first order in 
g and w (Duplantier, 1982) 

4 4  
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I w2@ 
1 2 3 4 1 2 3 4 

a b 
Figure 5.43. Diagrams contributing to. the vertex function r(2) in the general case (n # 
0) (u)  and the corresponding diagrams of polymer theory (n = 0) for one chain (b) 
(Duplantier, 1982) [Reprinted with permission from: FLDuplantier. J. de Phys. 43 (1982) 991-1019. 
Copyright @ 1982 by EDP Sciences] 

n + 2  a-'I2 ( n + 2 ) ( n + 4 )  .-+... Q 

+w 15 27+ 
= k2+ a -g-. - 

6 47r 

This expression corresponds to diagrams 1-3 in Figure 5.43a. At the next order, a 
term containing a logarithmic divergence 

is added. 
The six-point vertex function I'@) is calculated in a similar way (for g = 0 and = 0) 

to which there correspond the diagrams shown in Figure 5.44. 

a b 
Figure 5.44. Diagrams contributing to the vertex function l'(') in the general case (n # 0) 
( a )  and the corresponding polymer analogue with n = 0 (b) (Duplantier, 1982) [Reprinted 
with permission from: B.Duplantier. J .  de Phys. 43 (1982) 991-1019, Copyright @ 1982 by EDP 
Sciences] 

The series of the vertex function in powers of w and in the loop expansion are seen to 
diverge in the neighbourhood of the tricriticd point u = 0 at d = 3 at the expense of the 
term including 

In(aso)-' (as0 -+ 0). (85) 

The dimension d = 3 corresponds to the upper critical dimension, at which logarithmic 
divergences appear due to the term ~ ( 9 ~ ) ~  in the Lagrangian (or Hamiltonian). 
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At d = 3, the limits a + 0 (corresponding to S -+ m) and so -+ 0 are equivalent. 
These tricritical divergences, arising from the interaction term ~ ( ' p ~ ) ~ ,  differ from those 
related to the excluded volume term g(p2)'. 

The latters are associated with the dimensionless parameter g~a-*/~  (see Equation 82). 
This parameter diverges at a --t 0. In the course of renormalization near the tricritical 
point (Stephen et al., 1975; Stephen, 1980; Duplantier, 1982), only the logarithmic di- 
vergence (Equation 85) is considered, as the parameter g ~ - ' / ~  turns out to be small and 
irrelevant. 

The technical aspect of the tricritical renormalization is very sophisticated and lengthy. 
Its main stages based on the general field theory are as follows (Duplantier, 1982). 

First, the renormalization group equation is derived, which relates the values of the 
vertex functions for the cut-off so to their values for a larger (in magnitude) and arbitrary 
cut-off area S. The replacement SO + S can be considered as expansion of the scale of 
the chain fragments' internal area. 

Therefore, there exists the scaling equation (as a dilatation of the internal area scale) 
both for the generating functional 

Vf: a ,  9, ui, so)  = r{f(s), 4S), dS) ,  W ( S ) ,  S ) ,  

f2Mr(zM){Z,. . . , a,g,  w, so)  = fzM(s)r(2M){i,. . . , a ( ~ ) , g ( ~ ) ,  W(S),S}, 

(86) 

(87) 

and for the vertex functions 

where S is an arbitrary area-dimension parameter replacing so, and S 2 so. The func- 
tions f ( S ) ,  u(S),  g(S) ,  w(S) actually depend on the dimensionless ratio S/so but are 
written as a ( S )  etc. for brevity. Determination of the functions constitutes the task of 
renormalization calculations. The said functions have their boundary conditions 

a(s0)  = a ,  g(s0) = 9, W(S0) = 20, f ( s 0 )  = f. (88) 

As Equations 86 and 86 are satisfied only for small values of as0 as well as u(S)S, the 
maximal value of S ,  satisfying Equations 86 and 87, obeys the condition 

S = const Ia-l(S)l. (89) 

To calculate the vertex functions, one should first find the right-hand sides of Equa- 
tions 86 and 87 for the values of S satisfying the maximum condition (Equation 89). Ow- 
ing to this, the logarithmic divergence in the perturbation series (ln(la(S)IS) = const) is 
eliminated, and this row is therefore valid for the scale parameter S .  

Renormalization scheme 
At the tricritical point, the Lagrangian density has the form 

As is usually done in field theory, field renormalization is performed 

p = Z'/2CpR. 
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The need in this is due to the logarithmic divergence in I'(o!o*2) which appears beyond the 
superficial divergence of the degree d = 2, and to the logarithmic divergence I'(o,o*6). 

The subsequent renormalization of the vertex functions with insertion of 'p2 and G4, 
corresponds to the renormalizing Lagrangian in the vicinity of the tricritical point. 

The characteristic quantities have the following dimensions 

d 1 
2 2 

[ ~ p ]  = - - 1 = -, [u] = 2, [ g ]  = 4 - d 1, [w] = 6 - 2d = 0, [ L ]  = d = 3.(92) 

Hence, the counter-terms to be added to the tricritical Lagrangian 90 are monomials 
including the renormalized sources U R ( L )  and g R ( 2 )  and the renormalized monomials c p i ,  
(p i ,  so that their dimension could not exceed [ L ]  = 3. This implies that the counterterms 
have the form 

ct Z g R v ;  , 2 1  Z a R p i ,  2 2  z 2 g R  ( vi)2 , c ( z 2 g R ) 2 z v k .  (93) 

First of them, QZgRpk, appeared in Lagrangian 75 for renormalization of I'(oJ-2). Total 
Lagrangian density 75 is written in the renormalized form 

L(cp) = LR('PR), (94) 

Lagrangians 75 and 94 coincide, provided that 

1 
a a R Z  + - ( g R z 2 ) 2 c ,  2 9 = g R z 2  (95) 

is substituted. The dimensionless renormalization factors 2, Z1, Z 2 ,  c are determined 
from the renormalization conditions. 

The renormalized vertex functions with insertions are determined in the following way. 
Let 

I'R{(PR, UR, g R )  = r{Y', a,  9 )  (96) 
be the generating functional corresponding to the renormalized form of Lagrangian den- 
sity 94. Then the renormalized vertex functions with insertions at the tricritical 
point are defined as functional derivatives 

The bare (Equation 76) and renormalized (Equation 97) vertex functions are related 
linearly due to the following definitions 
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s.p.(M) is some symmetrical point for the external momentum in the scale M .  The 
dimensionless renormalization term, determined by each equation, is written between the 
braces. As these relationships are valid for the tricritical point, and Z ,  W R ,  Z1, Zz, C are 
dimensionless, these quantities are obtained as functions of the dimensionless parameters 
w and MZso and define, in turn, the renormalized quantities U R ,  g R ,  p~ according to 
Equations 91 and 95. 

Renormalization theory implies that the generating functional r R { p R ,  a R ,  QR,  W R ,  so} 
reaches a finite limit for M2so + 0 when the renormalization conditions (Equation 98) 
are satisfied, if SO varies. Hence, in the limit 

On the basis of Equation 96, from Equation 99, we obtain an equation for the generating 
functional r, expressed through the simple parameters p, a ,  g, w 

stands for differentiating at fixed values of V R ,  QR, gR,  WR. 

Further, the following functions are defined: 
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which are regular in the limit MZso -+ 0 and depend only on w. 
On the basis of Equations 91 and 95, we have 

5.5. Tricritical state. Phase separation region 

(101) 

Calculation of functions 101 with the aid of renormalization conditions 98 has led (for 
M2so + 0) to (Duplantier, 1982) 

3 n + 2 2  1 10 W ( W )  = -~ . - . + q W 3 ) ,  25 31 25+ 

1 ( n + 2 ) ( n + 4 )  1 1 1 
2 15 5! 3.210 7r4 

7/(w) = -wz + O b 3 ) ,  

16 ( n + 2 ) ( n + 4 )  1 1 
5! 3 .21o 7r4 

.-. -w2 + 0 ( ~ 3 ) ,  n ( w )  = -15. 
n + 4  1 1 

n + 2  1 1 1 

yz(w) = -7. - . -w + O(W2), 
24 + 

+ O(w). y3(w) = --. - . - . - 
3 3! 25 R 2  

Substitution of Equations 101 to Equation 100 leads to the linear equation of the 
renormalization group 

It can be integrated by the method of characteristics. On replacement of SO + S, an 
equivalent equation arises 
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and satisfy the boundary conditions 

cP(s0) = 9, a ( s 0 )  = a,  g ( s 0 )  = 9,  w(s0) = w. (1'1) 

Equations 110 can be solved by means of the perturbation method (Equations 103-107) 
valid for small w(S). Self-consistent calculations show that w(S) logarithmically tends to 
zero for S/so + co. 

Integration of Equations 110 yields, for n = 0, the following results (Duplantier, 1982) 
20 

4s) = 11 S '  
1 + w w l n -  

so 

In the tricritical limit w lnS/sO >> 1 we obtain 

w(S) = - 2 4 0 ~ '  (In :I-'. 
11 

Therefore, the effective constant of the ternary interactions is logarithmically small. In 
this limit, the functions f ( S ) ,  a ( S ) ,  g(S) (for n = 0) can be calculated (Duplantier, 1982) 

f(S) = K ( S ) f ,  (114) 

1 
n21 1 .325.27 K ( S )  = k(w)  (1 - 

s(S) = s 4 w )  b(S)IP ( P  = &) ? (115) 

w(S) + . . .) , 

(116) 
5 
18 

a(S)  = P-'(S)a - -g2(S) [w(S)]-', 

where 

The coefficients k(w) ,  a ( w ) ,  p ( w )  are well-defined positive functions of the original w: 

k(w)  2 k(0) = 1, p(w)  2 p(0) = 1, .(w) = w-* (w + 0). (118) 

a ( S )  = P-'(S)a - Q(S)gz, (119) 

According to Equations 115 and 116, 
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where 

2 p - 1 = - - .  ( 11 3 ,  
5 
18 

Q(S)  = --a’(w) [w(S)]2p-1 

The critical curve u ( S )  = 0 serves as the tricritical region boundary, so, in view of 
Equation 119, the tricritical region corresponds to 

in agreement with the condition of the tricritical region from the general field theory 
(Stephen et al., 1975). For S, obeying Equation 89, the right-hand side of Equation 86 
can be calculated by expansion in powers of w(S) or of the numbers of loops (see sub- 
section 2.6.2). For instance, Duplantier calculated the vertex function r(’) using expan- 
sions 82, 97, and 114: 

Substituting Equation 121 to Equation 51 and, then, to Equation 15, he calculated the 
mean square end-bend distance near the tricritical point as an expansion series in powers 
of g(S) and w ( S )  in the first order: 

In the course of calculation of statistical integral 51, the renormalization parameter S 
is transformed to the Brownian area S M S with the same restriction (Equation 89) 

IU(S)l = const s-l. (123) 

In view of Equations 115 and 117, one finally obtains 

3720(s) ] (124) 
60 .33 (2~) ’  ’ (h’) = d - S p ( w )  l+-  1 -a(w)pl”(w)gS”’[w(S)]P - 

t C  [ 9 ( 2 ~ ) ~ / ’  

where p(w),  a(w), and w(S) are determined according to Equations 118 and 113. 

For this point, he reports the following expression for a finite chain: 
In Duplantier’s approach, g = 0 corresponds to the B point for an infinitely long chain. 

This result differs from Stephen’s expression (Equation 4.141) in the sign of the second 
(logarithmic) summand and in the function p(w). 

According to Equation 124, the infinite chain at the 0 point appears to be swollen by 
the three-body interactions, and this swelling is reduced for finite chains by a logarithmic 
correct ion. 
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By analogy with S + 00, one can define the effective 0 point as a function O(S) 
according to the condition 

(h;)  = d .  Sp(w). 

Then it follows from Equation 124 that 

gs - d(w)p-'~~(w)s-'~2[w(S)I'-p, (127) 

and the relative deviation from the asymptotic O(m) point is expressed by the ratio 

These formulae involve asymptotic functions 113 and 115 and are valid for very long 
chains which meet the condition 

Now, the boundary of the tricritical region specified by inequality 120 is transformed, 
with the aid of Equations 116 and 123, to the condition 

These boundary, in turn, are converted, according to Equations 119 (for Q ( S ) )  and 117 
P ( S ) ) ,  to 

If the approximation O(W) = w-P for small w and Equation 113 for w(S) are accepted, 
then we get for the tricritical region 

The exponent (-3/22) agrees with de Gennes' (1978) result. To discuss the properties of 
dilute and semidilute solutions, Duplantier employs the loop expansion (see section 2.6) 
of one-lineirreducible vertex functions. 

The general idea behind his approach is the following. There are no tricritical diver- 
gences for short chains in solution. Therefore, a simple loop expansion in terms of f ,  a ,  
g, w, 30 is enough for the generating functional I'(f). In this procedure, c and cp are 
calculated through a and f according to Equations 4 5 4 7 ,  and a rule for short chains in 
solution with weak ternary interactions emerges, which corresponds to the path 1 -+ 2 on 
the following scheme: 
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-+ 
short chains long chains 

S 
wln- >> 1 

S 
SO SO 

dilute solution wln- << 1 

semidilute solution wl1nc’soI << 1 wllnc’sol >> 1 
a a  

aaoi af 
where { ~ -} denote Equations 45-47 relating to a specific case of field theory with 

n = 0. 
On the other hand, tricritical divergences appear in the expressions of the corresponding 

field theory in the case of long chains. 
Then, scaling equation 86 holds good and renormalization is required, which corre- 

sponds to the path 3‘ -+ 1’ -+ 2‘ on the given scheme. In this case, the loop expansion 
turns out to be regular for scaling theory in the scale S (see Equation 89). 

On the path 2’, c and cp are calculated through a and f according to Equations 45-47, 
which leads to tricritical laws for long chains. 

An alternative way of obtaining tricritical laws is in following the path 1 + 2 + 3. 
The path fragment 3 corresponds to involvement of the functions c(S), c p ( S ) ,  g(S), w(S)  
defined below. 

In his theory, Duplantier follows the scheme 1 -+ 2 -+ 3, as, at an intermediate stage 
of the loop expansion 1 -+ 2, expressions are obtained for short chains, which can be 
compared with the previous results, and procedure 3 gives equations for both short and 
long chains. For the grand potential r{a, its oneloop expansion has the form 

where L(’) is the operator 

The trace in Equation 133 is taken as being with respect to the subscripts ‘2’ and ‘ j ’ .  
For a uniform field f, the grand potential r( f )  acquires the form 

Corresponding calculations lead, for d = 3 and n = 0, to 
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Here ro( f )  is the zeroth loop order [the mean field approximation) 

1 1 1 
ro(f) = W )  = - a f 2  2 + 39f4 + ,1.f6, 

rl(f) = -= [ X W Z )  - y 3 / 2 ( f 2 ) 1  

while rl(f) is the oncloop order 

1 

where 

The one-loop expansion of the transverse vertex function is calculated according to 
Equation 49 (Duplantier, 1982) 

(141) 
l a  r$)(o, 0; f )  = - . - [ro(f) + r,(f) + . e -1 f af 

= y ( f 2 )  - - . - . - a [X3’’(12) - Y”/’(f2))1, 
12A f af 

Finally, one calculates A 

(see Equation 47) and (h’) 

(see Equation 50) with replacement of a and f by c and q,, following 

ar 
c = 2 -  

ba 

(see Equation 45), 

(see Equation 46) in the oneloop non-renormalized approximation. 
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follows from Equation 73. The corresponding calculations yield (Duplantier, a a  
aa, a~ 
-=-  

1982) 

where 
x=2-+-c+-c2 ,  CP 9 w Y=22, 

XI=-+- 9 w  9 w  12 12c, Y'= - + - c .  

c 3 30 C 

6 60 
The adduced relationships are valid in the oneloop approximation. In the zeroth order, 

has been obtained as well. 
In this grand canonical formalism, the mean area of the chains is defined as 

(150) 
C s=  -. 
CP 

Prior to renormalization, it is necessary to distinguish between two limiting cases of 
dilute and semidilute solutions of short chains. 

Dilute solutions of short chains 

Let us assume that c -+ 0 with a fixed S. Accepting (see Equation 149) 
a = 2s-' + O(gc; w 2 )  (151) 

and rejecting the higher-order terms in expansions 147 and 148, we get 
WC2 -1/2 + O(g2,gwc, w2c2),(152) 

A 

kT 

The quantity (h2) in the oneloop approximation in the limit c -+ 0 is corrected by the 
term of the two-loop approximation (Duplantier, 1982) 

S(h2) = - d - c  (-- 1 
c, 6 0 ( 2 ~ ) ? ~ )  . (154) 

Now we are able to compare the expressions for (h2) obtained for a polymolecular grand 
ensemble and for a single chain (see Equations 15, 51, 122-125). In the first order of g 
and w (without renormalization), Equation 122 reads 

1 
(155) gs'/2 - - 1 

60(2a)' w} . ( h 2 ) = d . S  l+- { 9 ( 2 ~ ) ~ / ~  
Comparison with (h2) calculated from Equations 153 and 154 at c = 0 shows the 

S-dependent term gS'/' to have a different coefficient in a grand polymolecular ensemble. 
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Semidilute solutions 

are characterized by 

S + 00, cp is fixed, wc2S >> 1. (156) 

In fact, we are dealing in this case with short fragments between the contact points of 

In this limit, the loop approximation for a grand polymolecular ensemble must give the 

Provided that Equation 156 holds, the quantity S-' is small in comparison with other 

Then, Equation 149 takes the form 

the macromolecules. 

same results as does the perturbation theory of monomolecular chains. 

quantities of the same dimension (eg, w.") and Y = 2s-1 + . + 0 can be accepted. 

(157) a = --e- - ?* + o(s-'), 
3! 5! 

while osmotic pressure (see Equation 152) is expressed as 

7r 9 W - kT=cp+-c2+-c3+s 
24 3 .5 !  

where 

Under the same conditions for (h2)  (see Equation 146), we have 

(P )  = d . s { 1 + 1 (; + g) lI2 + 0 [ ( C P )  -l]} . 
(159) 

This formula generalizes Edwards' (1975) result and coincides with it for w = 0. 

Bicrit ical  scaling laws for long chains in solution 

Replacement of variables in the expressions for short chains by scaling variables has 
proved to produce formulae for the description of the tricritical behaviour of long chains. 

Let us discuss renormalization group equation 86, having rewritten it in the form 

r(f, a, 9, w, so) = W(S), .(S),g(S), W W ,  S )  = rv  (160) 

As is accepted in renormalization group theory, 

s -r9 1 =o.  (161) 
d s  j,a,g,w,so 

For the time being, S is a free parameter. 
We now express ?r and (ha) (see Equations 47 and 50) in terms of renormalization scaling 

theory. By virtue of the recurrence of renormalization (Equation 114), the identity owing 
to the multiplicative renormalization 
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is valid. 

that 
Applying renormalization group equations 86 and 87, it is found for Equations 47 and 50 

where rrP and l?T,rp are functions calculated for the scaling parameters f(S), a ( S ) ,  g(S) ,  
W(S), s- 

Now, auxiliary scaling variables 

are defined. The scaling variables cp(S)  and c(S) play just the same role for rw as the 
variables c, and c in Equations 45 and 46 do for rs0. 

Therefore, the loop expansion of the quantities in Equations 164 and 165 results im- 
mediately by replacing q,, c, g, w, a by q,(S), c(S) ,  g ( S ) ,  w(S), a ( S )  in Equations 145 
and 150. 

At the final stage, the functions cp(S) and c(S), should be expressed through the true 
physical concentrations e, and c defined in Equations 45 and 46. Using Equations 86 
and 162, we get 

c, = - I f - ar = 1 -f(S)- ar, - - c,(S). 
2 a i  2 af(s) - 

Applying then the operation 

which follows from Equation 116, we obtain 

ar a 
8a c 2- = E P - ~ ( s ) ~ ( s ) .  

So, the rules of obtaining results in the tricritical state are as follows: in the expressions, 
given in section 5.4 to describe the properties of a polymer, the parameters c,, c, g,  w are 
replaced by a set of cp(S), c(S),  g(S) ,  w(S) which is 

5 7  CP(S), g(S),  (169) 
and, also, Q + a(S). 

to Equation 169 into 
The mean area of the chains, having been determined as c/ .p,  is transformed according 

s + SP(S) .  (170) 
This procedure culminates in the determination of the area. S satisfies the basic equa- 

tion 89, and the result for it depends on the concentration range. 
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Tricritical state of a dilute solution of long chains 
Equation 151 defines the value of the parameter Q for a dilute solution of chains, ac- 

cording to Equation 170 

a(S)  = 2[sP(s)]-'. (171) 

S = const . S P ( S )  N const . S P ( S )  = const . p(w)S. (172) 

Then, on the basis of Equation 89, we have 

Here the approximation includes only logarithmic terms. For dilute solutions, S can be 
replaced by S in the logarithm up to the numerical additive summand 

(173) 
S S In - Z In -. 
s o  s o  

All these renormalization procedures are necessary and valid in the asymptotic limit of 
very long chains, which meet the condition 

S 
wln- >> 1, 

s o  

and, in this case (see Equation 113), 

w(S) = ___ 6 0 ( 2 ~ ) ~  trip)-'; 
11 

1 
P ( S )  = p(w) 1 - { ( 2 ~ ) ~ 4 5 . 1 1  

(175) 

(178) 

The concentration range, corresponding to the tricritical state of dilute solutions, follows 
from Equation 151 

w(S)c2SP3(S) << 1, (179) 

which is transformed using the expressions for w and P :  

The expression for (h2)  in the tricritical region was obtained above (see Equation 122); 

Applying Equation 153 with Rule 174 for the concentration-dependent component 
now we are able to derive it immediately from Equation 155 with the aid of Rule 174. 

S (h') ( c ) ,  we derive for P ( S )  M p(w)  



710 5.5. Tricritical state. Phase separation region 

where d = 3. The numerical coefficient corresponds to a polymolecular system and. of 
course, differs from that in the formula for equiareal chains. 

The virial expansion of the osmotic pressure of a grand ensemble with very long chains 
results from Equation 152, also transformed by Rule 174 

Using asymptotics 115 and 117, we have for osmotic pressure in the tricritical region 

where w(S) is determined from Equation 176. 

defined by conditions 131 and 132. This domain is marked as D in Figure 5.45. 
The extension of the tricritical domain, where the above relationships hold true, is 

Semidilute solutions (long intrachains) 

Within this concentration range, the parameter a is formally defined by Equation 157, 

Rule 169 then leads to 
where the g-including term can be neglected. 

(184) 
1 
5! 

a(S) = --w(S)P2(S)c? 

The area S is defined by Equation 89 and relates to the concentration c (which has the 
dimension of area-'/') by 

s = const . w-'(s)P-2(s)c-2. (185) 

Neglecting the double logarithmic dependence in Equation 185, we can approximate 

(186) 
S 
so  

In(c2so)-l = In -. 

Here so/S M C?SO is considered as very small. Then it follows from Equation 113 that 

Transformation of Rule 169 for the tricritical semidilute solutions gives 

c, CP,Q, w -+ C P ,  $7 s(c-2), w(c-2), 

P(c-2) N P(00) = p(w). 

(188) 

(189) 

where 

The theory of the tricritical state is valid where cso is small to meet condition 129. In 
view of Equation 186, 

wlInc2sol-' >> 1. (190) 
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Figure 5.45. The solid line is the 
phase coexistence curve at S -+ 00. Inside it is the dashed line, the binodal for finite S 
(Duplantier, 1982) [Reprinted with permission from: B.Duplantier. J .  de Phys. 43 (1982) 991-1019. 
Copyright @ 1982 by EDP Sciences] 

The tricritical state region on the state diagram. 

Otherwise, the simple expressions of perturbation theory work ( s e e  above). 

and 
On the other hand, the semidilute solution domain is bounded by conditions 156, 188, 

Hence, the semidilute solutions with a high value of the characteristic dimensionless pa- 
rameter cS have the tricritical properties if and only if the other dimensionless parameter 
c2so turns out to be small to satisfy inequality 190. 

In this case, the quantities T and ( h 2 )  should be calculated using formal expressions 158 
and 159 with due account of Rule 188, which leads to 

- x = -w(c-2)(cp(w))3 1 + 24g(c-2)(cp(w))2 1 + . . . . 
kT 3.5! 
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Including Sr from Equations 158 and 115, a more complete expression 

l r  1 1 
kT 3 * 5 !  
- = -w(c-2)(cp(w))3 + ,gu(w)[w(c-2)]’[cp(w)]2 +. . . (193) 

results, where w(c-”) is defined by Equation 187, p = 4/11. 
Under the same conditions of the tricritical state, 

The sizes of the tricritical region on the state diagram of c us g for semidilute solutions 
are also defined by the predominance of the first term in Equation 193 over the second 
one, i.e. 

191 I p(~)a- ’ (~) [~(c-2)11-pc  ( 1 - p = ’) l1 . (195) 

This agrees with Equation 120 rewritten in view of EQuation 184. According to Equa- 
tions 195 and 187, the tricritical effects predominate over the critical ones due to the 
excluded volume g in the range (see Figure 5.45) 

191 5 w(w1 In c2sol)-7/11c. (196) 

In this formalism, the phase separation region is defined in the limit of infinitely long 
chains (S  + m), i.e. in the semidilute system mode. The left-hand branch of the binodal, 
in this approximation, coincides with the ordinate axis on the state diagram 

g < o ,  c = o ,  (197) 

i.e. I = 0 on this branch. The right-hand branch is then determined from the condition 
n- = 0. 

Applying Equation 193 for ge, one obtains for the right-hand branch of the binodal 

---g - (w) [w(c-”] ’-’ cp(P.1 (1 - P = 11 
15 e -  

For small w (but sufficiently large to obey Equation 190), using Equations 118 and 187 
enables one to obtain 

-7f11 

wI Inc2soJ ) x c .  (199) 

Thus, the right-hand branch of the binodal for infinitely long chains has a zero slope 
at the origin of coordinates (see Figure 5-45), which is a characteristic property of the 
tricritical phenomena. 

However, the binodal is located on the border of the domain of validity of the tricritical 
theory, as it follows from Equation 195. 

The question of how the g-related critical effects correspond to the w-related tricritical 
ones, if they are commensurable, remains open in this approximation. 
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On the other hand, the state equation for finite chains provides the binodal asymptotics 

For chains with the area S ,  the critical concentration in the binary system P+LMWL 
in the semidilute region. 

has the value 

ec x s- ‘ f2 .  (200) 

The binodal curvature near c, corresponds to the universal critical index for liquid 
binary systems (not to the tricritical one!). 

The tricritical state theory is not applicable in the neighbourhood of the critical con- 
centration e, but only when e > e,. 

The theory becomes valid in the limit S + 00, when the critical point (gc,c,)  moves 
towards the tricritical one (0,O). 

Then, the binodal curve becomes asymptotic to the tricritical curve (Equat.ion 198). 
Hence, Lagrange’s formalism O(n) of field theory (with n = 0) shows the tricritical point, 
of the system with infinitely long polymer chains to correspond to the 0 point, where there 
occur hyperfine compensative effects of the pair and ternary interactions. Long chains 
are established not to be Gaussian near the 0 point. 

A universal behaviour asymptotically arises from the mean square end-to-end distance, 
and the exponent of the logarithmic component has been calculated in this version of 
theory. 

The renormalization group method has been applied for description of the solution 
behaviour at finite concentrations. In particular, the mean square end-to-end distance 
in solution, averaged over the grand canonical ensemble and containing the logarithmic 
function as well, have been calculated. 

The osmotic pressure for a set of monomolecular chains and that averaged over the grand 
canonical ensemble have also been calculated. The boundary of the tricritical region have 
been outlined on the state diagram (see Figure 5.45) in the g us c coordinates, where 

An analytical expression for the right-hand branch of the binodal in the limit of infinitely 
long chains has been also derived. 

Since then, the theory of the tricritical phenomena has been developed by the direct 
renormalization methods (des Cloizeaux, 1981) (see section 5.4) in (Duplantier, 198Gbd), 
by the dimensional regularization in momentum space (see section 5.2) in (Kholodenko 
and Freed, 1984; Cherayil et al., 1985; Douglas and Freed, 1985). 

Duplantier (1987) correlated the results of different approaches in renormalization the- 
ory to clear up a number of contradictions described by different authors in the course of 
development of the tricritical state theory. 

He uses the probability distribution function for the state of a system in the notation 

- (T - e p .  

s s s  
- - C / d s  /ds ’ /ds“dd[r‘ (s )  - F(s’)]dd[F(s’) - ?‘(s”)]}. 

3 ! 0  
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The mean square end-to-end distance is defined as 

(h2) = (I.'(S) - ?(0)12) 

and calculated by the formula (see Equations 5.440 and 15) 

Here Z($,  -z, S )  is the generating function, 

Jd{flP{?')exp{dZ[r'(S) - .'(O)]} 

s d { r 3  PO{r') 
Z(Z, -z, S )  = 7 

Po{,3 obtained from Equation 201 for b = 0 and c = 0. 
The mean square radius of gyration of a coil is defined by (cf. Equation 5.4-103) 

and calculated by the formula 

with the generating function 

proportional to the structural factor in radiation scattering. 
In Equations 203 and 206, Z ( S )  is the single-chain partition function 

The diagram Z(Z,  -Z, S )  in the first-order is presented in Figure 5.46. The correspond- 
ing contributions are determined according to des Cloizeaux' (1981) rules (see section 5.4) 
extended to the t hree-particle interactions 

(209) 
- +  

Z,(k, -IC, S) = exp 
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a b C 

Figure 5.46. First-order diagrams giving the generating function Z(2, . -2, S) (Duplantier, 
1987) [Reprinted with permission from: B.Duplantier. J. Chem. Phys. 86 (1987) 4233-4244. Copyright 
@ 1987 American Institute of Physics] 

. / Z e - ( 9 ’ ) h ‘ / 2  -P (S--S-s’)/2 e 

As the values Z(z, -g, S) at small ic’ are needed to calculate (h’) and (R’), these 
functions can be represenhl by two terms of the I C 2  series 

I C 2  
2 

Z(Z, -i, S)  = Z(S) - -SZ’(S) + . . . . 
The versions of theory to be compared are described in terms of 

S O  

s 2 0  = -. 

This three-parameter model should be regarded in the dimension d 5 3, as at d > 3 
the threeparticle interaction effects are drastically reduced for long chains. Indeed, for 
S + 00 it follows from Equation 214 that 

for d < 3, {R for d > 3. 
y 4 ( ~ T ) - ~ c  fo rd=  3, (216) 

In view of Equation 215, we discuss either small cut-offs SO or long chains S + 00, i.e. 

xg + 0. (217) 

In the version of theory with a cut-off within 2 <  d 5 3, Duplantier (1987) obtained 
the following expressions 

(218)  
x ; - d / 2  1 

Z(S)  = 1 - z  -~ [ 1 - d / 2  -k (1 - d / 2 ) ( 2  - d / 2 )  
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22:-d 
(1 - d/2)(2 - d/2) + 

where 

, 2 < d 5 3 ;  
1 q i  - d/2)r(2 - d/2) 

bd = ___ 
1 - d/2 r (4  - d) 

l-d/2 2-d/2 
2 0  Z‘(S) = 1 - 2 [--- + a d  + 2- 2 - d/2 - 1 - d/2 

2 1-d/2 42;-d -~ 
1 - d/2adx0 + Qdb‘ - (1 - d/2)(2 - d/2) 

where 
1 2 +--- 

1 -d/2 3-d /2  2-d/2’  
1 

a d  = ~ 

Calculation of Z ( S )  and Z’(S) in the dimensional regularization method gives for d < 3 

1 
- Ybd, Z(S)ldim.reg. - * (1 - d/2)(2 - d/2) 

Z’(S)ldim.reg. = 1 - 2% - yadb&. 

Analytical continuation of these equations to d = 3 leads to 

Z(S)ldim.reg. = 1 + 42 - 47ry (d  = 3), 

16 
Z‘(S)ldim,reg. 1 + -2 - 8 ~ y  (d 3). 3 

The expansion 

4 -  

is also valid for the gyration generating function ZG(IE, -k, S). 

and dimensional regularization. 
Duplantier (1987) provides expressions for Z&(S)  in the versions of theory with a cut-off 

In view of Equations 203, 212, 206, and 222, one can write 
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which gives in the cut-off version 

(h’) = d .  S[1 - zg(x0) - yh(xo)]. 

Here 
2 - d / 2  3 - d / 2  

I +--- 20 XO 

( 2  - d / 2 ) ( 3  - d / 2 )  2 - d / 2  3 - d /2 ’  g ( x 0 )  = - 

x 3 - d  

(1 - d / 2 ) ( 2  - d / 2 )  -t a d b ;  - bd - 2 0 + 0 ( ~ ; - ~ / ~ ) ; ( 2 3 2 )  
1 1 - 4 2  

20 

1 - d / 2  ( 2  - d / 2 ) ( 3  - d / 2 )  
h(z0) = 2- 

(233)  
d . S  

(R’)  = -11 - ZgG(x0) -yhG(zO)], 6 

where 

x ; - d / 2  x 3 - d  

+ O(r;-d’2), 
2 ( 1  - d/2;(2 - d / 2 )  hG(x0) -2A;- + Bi - 1 - d / 2  

where 
1 

( 2  - d / 2 ) ( 3  - d / 2 )  ’ 
- 

1 
A’ - 

- 2(4 - d / 2 ) ( 5  - d / 2 )  

(235)  

(the expression for B d  is not reported here). 

written in the general form 
The functions g(x0) and gG(X0) are similar as are h(x0) and hG(x0). They can be 

x k - d 1 2  x.?-d 

1 - d / 2  + B - 2  ( 1  - d / 2 )  ( 2  - d / 2 )  + 0 ( x ; - d / 2 ) ,  (239)  0 h(x0) = -2A- 

where A and B are the dimensionless regularized components of g and h: for ( h 2 )  

B = Q d b ;  - b d  
1 

( 2  - d / 2 ) ( 3  - d / 2 ) ’  
A = -  

and for ( E 2 )  

A = A & ,  B = B i  
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As the final result of the dimensional regularization procedure, the following expressions 
are obtained: 

Hence, Equations 230-232 (the cut-off version) are seen to be completely equivalent (at 

Extension of the virial expansion (Equation 5.4-41) up to the third term has the form 
xo + 0) to Equations 242 and 243 (the dimensional regularization method). 

(Duplantier, 198613) 

where g is the dimensionless second virial coefficient 

and h is the dimensionless third virial coefficient 

Figure 5.47 presents the diagram of the two-chain connected distribution function 

In the cut-off version (Duplantier, 1987), 
Z ( S ,  S, b, c, E )  proportional to the second virial coefficient. 

2 - d / 2  Z ( S ,  S) = -bS2 - 2 ~ S ~ - ~ / ~ ( 2 7 r ) - ~ / ~  1 + 2 1  (248) 
1 - d/2 + (1 + d/2)(2 - d/2) 2 - d/2 

or, in the notation with z and y, 

(2rS)-d/2Z(S, S) = -z - 2yf(zo), 

where 
2-d/2 

2 - d/2’ 
1 50 

x;-d/2 
f ( X 0 )  = -~ + t- 1 - d/2 (1 - d/2)(2 - d/2) 

(249) 
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Figure 5.47. First-order diagram reflecting the contribution to the twechain connected 
distribution function Z(S ,  S )  proportional to the second virial coefficient A2 (Duplantier, 
1987) [Reprinted with permission from: B.Duplantier. J. Chem. Phys. 86 (1987) 4233-4244. Copyright 
@ 1987 American Institute of Physics] 

The effective theta point O(S) of chains with a finite size S is defined by 

2 (S,S) = 0, (251) 

z[O(S)l= -2Y.f(Xo). (252) 

i.e. 

The B point of infinitely long chains is defined by an asymptotic expression for ~ ( x o ) ,  
i.e. f m ( ~ 0 )  in the limit zo = so /S  -+ 0. 

It follows from Equation 250 that 

z A - d / 2  

1 - d/2’  foo(.o) = -___ (253) 

4qcQ11 = -2Yfw(Zo), (254) 

and from Equations 214, 213, and 250 that 

x ; / 2 - 1  

6[B(S)] = -2C(27r-d/2s:-d’2 -___ + -1 (255) [ 1 _1$/2 i- (1 - d/2)(2 - d/2) 2 - d / 2  ’ 

Thus, the pair interaction parameter at the tricritical point O(m) has a finite value 
which is exclusively dependent on the cut-off so. Besides, for finite chains 

In particular, at d = 3 this shift corresponds to S-’/’ in the mean field approximation 
and to S-’/2(lnS)-3/22 in the next order of renormalization theory (cf. Equation 128). 
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The distribution function 2 (S, S) is also calcula.tt-d by the dimensional regularization 
method 

It is seen that this equation differs from Equation 248 by the absence of cut-off dependent 
terms. Further, Duplantier finds expressions for (h’) and (R’) near the tricritical point 
O(m) by replacement of z by 

z - z[qm)l- 2Yfdzo) (259) 

in Equations 230 and 233: 

(h’) = s (1 - (2 - zP((33)Il d z o )  - Y W O )  - 2fm(zo)g(zo)l) 7 (260) 

(261) 
d . S  (@) = 6 (1 - { z  - z [ ~ ( ~ ) ] } g G ( z O )  -!/ [hG(zO) - 2fco(zO)g(xO)]) 

An important result 

h(z0) - 2foo(zo)g(”o)  = + O(z%d/z) (262) 

emerges while using general expressions 238 and 239. 
Therefore, in the function h, both the diverging term of order ziPd” and the “dan- 

gerous” regular term of order x”,-“ are subtracted by fm(zo). We see that this is not a 
coincidence: it is intimately related to the general form of the functions g and h (Equa- 
tions 238 and 239) and it applies to (h’) and ( R 2 )  (and actually also to all other physical 
quantities). Having applied Equations 240 and 241 to Equations 238 and 262, Duplantier 
has found for (h’) (see Equation 260) 

1 
(2 - d/2)(3 - d/2) 

(h’) = d .  S 1 - { z  - z[6(00)]} [- ( 
- y [a& - bd + 0 ( z y 2  

and for ( R 2 )  (see Equation 261) 

d - S  
(R’)  = -(1 6 - { z  - z [ B ( m ) ] }  [A& + O(zi-d/2)] 

When 2 < d < 4, z;-~’’ + 0 for zo + 0. In this limit of the expression from the 
cut-off version, Equations 263 and 264 fully coincide with Equations 242 and 243 from 
the dimensional regularization version provided that the quantity z from dimensional 
regularization is identified as z - z[O(oo)] in the cut-off version. 
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Thus, the dimensional regularization method provides an effective way of automatic 
subtraction in all the orders, which was performed in the vicinity of the tricritical point 
by Duplantier (1986bd). 

Correspondingly, the expressions for (h’) and (R2) can be obtained for the proximity 
of the effective B(S) point defined by Equations 250 and 252. A trivial replacement 
2 -+ z - z[O(S)] - 2yf(x,) enables one to derive 

d .5 ’  
(R2)  = -(1 - { z  - z[I9(S)]} [A’, + 0(2i-d’2)] 

6 

In comparison with Equations 263 and 264, these equations differ with respect to the 
coefficients at the y-containing term due to a shift of the reference point z. 

Certainly, the last expressions can be obtained with respect to the finite 0 point by 
means of the direct dimensional renormalization as well when the I9 point of finite chains 
results from the equality 2 (S,S) = 0 in the dimensionally regularized expression 258, 
whence 

(267) 

and corresponds to the finite part of f ( ~ )  in Equations 250 and 252. 
The finite component of f , ( x o )  (Equation 253) vanishes. Hence, 

z[o(m)]d im.reg .  = 0 (268) 

is accordance with the tssence of dimensional regularization, i.e. automatic subtraction 

Subtraction of z[B(S) ]  (see Equation 267) in Equations 244 and 245 (the dimensional 
of O(m). 

regularization) immediately yields 

2 
(3 - d/2)(2 - d/2)2(1 - 4 2 )  

{ RZ) Idim.reg. = d ‘ S  - 6 ( l - -{~-z[O(S)]}Ak-y  (1 - d/2)(2 A’ - 4 2 )  I )  .(270) 

These agree with Equations 265 and 266 at xo = 0. 
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Thus, the direct renormalization version produces the same results as does the cut-off 
version. All the divergent and finite components, which explicitly reduce in the cut-off 
version, simply do not emerge in the direct renormalization method. These operations 
are performed automatically during the analytical passing from d < 2 to 2 < d 5 3. 

In 3D space, the constants in Equations 219, 221, and 220 have their values 

(271) 
16 3n 

2 ’  
b3=47r, as=-- 

3 ’ bi = --. 
in Equations 236 and 237 

Substituting these values to Equations 230-233 (the cut-off version) we get for 3 0  space 

(P) = 3 s  { 1 + z (4 - 22:l2 + -&I2) 2 + y - 47r - 8 -t O ( x : ” ) ] } ,  (273) 3 

If z is measured with reference t9 the tricritical point z[e(oo)], then it follows from 
Equations 273 and 274 that 

4 (P) = 3 s  (1 + fZ - z [ e ( ~ ) l )  - 4 4  , (275) 

All the terms with cancel, and a result is obtained, fitting closely the direct renor- 

If z is measured with reference to the effective 8 point, then we get from Equations 265 
malization version. 

and 266 

(277) 
(P) = 3s(i + {. - .t[e(w)l} [a 4 - 2x:/2 + o(~;/~)] 

32 
- Y [4n - 7 + 0(2iq) ,  

134 (R’) = :( 1 + { z  - z[6(5’)]} [- 105 - 2 ~ : ’ ~  + O(Z;’~)] 

137r 134 + y -- + 8- + O(Z‘/’ 4 105 

In connection with consideration of the tricritical effects, the question arises of the 

For simplicity, introduce a designation zf for a parameter shift 
conformation of a polymer chain at the tricritical point. 

2‘ = - z[e(oo)l. (279) 
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Thus, z' 0 for the 0 point of infinitely long chains. For S-sized chains, the effective 0 
point (where A2 = 0) in 3 0  space is given according to Equation 267 

z'[O(S)] = 8y. (280) 

Then, the first-order result in the cut-off version at d = 3 and zo -+ 0, according to 
Equations 275 and 276, has the form 

Thus, at the 0 point of infinite chains (z' = 0), the mean square end-to-end distance 
is smal le r  than its Brownian sizes 3 s ;  the square radius of gyration is also less than its 
Brownian value S/2. 

This contraction effect in the first order of y is somewhat weaker for (R') than for (h'). 
According to the definition, (R2) (see Equation 205) is more sensitive to the coil state 
at short distances, where the three-body repulsion interactions are likely to predominate 
over the twmbody attraction interactions, which was pointed out by Khokhlov (1977). 

The same conclusion follows for the effective 0 point of finite chains (Equation 280) in 
the first order. Indeed, it follows from Equations 281 and 282 that 

(h')(8(s) = 3 s  1 -t- -4n + - y < 35,  [ ( 31 

The above results are valid in the first order only. For long chains, the next-order terms 
turn out to be significant due to the tricritical effects, and the renormalization methods 
are needed to reveal the chief (logarithmic) divergences in all the orders. 

By the cut-off methods of field theory (Duplantier, 1982) (see the beginning of sec- 
tion 5.5) and the direct renormalization (Duplantier, 1986bd) for the continuous chain 
model (Equation 20l), it was obtained that 

(h2) = 3s { Ao(y) (1 - g T h )  + $.I (i)"" A4(y)} , 

(I?) = 2 { Ao(y) (I - E n h )  493 + Ed (5)"I'A*(Y)} , 2 

where Ao(y) and A4(y) are regular functions of y: 
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The parameter h is the renormalized term of the threebody interactions 

Y h =  
1 + 44y7r In( S/so). 

For small y,  i.e. for extremely weak threebody interactions or short chains, a simple 
linear approximation results 

h = Y ,  (289) 

and renormalized expressions 285-287, reduce to linear Equations 281-282. Otherwise, i.e. 
for long chains, the h attains its universal value 

1 
h =  

447r In(S/so)' 

In the limit of infinitely long chains, h + 0 and, at the corresponding 0 point (2' = 0), 
Equations 285 and 286 lead to 

( h 2 )  = 3SAo(y) = 3 5  

S 
( R " )  = --Ao(y), 2 

(291) 

which show residual swelling Ao(y) > 1 dependent on fine details of the interaction y. 
Of course, such residual swelling cannot be fixed experimentally, and it depends on the 
details of the chosen model. 

Nevertheless, of interest is comparison of the residual swelling as given by renormaliza- 
tion theory with the residual contraction (h2)  in the linear approximation of the theory 
(see Equation 281). 

The residual effects of the three-body interactions on (h2)  lead to opposite contributions 
with respect to the Brownian value (h2)b ,  = 3S, cf. Equations 281 and 291, and they 
correspond to the short and long chains. 

This situation is sketched in Figure 5.48 for a fixed three-body interaction y. 
At any temperature different from ~ ( c Q ) ,  the tricritical effects are associated with the 

temperature-dependent term ~ ' ( h / y ) ~ / ' '  (see Equations 285 and 286). For long chains, the 
h, in accordance with Equation 290, may turn out to be substantially lower than y,  and 
the tricritical behaviour term (h/y)'/l" can obviously be fixed experimentally (Duplantier 
et al., 1989). 

Data on light scattering from PS solutions (M,,, = 1,260,000) in cyclohexane (Perzynski, 
1984) are interpreted in (Duplantier, 1989). 

To compare experimental results with theory, first, the quantities b, c, and h should be 
determined. The parameter b has been obtained from coil swelling data at a temperature 
above 8 as against the theoretical curve of swelling (des Cloizeaux et al., 1985) 

nm-'. 
896 K 

T b = 2.918 - - (293) 
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I 
X 

"t Y h  
s = m 

Figure 5.48. Schematic of the 
change in the chain sizes Xo = 
( h 2 ) / 3 S  and X = 2(R2) /S  
at the tricritical point O(m) as 
functions of the parameter h = 
[44~1n(S/so)]-'. h = 0 and 
h = y correspond to infinitely long 
chains and the linear theory (short 
chains), respectively (Duplantier, 
1987) [Reprinted with permission from: 
B.Duplantier. J. Chem. Phys. 86 (1987) 
4233-4244. Copyright @ 1987 American 
Institute of Physics] 

This means that b = 0 at T = 9 = 34OC in accordance with the definition of 9 (9 = T, 
m). Then, the dependence T, = f ( M )  is determined by Flory-Huggins' theory at S 

and the experimental data of Perzynski (1984) 

103 47 
T c  a' _ -  - 3.257 + - 

It follows from comparison of Equations 293 and 294 that 

42 b 
c -  a' 

The relation of c with b,, 

bf S 
4 

c =  - 

(cf. Equation 3.1-314)' results from the condition of the critical point 

and a rough approximation of the virial expansion 

R 1 1 - = 
kT 2 3 + -bS2c: + -cS3c;. 

(294) 

(295) 

(296) 

(297) 

Then, S/so = N is accepted, where N is the number of monomers in a coil and SO is 

Moreover, 
the area corresponding to the monomer sizes. 

S = 2(A)  M ,  (298) 

where (A) = 8.3 . nm2/dalton for PS. 
According to Quations 213 and 214, 

= ~ / ~ ( 2 4 - ~ / ~ ,  = c(2n)-3 (299) 
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and for PS in cyclohexane 

c = 0.73, y = 0.0029. (300) 

For thespecificsampleof PS M, = 1.26-106, S = 2090nm2, S/so = M,/Mo = l.21-104, 
According to Equation 290, 

h = 7.7.  (301) 

Using z, y, and h, Duplantier et al. (1989) calculated theoretical dependences 

(the linear approximation of the tricritical effects, see Equation 281); 

(the renormalized relationship of theory, see Equation 285). 
It is assumed that 

These theoretical dependences are also compared with the corresponding expression in 
Flory's approximation with allowance for the ternary interactions (de Gennes, 1975) 

(6, the formula for pair interactions in the same notation, Equation 5.4-138). The cal- 
culated theoretical dependences are presented in Figure 5.49 and compared with experi- 
mental values X = (R2) / (R2(Tl)) ,  where TI = 35°C is the reference temperature chosen 
near 6 = 34°C. 

First, let us discuss the temperature Tx,(S) at which no swelling occurs (X = 1). For 
infinite chains, this temperature corresponds to Flory's temperature Txo(S -+ m) = 6 = 
34°C. 

With a finite MM, Flory's approximation yields Tx,(S) < B (see Figure 5.49). In 
the continuous chain model, T',,(S) > 6 with a finite S. For the given PS sample, 
Txo(S) - 6 = 1°C (the linear approximation) and Tx,(S) - 6 = 0.5"C (renormalization 
theory ) . 

The most important results, shown in Figure 5.49, is in agreement between the theo- 
retical curves (involving the tricritical effects) and the experimental values of the related 
quantity X. 

For the theoretical curves, 7'1, at which experiment gives X = 1, is chosen as the 
reference temperature. After normalization, the line XO shifts towards TI by 0.5" while 
XO,L does not shift (0"). The best fit to experiment is achieved when the tricritical effects 
in the version with renormalization of Xo are taken into account. 
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0 TI 

Figure 5.49. Temperature dependence of the swelling factor X o  as given by the linear 
approximation of the tricritical effects X~,J , ,  by renormalization theory X,, and by Flory's 
approximation &,F: the crosses are the expcrirnental values from light scattering of PS 
solutions in cyclohexane (Perzynski, 1984); the dashed line is the theoretical curve after 
a shift of Xo to the right to obtain Xo = X = 1 at the same temperature (TI = 35°C) 
(Duplantier et al., 1989) [Reprinted with permission from: B.Duplantier, G.Jannink, J. des Cloizeaux. 
Phys. Rev. Lett. 56 (1986) 2080-2083. Copyright @ 1986 by the Anmerican Physical Society] 

It goes without saying that it is more correct to compare the theoretical dependences 
deduccd for the square radius of gyration with these experimental values. In the linear 
approximation (see Equation 282) 

For the renormalization version (see Equation 286)' 

where z1 relates to T'1 = 35°C (Figure 5.50). 
One can note the closeness between 4/3=1.333 (see Equations 302 and 303) and 

134/105 = 1.2762 (see Equations 305 and 306). 
Thus, the chief results of the papers under consideration is experimental detection of the 

renormalization of the coefficient z to X (or X o )  by the tricritical factor (h/y))'/l" N 0.62. 
As Duplantier et al. (1989) conclude on the basis of Duplantier's theory discussed above, 

the validity range of the tricritical state theory (tricritical theory) is near 0 
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Figure 5.50. X values normalized to 1 at TI = 308K: the crosses stand for experimental 
values, the straight lines stand for theory (Duplantier et al., 1986) [Reprinted with permission 
from: B.Duplantier, G.Jannink, J .  des Cloizeaux. Phys. Rev. Lett. 56 (1986) 2080-2083. Copyright @ 
1986 by the Anmerican Physical Society] 

In this case, JzI 5 0.045 . const. The constant in Equation 307 is not known exactly 
but is assumed to be - 1, i.e. the tricritical range is 

305K < T 5 0. 

Indeed, it is over this range that thc best fit of the tricritical theory to experiment, 
is observed (303K < T 5 0). It is interesting that 303 K is the temperature of the 
boundary of the phase separation region for a given PS sample. Below 303 K, a more 
sharp decrease in the experimental values of coil size is observed, but not so drastic as 
Flory's approximation predicts. 

In agreement with the state diagram (Figure 5.45), Perzynski et al. (1982, 1987) exper- 
imentally fixed the 8 region. The expansion factor of PS coils in cyclohexane 

as dependent on rm, changes linearly on both the sides of 0 in the range I r a 1  < 10. 
Using light scattering data (PS solutions in cyclohexane at T < 35"C), amlac has been 

found to be proportional to c in the range of dilute solutions (eg. see Equation 3.1-297). 
In the 0 region, A2 does not depend on M, and is proportional to r for both T 2 0 

and T <_ 8, given I T I  <_ 2 .  lo-'. This agrees with the predictions of the mean field theory, 
viz. that Az is proportional to the segment excluded volume 13 (see Equation 3.1-146) or 

(see Equation 3.1-52,-300). 
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It follows from the experimental data for A2 (Perzynski et al., 1987) that (see Equa- 
tions 3.1-297,-301) 

In a semidilute solution at the 19 temperature, &/dc is proportional to cz (or $’) (see 
Equations 3.1-297,-301) with the proportionality factor being the three-body interaction 
&-independent parameter (Perzynski, 1984; Perzynski et al., 1987) 

(310) 

From this quantity w,  the ternary interaction parameter y (see Equation 299) has a 

Substitution of the experimental values (Equations 309 and 310) to the formulae of the 
value = IO-’. 

mean field theory (Equations 3.1-313,-317,-320) leads to 
14 

7 
= -  a’ 

(312) 
28 

c, = -g/cm3, JMa; 
1 

-1n -- = - 7 . 5 . 1 0 - ~ ~ ; .  
M W  ( 63 (313) 

Perzynski et al. (1987) also analyze the data of Koningsveld et al. (1970b), Saeki et al. 
(1973a), Derham et al. (1974), Strazielle and Benoit (1975), Nakata et al. (1978), which 
are presented in Figure 5.51. 

Experimental data (see Figure 5.51a) obey the straight line equation 

1 14.6 f 0.2 -- a ’  lo3 - 3.256 [I + 
TC(W 

in good agreement with theory (Equation 311). 
Experimental data (see Figure 5.51b) obey the dependence 

g/cm3, - 6.8M-0.38f0.01 
cc - W 

(314) 

(315) 
which differs from the predictions of the mean field theory (Equation 312) (the dashed 
line in Figure 5.51b). 

This difference is explained by a stronger manifestation of the tricriticd effects in c, = 
j ( M w )  than on T, = f ( M , ) .  

Under Duplantier’s (1982) theory, the tricritical corrcctions correspond to the expres- 
sions (Perzynski et al., 1987) 

T~ N N-’lz(ln N)-312, (316) 
c, - N-‘/*(ln N)”*.  (317) 

Experimental data (Perzynski et al., 1987) on cr, ~ r ( T a ) ,  and Mw do not obey the 
mean field universal dependence (Equation 313). One should note that Equation 313 was 
derived from very rough assumptions (see Equations 3.1-306.. .320). 

It follows from experimental data (Perzynski et al., 1987) that the reduced parameter 
for the binodal is where E = (T, - T)/Tc (Figures 5.52 and 5.53). 
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Figure 5.51. Dependence of T , '  w8 M;'I2 for the system PS+cyclohexane on evidence of 
Koningsveld et al. (1970b), Saeki et al. (1973a), Derham et al. (1974), Strazielle and Benoit 
(1975), Nakata et al. (1978) (a);  dependence of c, us M, (b); the solid line corresponds 
to Equation 5.5-315, the dashed line corresponds to Equation 5.5-312 (Perzynski et al., 
1987) [Reprinted with permission from: RPerzynski, M.Deleanti, M.Adam. J .  de Phys. 48 (1987) 
115-124. Copyright @ 1987 by EDP Sciences] 

5.6. Direct evaluation of the order parameter fluctu- 
at ions 

A more general version of the theory of P+LMWL systems, which expresses the Gibbs 
potential of mixing with due account of the order parameter's fluctuations (the concen- 
tration of polymer segments) has been put forward by Muthukumar (1986) on the basis 
of Edwards' (1965, 1966) formalism and their mutual paper (1982) (see Equations 5.1- 
246. . -268). 
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Figure 5.52. Dependence E = (T, - T@)/T,  us M,,, for q / c ,  = 3.2 . in the 
logarithmic scale for the system PS+cyclohexane. The straight line corresponds to 
& = 1.1 . M-(0.32*0*04) w (Perzynski et al., 1987) [Reprinted with permission from: R.Perxynski, 
M.Delsanti, M.Adam. J. de Phys. 48 (1987) 115-124. Copyright @ 1987 by EDP Sciences] 

Figure 5.53. Semilogarithmic d e  
pendence of cr/c, us Dif- 
ferent signs relate to polymer 
fractions (Perzynski et al., 1987) 
[Reprinted with permission from: 
R.Perzynski, M.Delsanti, MAdam. J .  
de Phys. 48 (1987) 115-124. Copy- 
right @ 1987 by EDP Sciences] 
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Let us consider a P+LMWL system containing n chains of length L = NI and N s  

In the mean field approximation and in view of the ternary interactions, the Gibbs 
Ixiolecules of LMWL in the volume V. 

potential of mixing is written in the form 

1 -) 6 Q3, 

where ip is the volume fraction of the polymer (= Nn13/V) (cf. Equation 3.1-32,-303). 
As the second virial coefficient of the osmotic pressure expansion, the quantity (112 - 

x) is accepted here, while the difference between the characteristic parameter of the 
ternary interactions w and the trivial factor 116 acts as the third virial coefficient (see 
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Equation 3.1-303). 

the form 
The correction to Equation 1 due to the fluctuations in the order parameter must have 

(see Equation 5.1-247), where 

The functional integral J D[&] in Equation 2 corresponds to the summation over all 
the chain conformations regardless of how the polymer chains are packed in the volume, 
which is considered by state equation 1. 

The quantity (1/2 - x)13 is an averaged binary cluster integral. Correspondingly, w16 is 
an averaged ternary cluster integral for three segments (cf. Equations 1.8-9,-10 and 3.1- 

In this approach, both x and w are considered temperaturedependent. Below the 
6 temperature, (1/2 - x) < 0 and w is positive and siifficiently large in magnitude (cf. 
Figure 1.41, where the temperature dependences of the second and third virial coefficients 
for real gas are compared). 

In this version of theory, Muthukumar suggests the possibility of replacing the ternary 
contact term in Equation 3 by the effective pair interaction term 

52,-300). 

L 

x (.ids7 exp [ - i ( i -  S')$(s,)]) 
7 0  
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L L  

where p = N,/V is the numerical concentration of segments. 
So, the probability partition function can be simplified 

where 

u 112 - x + w@ 

Now, the partition function 5 is subjected to the same analysis as described by Muthuku- 
mar and Edwards (1982) (see Equations 5.1-246.. .268). 

The interaction term in Equation 5 describes the pair interaction between any two 
chains. Mathematically, it can be put into the behaviour of one chain placed in the field 
due to the presence of other chains (Edwards’ formalism-see subsection 5.1.2, Equa- 
tions 5.1-191.. .195,-252). Then 

The second term in the braces represents the interaction of the a t h  chain with the field 
while the third term is the field’s Lagrangian. The denominator in Equation 7 is the 
normalizing factor. 

This mathematical formalism implies consideration of disconnected chains placed in the 
field. As now there remains the sum over chains with the subscript a in Equation 7, one 
can write (see Equation 5.1-252) 
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where 

(cf. Equation 51-187). 
The second equality in Equation 8 is obtained by parametrization IC(@)]" (see sec- 

tion 5.1 and: Muthukumar and Edwards, 1982). 
Calculation of the integrals in Equation 8 is obviously impossible in full. Hence, an 

effective partition function for a chosen chain has to be introduced. Muthukumar chooses 
such a function G in terms of the variational principle. 

The function G describes the partition function of a chosen chain with a certain pair of 
its segments which interact through the field due to all the other chains. can, therefore, 
be written as 

2 L L  a&) L 
3 

= exp { - 5 1 ds (-..) - f 1 ds 1 ds' A [ d ( s )  - Z(S')] 
0 0 0  

where A is an effective potential to be determined. 
If the quantity pG is added to and subtracted from Equation 8, we get 

p ({E.}) = (12) 

The term [G(@)-GI contains the fluctuations of the partition function about its effective 
partition function, and f dp exp(pG) contributes to the free energy of n effective chains. 

Equation 11 is the rigorous equation while the approximation arises through the choice 
of G. Redefinition of pG(@) through the unknown quantity n gives, 

where @k is the Fourier transform @(q, 
@ k  = J ci~@(q exp(-iLq. 

Equations 9 and 10 lead to 
2 L L  a&) L 

lnG=-- /ds  - 3  (T) -fJd.lds 'I$$ 

21 0 0 0  
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x (1 + n k ) - l  exp (iZ [@s) - FZ(s')]) . 

Comparison of Equation 15 with Equation 11 yields 

where Ak is the Fourier transform of the effective interaction A(F') 
Indeed, Ak is the mean of @:: 

Ak = (e:) 

taken over the field partition function. 
From Equations 10, 13, and 17 we obtain 

which brings Equation 12 to 

Thus, Ak defines the contribution of the fluctuations in segment density to the free 
energy through Equations 2, 19, and 6. 

Calculation of Ak 

Any two points in space ;and r" correlate in the field through the interaction A(F- TI ) ,  
and the field Lagrangian can be defined as 

where 

A(F- TI) = (@(?')@(?I)) .  

Therefore, any pair of segments of the chosen chain interacts via A [g(s) - a ( s r ) ] ,  

So, the statistics of the chosen chain deviates from the Gaussian statistics, depending 

Edwards' formalism (1965, 1966) suggests that the chosen chain can be described by 

where E ( s )  - E(d) is the segment-to-segment distance. 

on the nature of A. 

the effective Gaussian distribution with the effective segment 11: 
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Generally, 11 proves to be a very complicated function of A and reflects the non-Markov 
nature of the process. Therefore, one can expect that the effective partition function for 
the system has the form 

e x p ( - H n ) .  

In fact, P (a, {Ea} )  is defined by Equation 7. 
Hence, adding and subtracting Ho in the exponent P (a, {,}) to and from Equation 7, 

one can obtain a form characteristic for perturbation theory using Equation 23 as a bare 
propagator. From Equation 7 one derives 

P (a, {za}) = exp(-Ho - H') ,  (24) 

where 

By definition, 

A series in terms of perturbation theory results on expansion of exp(-H') in Equa- 

In the limit k -+ 0 (i.e. for very large characteristic length scales), calculation (Muthuku- 
tion 26. The leading term of this perturbation series is Ak. 

mar and Edwards, 1982; Muthukumar, 1986) has led to 

(cf. Equation 5.1-254). 

length in the units of Kuhn's segment (cf. Equation 5.1-256) 
Thus, the effective interaction has the form of decay (screening), and t is the screening 

where (Y 1 1 / 1 .  



5.6. Direct evaluation of the order parameter fluctuations 737 

This relationship is valid only in the limit of [ and l1 not depending on wavevector and 

The quantity l 1  (and, therefore, a )  is obtained while calculating the mean square end- 
for concentrations exceeding the overlap concentration a*. 

b e n d  distance of the chosen chain 

As earlier, a series of perturbation theory is constructed by expanding exp(-HI) in 
Equation 29. The leading term is LI1, and 11 is determined when all the other terms of 
the perturbation theory tend to zero. 

The 11-defining equation takes the form 

where 

K' = N a 2 / 6 [ ' ,  (31) 

and erfc is an error function. 
The numerical prefactor in Equation 30 is chosen so that Flory's modified equation 

(Yamakawa, 1971) would appeare for an infinitely dilute solution ( K  = 1).  For semidilute 
solutions (a 2 @*) with N + 00, Equation 30 leads to 

112 - x + w@ 
a5 - a3 = 13.245t 

ra 
Subsliluting Equations 27 and 16 to Equation 19, we get 

P ({a,}) = (G)nexp [-(24xt3)-'], 

ln J D [ i ] G  (34) 

(33) 

where [ is defined by Equations 28 and 32. 
The free energy of the effective chain is obtained by maximizing 

with respect to 11. Here G is given by Equation 11.  
Substitution of Equation 33 to Equation 2 yields 

9 (112 - x + w a )  a 
- = (24xt3)-' - 
AG' 
kT 16.rra2t (35) 

Thus, the total expression for the Gibbs energy of mixing, in view of Equations 1 and 35, 
has the form 

(36) 
AG, @ 1 - = -ln 9 + (1 - a) ln(1- 9) + xa(1- a) + (tu - 6) @3 
kT N 
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9 (1/2 - x + Wcp) @ + (24rt3)-' - - 
167r f f2E  

Let 11s discuss some asymptotic forms and limiting expressions. 
For Q > @* but still low enough Q values, the asymptotic formula 

follows from Equation 28. 
Under the same conditions, combination of Equations 32 and 37 yields 

(38) 
1/2 - x + w@ 

cp 
as - ff6 = 0.755 

In the case of the absence (W = 0) or insignificance (w@ << (1/2 - x)) of the threebody 
interactions, an asymptotic result for a2 

follows from Equation 38. 
Inclusion of Equation 39 to Equation 37 gives 

Substituting Equations 39 and 40 to Equation 36, we get for w = 0 

AG, @ 1 
kT N 2 
-- - -In a + (1 - a) In(1- a) + xa - -a2 

+ 1.872 (i - x)'I4 @'I4. 

From Euler's theorem for the potential of mixing (Equation 1.1.1-37) 

Acm = AW + nP2n2, 

the formula for osmotic pressure (per unit molar volume of the system) 

is easily derived. 
Using Equation 41, we get from Equation 42 

- + 2.34@'14. 
7r _ - _  
kT N (43) 

Thus, the character of the concentration dependence of such quantities as the mean 
square end-to-end distance expansion factor (Equation 39), the correlation length (Equa- 
tion 40), and the osmotic pressure (Equation 43) coincides with the results of familiar 
scaling laws (see Table 4.1). 
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Correction of the relevant dependences can be performed according to the total equa- 
tions 28 and 32. In the case of the predominance of the threebody interactions w@ > 
(1/2 - x), Equation 38 shows the concentration independence of a 

as - a6 = 0.755w, (44) 

while Equation 37 holds good for 6. In particular, the three-body interactions must 
predominate at the 0 point, where x = 1/2, and 5 is inversely proportional to concentra- 
tion, in agreement with the scaling approach as well (see Equation 4.3-65 and Table 4.1, 
region 111). 

For very concentrated solutions, the same dependence [ N (ap1 is expected. If only 
w = 0 and (l/2 - x) > 0, 6 N at high concentrations, which is in keeping with the 
result of the authors’ previous paper (see Equation 5.1-263). 

Substituting Equations 37 and 44 to Equation 36, we get 

(45) 
cp 1 1 

kT N 2 6  
5 = -In @ + (1 - (a) ln(1 - a) + x@ - -a2 - -a3 + 1.872w3/*a3, 

whence 
i T c p  

kT N 
_ -  - - + 4.68(a3. 

Hence, in a poor solvent with the predominance of the three-body interactions over 
the two-body ones, i~ - a’, which also agrees with the scaling (see Equation 4.3-44 and 
Table 4.1, region 111). 

Equations 36, 30, and 32 provide an iterative procedure for AG,, [, and a with any 
Combinations of the parameters of the twebody and three-body interactions and with 
any concentration. 

State equation 36 is valid in the phase separation region as well, but due to the in- 
terdependence of on [ and a through Equations 31 and 32, the phase diagram can be 
calculated only numerically. However, in the case of the predominance of the threebody 
interactions (that is obviously the case in the phase separation region), results can be 
obtained analytically. For the spinodal, write 

1 1 1 + - - 1 + ( 1 1 . 2 3 ~ ~ ’ ~  - I)@ = 0, ~- -kT - d2AG, 
dcp2 [ I - @  NQ 

and for the critical point, besides, 

Hence, for the critical concentration aC, we have 

2 
N cp: - -(a: - 2cpc + 1) = 0, 

the solution of which yields 

(47) 

1 / 3  
cp, = (;) + 0 ( N 4 3 ) ,  
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This result differs substantially from the prediction of Flory-Huggins' theory (ac N 

Let us substitute Equation 50 to Equation 48 
N-'12). 

wc = 0.068iPrf3 (51) 

(52) E 0.093N-4/9 [1+ 0 (N-'/')] . 
The matter is complicated by the temperature dependence of the third virial coefficient 

being unknown a priori. If we assume (Yamakawa, 1971; Muthukumar, 1986) 
2 

w + x )  1 

then, in view of the approximation 

e 
2 x c  = E ,  

we get 

wc = 1 4 (1 - ;)z E (7&)2, 

(53) 

(54) 

(55) 

where ?,bl is Flory's entropic parameter. 
Near 8,' Q << 1 is satisfied, which can be taken into account when expanding (1 - O)-l 

in Equation 47 into a series. Then, for sufficiently large N, spinodal equation 47 takes 
the following form 

(56) 
1 

sp N @:p + 1 1 . 2 3 ~ ~ / ~ @ '  + - = 0. 

With allowance for Equations 53 and 55, and the common approximation for x 
e 

2x = - 
T' 

on passing to new variables 

@Lp = @spN'/3 T' = rN2I9 

in Equation 56, we obtain 

+ q ! ~ ; ~ ~ ~ ~ f ~ @ $  + 12.23 = 0, 

(57) 

(59) 

whose structure corresponds to the principle of corresponding states. Fxuation 59 differs 
from the corresponding spinodal equation in Flory-Huggins' approximation (Equation 4.3- 
113) 

a:; + 2$1r1)ip:p + 1 = 0, (60) 

where 

@It = @ N'l2 
sp SP 
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This difference is due to the account of the fluctuations in segment density in Equa- 

Naturally, a relationship between the parameters of the two-body and threebody in- 

Using AG, in the form of Landau’s potential (see Equation 3.1-275), we obtain for 

tion 59. 

teractions, other than Equation 53, will lead to a different spinodal equation. 

the amplitude of the phase separation region (see Equation 3.1-278) 

Applying Equation 45 to Equation 61, in view of Equations 48, 50, and 55, yields 

I@ - aCl N N-2’9 (62) 

or 

The value 1/9 0.11 is close to Sanchez’ (1985) index bp = 0.102 (Equations 4.3-129,- 
132). 

The exponent in Equation 63 is also rather close to Dobashi et al.’s (1980ab) experimen- 
tal values, -0.16 (see Equations 4.3-134,-136) and to Shinozaki et al.’s (1982a), -0.06 
(see Equations 4.3-135,-137). 

The exponent in Equation 50 is close to Kaneko et al.’s experimental results, -0.39 
(see Equation 4.3-136). The exponent reported by Shinozaki et al. (1982a), -0.40 ( s e e  
Equation 4.3-137), is an intermediate between -0.33 (Muthukumar, see Equation 50) 
and -0.5 (Flory-Huggins). 

It should be emphasized that the above exponents from Muthukumar’s theory (Equa- 
tions 50 and 62) relate to the limiting case of the predominance of the three-body inter- 
actions with the two-body ones being fully ignored. In the opposite limiting case (the 
predominance of the two-body interactions and neglect of the threebody ones), the ex- 
ponents of Muthukumar’s characteristic quantities are concordant with Flory-Huggins’ 
approximation. The fluctuation contribution affects the factors at the power function 
only. 

Equations 36, 28, and 30 of Muthukumar’s theory enable both the twebody and three- 
body interactions to be accounted for in their different combinations. 

Comparison of these equations with the experimental data will allow researchers to 
study the contribution of the twebody and threebody interactions and the temperature 
dependence of x and w for specific systems. 

In any case, theoretical results show that the account of the order parameter’s fluc- 
tuations may well lead to a substantial correction of the characteristic dependences in 
polymer theory in the mean field approximation. 
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Chapter summary 

1. The renormalization group transformation of the Wilson type for the macromolecular 
conformational space 72s is composed of the scaling transformation Ss and Kadanoff's 
transformation Ks: 

72s G KsSs. 
The scaling transformation Ss essentially reduces all the chain (Figure 5.1) which is 

equivalent to looking at it from a longer distance, with small loops becoming indistinguish- 
able and short interactions manifesting themselves as one effective interaction (Figure 5.3). 

Kadanoff's transformation Ks is composed of two operations: 

0 when the interacting points are at a distance along the contour length less than 
the cutting length Q, the interactions within a small loop are included into the 
redefinition of l 2  and N in the scaled chain. 

0 if two pairs of interactions in the scaled system are separated by a contour length 
less than a ,  then these interactions are combined into a new effective parameter of 
interaction. 

Applying the renormalization group transformation with the interaction potential as a 
short-range 6 function yields analytical expressions for Rs( N-')  (Equation 5.1-33) and 
Rs(v2)  (Equation 5.1-34). 

From (Equation 5.1-34) and the condition of existence of the fixed point Rs(w;) = w; 
an expression for w; = .rr214c/32 (Equation 5.1-36) follows. (PI*)-' = 0 is the fixed point of 
the transformation R s  [(N*)-'1 = (N*)-' near which linearizing R s ( N - ' )  (Equation 5.1- 
33) leads to 

R ~ ( N - ' )  = s 2 v - e v / 4 ~ - 1  (5.1-38) 

The choice condition of v (see Equations 5.1-19,-20) gives the asymptotic form 
Rs(N- ' )  = sN-' and leads to 

1 E  

2 8  
v E -(1 + - + . . .). (5.1-40) 

2. In the case of a more realistic interaction potential including both attraction and 
repulsion (a solid core of the diameter c) the renormalization group transformation has 
the analytic form Rs(N- ' )  (Equations 5.1-45,-51); Rs(a )  (Equation 5.1-46); Rs(v2)  
(Equation 5.1-52), and Rs(v3) (Equation 5.1-53). 

Near the fixed point (within the region C ,  Figure 5.2) the equations v2 = -4v3(3/2.rr12) 
(Equation 5.1-54) and Rs(v,') = 0 hold, i.e. the asymptotic phenomenological two-body 
interaction vanishes. Therefore, there exists a temperature at which the molecular chain 
as a whole behaves in 3 0  space as a unperturbed (free) one, and this temperature can be 
referred to as the fl temperature. 

Equation 5.1-54 indicates that at the 0 temperature, the morphological state of a 
coil is characterized by a balance of fine interaction effects concerned with the twebody 
attraction interactions being compensated for by the threebody repulsion interactions. 
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Thus, the problem of the coil B state proved to be much more sophisticated than the 
problem of the self-avoiding walks of segments. 
3. In polymer theories, the length of a segment (molecular unit) a is the natural unit of 

the length scale at the molecular level, but experimentally measured quantities Q do not 
feel this molecular discrepancy. Hence mathematical expressions of the macroscopic quan- 
tity Q have to be well-defined in the limit a + 0. Regarding the problem of the molecular 
coil excluded volume, this limit should be treated as a rejection with the consideration of 
the interactions of a segment with itself (self-excluded volume). 

On the other hand, there is no natural unit length in the macroscopic description of 
macromolecule conformations, but it seems reasonable to  introduce some unit length L to 
the macroscopic theory for conversing dimensional units to dimensionless ones. It follows 
that this unit may be chosen arbitrarily, regardless of the microscopic natural unit length 

It is the renormalization approximation of the Gell-Mann, Low, Oono, Ohta, and Freed 
type that gives a method of introduction of such macroscopic values which are well-defined 
in the limit a -+ 0, on the basis of a microscopic model. The following scale invariance of 
the microscopic theory to the choice of L together with the renormalization relations of 
well-defined macroscopic values leads to scaling regularities. 

As the experimentally observed values must be well-defined in the limit a -+ 0, the 
series of the perturbation theory must be regular at E = 0 for macroscopic values. It is 
not, however, the case for the corresponding series obtained from the microscopic model. 

The essence of the renormalization method with dimensional regularization is thc intro- 
duction of relationships between microscopic and macroscopic values, which absorb these 
singularities, so at E = 0,  the macroscopic quantities turn out to be regular in E. 

In Oono, Ohta, and Freed's version, a continuous chain with the contour length NO, 
excluded volume parameter vo, and minimal scale length a being equal to a segment is 
chosen as the model for the macromolecule. On this basis, expressions are written for the 
partition function of the end-to-end distance (Equation 5.1-60), and a bare dimensionless 
Hamiltonian (Equation 5.1-62). 

The microscopic parameter of the excluded volume vo is conversed to a dimensionless 
parameter uo by uo = vOLEI2. For the macroscopic parameter of the excluded volume 
u = vLef2 is accepted. 

a .  

The microscopic values are related to the macroscopic ones by the relationships 

N = &No (5.1-65) 

and 

(5.1-74) 

The main property of Gg must be its invariance to the choice of L,  and the key equation 
of the theory follows: 

(5.1-77) 

by which it is possible to find 2, 2 2 ,  and the relationship of 
(singularities) of the bare (microscopic) perturbation series being absorbed (excluded). 

us vo with all the main parts 
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The relationship between u and uo follows from a consideration of the threepoint 
partition function 

With respect to the coil sizes in the maximum good solvent, the approach has led to 
the index v = 4/(8 - E )  (Equation 5.1-134) being in good agreement with other exact 
approaches as well as with experiment for 3 0  space with E = 1. 

The technique of this version of the renormalization theory enables one to calculate such 
quantities as: the partition function for the end-bend vector, the scattering function, 
the macromolecular conformations in solutions with finite concentrations, etc. more accu- 
rately than in the Kadanoff-Wilson approximation. Besides, this approach provides the 
calculation of the characteristic functions in the crossover region, i.e. in the intermediate 
region between the Gaussian behaviour of a coil and the limiting case of the interaction 
between segments with the excluded volume. 

4. In order to solve the problem of determining the sizes of macromolecules in solution 
with a finite polymer concentration, the method of renormalization of the conformational 
space of polymer chains was applied using Edwards’ formalism by which the effect of the 
surr+ounding macromolecules is equivalent to the existence of an external stochastic field 
@ ( R )  with the so-called conformational “diffusion” of a given chain taking place. The 
“stream of conformations” in a power field turns out to lead to the effective “concentrat- 
ing” of conformations which shows itself by the reduction of the coil with the increase in 
the polymer concentration in solution. 

5 .  To calculate the characteristic quantities of polymer theory, the method of the renor- 
malization of polymer chain conformations in momentum space proved to be reasonable 
in every respect. 

Here, the partition function for the end-to-end distance is represented through Laplace’s 
inverse transform. 

The technique of calculations is based on the well-elaborated formalism of the general 
field theory; therefore all the achievements of the latter can be applied to its polymer 
version. 
6. The method of renormalization of the conformational space is also successfully used 

for the calculation of hydrodynamic parameters of macromolecules. 
The possibility to calculate hydrodynamic quantities (eg, [VI) both with preaveraging 

Ozeen’s tensor and directly (without any preaveraging) proves to be a serious advantage 
of the calculational procedure of the renormalization group approximation. This allowed 
researchers to estimate the error of determination of the hydrodynamic quantities caused 
by this preaveraging. 

Different combinations of the expressions for hydrodynamic quantities with each other 
and with other characteristic quantities, formed according to the principle of reducing the 
arbitrary length L, lead to hydrodynamic invariants which tally with the traditional ones 
up to a constant. 
7. A version of the direct renormalization method in the polymer theory was proposed 

by des Cloizeaux. 
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The probability partition function for an unperturbed (Brownian) chain is written as 

(5.4-1) 

where s and S have the dimension of area: [SI - L2.  
The partition function 

3 0 ( k )  = e - P S / Z  (5.4-5) 

corresponds to this partition function in momentum space. 
To describe the macromolecular properties in a good solvent, two-body interactions arc 

introduced. They make the partition function to have the form of Equation 5.4-7, and 
for an ensemble of N chains-of Equation 5.4-12. 

For the functions (Equation 5.4-7,-12)-based expressions to converge, a cut-off implying 
1s’‘ - s’J > so must be introduced. Physically, this cut-off prevents the account of self- 
interactions between the segments for which s’ = s”. 

An important point of the approach is in the possibility to express all the physical 
(experimentally measured) values of a polymer system through its partition function with 
an imposed constraint. Fixing some p points, belonging to given macromolecules, may be 
such a constraint. Such points are referred to as the correlation points. 

The diagrams representing the expansion series members of n-order partition functions 
are composed of N lines (one for each macromolecule) and n interaction lines connecting 
the lines of macromolecules in a way, 

Hence, the interacting macromolecules are described with the fixed partition function 

+ 3 ( F i , .  . . ,Tp;j i , .  ..,$;SI ,... , S p ; S 1 , . .  . ,SA‘), (5.4-21) 

where j is the number of the macromolecule, the sign “+n marks the introduction of the 
cut-off so, and in momentum space are with 

determined together with 

i l  + iz + ’ .  . + Lp = 0. (5.4-24) 

Fixing the chains’_endpoi@s is a special case of the imposed constraint. Here, the 
partition function 3 ( k , ,  . . . , k 2 ~ ;  Si,. . . , SN) corresponds to the situation where p = 2 N  
and 

and in the long-wave limit it corresponds to 

+3(0 ,0; .  . . ; 0,o; si,. . . , SN) =+ S(S,, . . . , SN). (5.4-25) 
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The terms of the expansion series of +3(S,,...,s~) or 
+3(.&, . . . , kp;  j , ,  . . . , jp; SI,. . . , sp; SI,. . . , S N )  in terms of b powers are connected 
graphs (diagrams), since an interaction is reflected by connection lines. These diagrams 
are formed by all the means possible and calculated according to the rules given in 
section 5.4. 

+ 

The most important quantities of the theory are: 

0 the partition function of one 3 ( S )  and of two chains 3(S, S);  

0 the Fourier transform 3(i, -i, S )  of the partition function with an imposed con- 
straint 3(r‘I, ?‘’; s). 

The mean-square end-toend distance of an isolated chain 

(h’) = ((r‘(S) - r ‘ ( O ) ) ’ )  = -- 2d [-3(k,-k‘;S)] a - +  
3 ( S )  ak2 k=O 

and the state equation 

(5.4-40) 

(5.4-41) 

are expressed through the mentioned functions 

(Equation 5.4-40) one can obtain 
In particular, for the Brownian chain, involving SO(k)  (Equation 5.4-5) according to 

(hz)  = ((r‘(S) - c(0))2)o = Sd, (5.4-6) 

i.e. the properties of the Brownian chain depend on the variable S only. 
The space interactions in a chain is characterized by the parameter 

z = b S 2 - d / 2 ( 2 ~ ) - d / 2 .  (5.4-9) 

Des Cloizeaux introduced the conception of a critical object in reference to a polymer 
chain. With z = 0 the chain as a critical object is the Brownian chain. With z + M 

one will obtain a critical object as the limit of the chain with interacting segments (the 
Kuhnian chain). Between these two limits there is a crossover region with a finite value 
of z. All the physical quantities at a given b (or S )  increase with z ;  however, in the 
asymptotic limit the universal behaviour and the correctness of the scaling relationships 
can be expressed. 

For an isolated polymer chain with interactions, the area “ S  is defined as 

(h’) = ((r‘(S) - r‘(0))’) =‘Sd, (5.4-42,-67) 

where 

- = XO(Z) = -- [ - 3(E,-i;S)] . “S 

S 3(S) d(kzS)  k=O 
(5.4-43) 

With S = const ‘S + 00, if z + 00. This shows the advisability of choosing “S as 
a new scale, and X o ( z )  may be regarded as a renormalizing multiplier. In the case of 
z + 00 Xo(z )  - z ’ (2V-1) lE  (Equation 5.4-48) 
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The physical quantities, originating from the partition function, are also expressed 
through " S  and z, and with ' S  = const they must reach a finite limit, if z + 00 (the 
Kuhnian behaviour). 

However, for "S  = const the partition function proved to be infinite, if z -+ 00, so 
renormalization is required. 

As 3(S) is dimensionless, we can define 

3(S) = [X1(z)I2. (5 .449)  

An appropriate analysis shows that 

Xl(Z) - d 7 - y  z -+ co. (5.4-52) 

The renormalized partition function 3R("S) must depend on the physical scale "S  alone, 
and, therefore, be a constant. So we can define 3R('S) = I (Equation 5.4-53). 

Hence, 3(S) = [XI(Z)]~~R('S) (Equation 5.4-54) and X,(z) can be regarded as the 
second renormalizing factor defined by the renormalisation condition (Equation 5.4-53). 

By definition, for large N 

XM - NUM (5.4-61) 

holds, and 

The critical index OM is defined as 

OM = lim OM(Z). 
z--tco 

(5.4-62) 

(5.4-63) 

00 and g1 are the most important critical indices, for which 

a0 = 2v - 1, (5.4-64) 

and 

7 - 1  
0 1  = - 

2 (5.4-65) 

hold. 

be written as 
Analysis of dimensions reveals that the renormalized partition function ~ R ( ~ S , '  S )  can 

3 R ( e S , e  S )  = -(2n)d'Z("S)d/2g, (5.4468) 

where g is a quantity having the meaning of the dimensionless second virial coefficient. 
The state equation of a polymer solution is written as 

(5.4-69) 

According to the fundamental idea of the renormalization theory, g must possess the 
following properties. 
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If z = 0, then g = 0, but if z + 00, then g has a finite limit g*. Besides, for d 2 4, 
g* = 0. Hence, with a small positive E = 4 - d, g can be expanded by its Taylor series 
expansion in powers of E.  The E expansion of the critical indices can be obtained in a 
similar way. 

The strategy of renormalization is as follows. 
In terms of (Equations 5.4-49,-53,-43,-67) by means of the perturbation method Xo(z )  

and X , ( z )  are calculated as functions of z ,  which is followed by calculation of the critical 
indices ~ ( z )  and 01(z). 

Using (Equation 5.4-68), g can be represented as a series in powers of z. This series 
can be reversed so that-z $11 be expressed as a series in powers of g. As a result, des 
Cloizeaux calculated 3 ( k ,  -k, S )  and 3(S ,  S )  in the second order of z and in the first order 

finally, 
of ( k 2 S ) ,  and, therefore, XO(Z) =‘S/S, XI(Z), O O ( ~ ) ,  OI(Z), g(z) ,  g*, oo(g), ul(g) and, 

u = - -  
2 

(5.4-99) 

with u 2( 0.569 for d = 3 ( E  = 1). 

culated the mean square gyration radius of macromolecules by means of (Equation 5.4 
103,-104). In particular, it was found that 

To reveal fine phenomena in the properties of polymer solutions, des Cloizeaux cal- 

(5.4-113) 

With finite values of z, the crossover effect manifests itself. As a result of calculations, an 
expression for Xo(z)  (Equation 5.4-136,-137) was obtained. 

This method of renormalization was used to calculate the form factor of light scattering 
H(q3 (Equation 5.4-147), which differs essentially from that presented in some previous 
papers accepting the rule of swelling of the macromolecule to be the same for both the 
internal and the external parts of a macromolecule. 

In contradiction to  this, the method of direct renormalization predicts the swelling of 
the internal parts of a macromolecular chain to be more intensive. It affects the expression 
for the radius of gyration which is more sensitive to the internal part of coil than is (h’). 

As temperature decreases (the properties of a solvent get worse), the excluded 
volume of segments decreases, too, and the coil conformation approaches the Gaussian 
one at the 0 point, where the second virial coefficient is equal to zero. This conformation 
is realized as a result of the compensation of rather strong interactions of both positive 
(repulsion) and negative (attraction) signs rather than due to the absence of interaction. 

The state of long polymer chains near the compensation 0 point is similar to  the tri- 
critical state of general-type systems. 

A theory of polymer systems near the 0 point (by Duplantier) has been worked out with 
the grand canonical ensemble of polymer chains, the grand canonical partition function 
being written as 

8. 

(5.5- 16) 
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where a0 is the chemical potential related to the chain area S ,  and h 2 / 4  is the fugacity 
associated with the number M of chains. 

Through the partition function (Equation 5.5-16) are expressed the numeric concentra- 
tion of polymer chains c,, the average total area of chains (S) and the osmotic pressure 
7T: 

h 
2 v  

c p = - .  a - In Z ( h ) ,  
d h  

d 
dQ0 

(S) = - ln2(h) ,  

i r 1  
- = -In 2 ( h ) ,  
kT V 

(5.5-1 7,-20) 

(5.5-1 8) 

(5.5-19) 

the symmetrical moment X 2 ,  the total square end-bend distance X 2 ,  and the square 
distance between the ends of the same chain ( h 2 )  being expressed by (Equation 5.5- 
24.. .26). 

Within the Lagrangian formalism, the set of M chains is represented by an action 
d(3 (Equation 5.5-3.. .5), to which there corresponds the partition function 2{z} of 
n.-component field @(z), j = 1 , .  . . , n (Equation 5.5-27.. .29) coinciding with Z ( h )  (Equa- 
tion 5.5-16) in the case of a homogeneous field along the direction j = l h j ( z )  = djlh 
and in the limit n = 0. 

c, c,, and ir are expressed through vertex functions by means of 

(5.5-45) 

(5.5-46) 

(5.5-47) 

where f = dF(h) /dh ,  F ( h )  is the free energy of the system. 

as well: 
These quantities can be expressed through the vertex functions in the k-representation 

(5.5-60) 

(5.5-6 1 ) 

If the 0 state is defined by the second virial coefficient being equal to zero for infinitely 
long chains ( ( h 2 )  + XI), then the condition of the 0 state via the vertex functions follows: 

W ( o ,  0) = 0, r(4)(0, o,o, 0) = 0, (5.5-62) 
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which characterizes the tricritical point in the field theory. 
At short distances (so -+ 0), the vertex functions have “ultraviolet” divergences, so 

renormalization is required to suppress the divergences of the power function type . s i a ,  
a > 0. 

As a result of the renormalization by mass and vertex of two-body interactions (Equa- 
tion 5.5-73,-74), one can obtain an expansion series r(’)(IC, - I C )  in the first order of g and 
w (Equation 5.5-82) and the six-point vertex function I’@) (Equation 5.5-84). 

The series of vertex functions diverge in respect of w powers in the neighbourhood of 
the tricritical point when d = 3 at the expense of the term including 

. + . +  

(5.5-85) 

The dimensionality d = 3 corresponds to the highest critical dimensionality causing the 
appearance of logarithmic divergences because of the term w( P’ )~  in the Lagrangian. 
With d = 3 two limits a -+ 0 (corresponding to S + 00) and so -+ 0 are equivalent. 
These tricritical divergences, appearing from the interaction term w((P’)~, differ from 
those relating to the excluded volume term g(y’)’. 

The technical side of tricritical renormalization is very sophisticated and laborious. 
As a result, Equation 5.5-124 was derived for a single infinitely long chain at the 

tricritical point, and Equation 5.5-125 for a finite chain at the 8 point. Therefore, an 
infinitely long chain at the 8 point somewhat swells because of the three-body interactions, 
and for a finite chain a reduction with a logarithmic correction takes place. 

9. For finite-concentrated solutions Duplantier considered the versions of dilute and 
semidilute solutions separately for short and long chains. 

The matter is that there is no tricritical divergence for short chains in solution, and 
for the generating functional r(f) a simple loop expansion in terms of f , a , g , w , s o  is 
sufficient. 

For dilute solutions of short chains, characterized by c + 0 and S being fixed the 
expression of x (Equation 5.5-152) and of (h’) (Equation 5.5-153) with a correction term 
S (h’) (Equation 5.5-154) were obtained. 

Semidilute solutions of short chains are characterized by the following conditions: 

S -+ 00, cp is fixed, WC’S >> 1. (5.5-156) 

In fact, in this case we are dealing with short sections between the entanglements of 
the macromolecules. For x and (h’), Equations 5.5-158 and 5.5-159 were obtained. 

For long chains in the tricritical state of dilute solutions, the renormalization proce 
dure allowed researchers to calculate x (Equation 5.5-183) and w(S) (Equation 5.5-176), 
and for (h’), Equation 5.5-122 with a distinct concentration-dependent correction (Equa- 
tion 5.5-181) was obtained. 

For semidilute solutions of long chains in the tricritical state, after the renormalization 
x has the form (Equation 5.5-193) with w(c-*) (Equation 5.5-187) and (h2)  has the form 
(Equation 5.5-194). 

Therefore, the Lagrange formalism O(n) of the field theory (with n = 0) shows the 
tricritical point of the system of infinitely long polymer chains to correspond to the 8 
point, at which there occur very fine effects of compensation of two-body and threebody 
interactions. Near the 8 point long chains are not Gaussian. 
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10. Within the given formalism, the region of phase separation is defined in the limit 

The left-hand branch of the binodal within the accepted approach matches the ordinate 
of infinitely long chains (S + co) 

axis (9 < 0, c = 0 ) ,  and for the right-hand branch 

in the semidilute region. 

-7f11 

wJ In c2so( ) . c .  (5.5-1 99) 

Therefore, the latter branch has a zero slope at the origin of coordinates for infinitely long 
chains which is a characteristic feature of the tricritical phenomena. 

11. The theory of tricritical phenomena was developed by different methods: the 
direct renormalization, the dimensional regularization in momentum space, etc. There 
are some contradictions between different authors which can be explained by certain 
specific features of different approaches. However, Duplantier performed comparative 
calculations and an analysis of the tricritical state of polymer systems by different methods 
(in particular, by the method of dimensional regularization and using a cut-off) and 
achieved equivalent results. 

Therefore, the contradictions appear to be related to the technical side of calculations 
and are of no consequence. 

In connection with the consideration of tricritical effects, the conformation of a poly- 
mer chain at the 6 point is gaining in importance. In the first order of the interaction 
parameters at the B point, there occurs a contraction of the chain in comparison with the 
unperturbed state of the coil. With sufficiently long chains and an essential contribution 
of the three-body interactions, a residual swelling of the coil is observed. 

The experiments, which seem to report the tricritical effects for the first time, are 
discussed. 

12. Muthukumar proposed the most general version of the theory of systems PSLMWL 
in which the Gibbs mixing potential is given with due account of fluctuations in the order 
parameter (the concentration of polymer segments) (Equation 5.6-36). This approach is 
based on the step-by-step application and the development of the Edwards formalism. A 
peculiar feature of this approach is the reduction of the three-body interactions to the 
effective twebody ones. 

The Muthukumar theory enables one to account both for two-body and for threebody 
interactions in any ratio in solutions of any concentration in principle. 

Within the region of a good solvent, the three-body interactions can be neglected, and 
the results of the Muthukumar theory are in agreement with those obtained by the scaling 
approach. 

There may be analogies with the scaling expressions of the characteristic quantities 
in the region of a poor solvent, too (near the 6 temperature), if special significance is 
attached to three-body interactions in the Muthukumar state equation. 

In the case of the account of both two-body and threebody interactions, the region of 
phase separation has to be defined by means of numerical methods. 

With the predominance of threebody interactions, the results can be obtained analyt- 
ically; they show a significant difference from Flory-Huggins’ predictions and are in good 
agreement with experiment. 
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In another limiting case, the case of the predominance of two-body interactions, the 
characteristic quantities of the Muthukumar theory tally with Flory-Huggins’ approxima- 
tion. The contribution of the segment concentration fluctuations is only reflected in the 
factors standing by the power functions. 

As the Muthukumar equalities (Equation 5.6-36,-28,-30) enable one to take account of 
two-body and three-body interactions in different combinations, the comparison of these 
equations with experimental data will allow one to study the contribution of two-body 
and three-body interactions as well as the temperature dependence of the parameters of 
the two-body x and three-body w interactions for certain systems. 



Chapter 6 

Liquid( Solution)-Crystal Phase 
Separation 

6.1. Conditions of phase equilibrium 
If in the system P+LMWL at some temperature 2'1 the chemical potential of mixing of 

the polymer in solution per mole of monomeric units Apzs at some concentration v2 = v; 
proves to be equal to the difference of the chemical potentials of polymer in the crystal and 
amorphous phases ApZcr, then there will be two phases in equilibrium, namely, polymer 
solution of the concentration v~ = v; and polymer crystals (Figure 6.1). 

Let us write the condition of the chemical potentials of polymer being equal in solution 
and in the solid state per mole of monomeric units (because it is the monomeric unit that, 
acts as the structural element in the process of crystallization) (Flory, 1949): 

Ap2s = b 2 c r  , (1) 
I 1  where Apzs  = (pz - p o z ) / p  = ApZ/p;  ApZcr = pZcr - poz; po2 i s  the polymer chemical 

potential in the amorphous state per mole of monomeric units; A p z  = pz - poz is the 
chemical potential of mixing of the polymer, and p is polymerization degree which is 
equal, according to the lattice model, to G~z/GZM, where I / o z ~  is the molar volume of a 
monomeric unit (cf. Equation 3.1.1). 

Hence, in the approximation of Equation 3.1-51, 

and in the limit z -+ 00 

According to the reversibility condition of crystallization-melting processes, 

A p z a  = -Ap2rn, (4) 

and 
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T 
a 

I 

vz' 
v2 

C 
Figure 6.1. Temperature dependence of Apzct. and Apzd ( a ) ,  concentration dependence 
of AGm for solution (the single-phase state) ( b ) ,  and the dependence of the melting 
temperature of polymer crystals on polymer concentration in solution (the liquidus curve) 
(c) (Schematic) 

Fixing temperature at the first-order phase transition of polymer in the condensed state, 
we replace T by T:: 
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In soliition and at any other temperature T :  

T as,, Ap,, = AH,, - T AS,, = AH,, 

Equations 1 ,  4, and 6 together give 

and, in view of Equation 2, 

Here T denotes the melting temperature T, of polymer crystals in solution with the 
polymer concentration I ? , ,  so 

or 

It means the better the solvent (lower x,), the deeper the melting temperature depres- 
sion of crystallites formed from solution. Plotting 

one gets a straight line whose intersection and slope enable one to calculate the melting 
molar enthalpy per monomeric unit AH,, and the interaction parameter x, , respectively 
(Figure 6.2). 

In systems P+LMWL high in polymer, crystallites may function as crosslinks, and the 
amorphous part of polymer with LMWL forms the system “crosslinked polymer+LMWL” 
with its characteristic features (section 3.5) (Rogers et al., 1959). 

The consideration presented (Flory, 1953; Mandelkern, 1964) is valid only if the crystal 
lattice contains polymer molecules alone and no mixed crystals are formed (no solidus 
curve on the state diagram). Moreover, in comparison with any mixture of low-molecular- 
weight compounds (see Figure 1.11) in the system PSLMWL the eutectic temperature 
is markedly shifted towards the side of high LMWL content and, as a rule, the effect of 
solvent (LMWL) melting temperature depression is very insignificant (Papkov, 1981). 

Such approach is justified for a huge body of systems P+LMWL. However, recently 
a number of systems have been described where mixed crystals, or crystal solvates, are 
formed (see Figure 3) (Papkov and Dibrova, 1978; Papkov, 1981; Iovleva and Papkov, 
1982). 

To provide their formation, steric coincidence and strong interactions between LMWL 
molecules and separate groups of macromolecules must exist with the packing of them 
being densest (Papkov, 1981). 
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v2 

a 

1 1 1  1 

I I 
v2 = 1 v1 = 1 

b 

Figure 6.2. Liquidus curves of the system P+LMWL in a poor (large x,) (I) and good 
(small x,) (2) solvents (a) ,  according to Equation 8 (b) (Schematic) 

Papkov (1978, 1981) presented different versions of P+LMWL state diagrams where 
LMWL crystallization is important. For instance, a water melting temperature depression 
to -60°C has been observed in the system dextrane+water at a 50% dextrane content 
(Ioelovich et al., 1975). 

In macromolecules with strong intramolecular interactions, a cooperative order-disorder 
(helix-coil) transition is possible, which is of prime importance for solutions containing 
proteins and nucleic acids. The formation of a system of intramolecular H-bonds among 
the groups of the main chain, stabilized by hydrophobic interactions, leads to the helix 
conformation. As temperature rises, or an active solvent is introduced, intramolecular 
H-bonds break down, and the helix-coil transition occurs. It is reversible with decreasing 
temperature or removing the active solvent, respectively.' 

'In some special cases (eg. a mixed binary solvent with one component very active, and the second one 
of low adivity), an increase of temperature leads to coil-helix transition. Editor's note 



6.1. Conditions of phase equilibrium 757 

CrLMWL+CrP 

v2 

a 

T 

CrS+CrP 
CrLMWCSCrS 

.......... 

CrS+CrP 
CrLMWCSCrS 

Tm 1 

VCrS 

c 
v2 

Figure 6.3. Liquid-crystal phase equilibrium (Q) with the formation of a congruently 
( b )  or incongruently (e) melting crystal solvates. Tml and Tm,crs denote the melting 
temperature of the crystals of the low-molecular-weight component ( C r L M W C )  and of 
the crystal solvates (CTS), respectively (Papkov, 1981; Iovleva and Papkov, 1982) 

The helix-coil transition has been well studied by now and is described in detail in 
a number of books and monographs (Birshtein and Ptitsyn, 1964; Mandelkern, 1964; 
Bresler, 1973; Volkenstein, 1975; Khokhlov, 1985). 

Traditional methods for crystal structure investigation used to study liquid-crystal 
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phase separation are: X-ray analysis (Rabek, 1980b, Chapter 28), electronography (Rabek, 
1980b, Chapter 29), thermal analysis (Rabek, 1980b, Chapters 26, 34, 32), electron mi- 
croscopy (Rabek, 1980b, Chapter 27), densitometry (Rabek, 1980b, Chapter 31). 

The method of light scattering on anisotropic structures in the Rayleigh-Debye approx- 
imation (Frenkel et al., 1965; Baranov, 1966; Stein, 1966; Volkov and Baranov, 1968) is 
being developed. 

Investigative techniques and properties of crystal structures are presented in a number 
of monographs (Geil, 1963; Mandelkern, 1964; Sharples, 1966; Bukhina, 1973; Wunder- 
lich, 1973, 1976, 1980; Rabek, 1980b) and guidebooks (Rabek, 1980b), in a comprehensive 
fundamental work (Vainshtein, 1979; Vainshtein et al., 1979; Chernov et al., 1980; Shu- 
valov et al., 1981). 

Wunderlich (1973, 1976, 1980) has discussed the questions of the thermodynamics, 
kinetics, and morphology of polymer crystallization. 

Most of the methods for crystal phase investigation are based on the essential structural 
difference between the amorphous phase and the crystal one, but in the case of polymer 
systems, these differences may prove to be insufficient for effective implementation of the 
classic procedures. The matter is that polymer crystals are much less perfect than those 
of low molecular compounds. 

On the other hand, due to relaxation effects the amorphous phase may not show com- 
pletely structureless morphology. 

Besides, the features of relaxation kinetic processes of structure reconstruction in poly- 
mer systems lead to significant retardation of phase separation even at the early stages 
of the process, and the system structure is frozen for quite a long period in its colloidal- 
disperse state. 

The complete conversion of the polymer crystal phase is also impossible for merely 
thermodynamic reasons (Mandelkern, 1964; Mandelkern and Stack, 1984). 

Phase analysis of such colloidal systems is very difficult, and discussions arise not only 
on details of a given phase diagram but even on the principal kind of phase separation in 
a specific system (liquid-liquid or liquid-crystal ?). 

Despite of the fact that the morphology of the separating systems of two kinds may not 
differ essentially, the phase identification of the kind of transition is absolutely necessary 
to control the system structure with the aim of optimizing the technology of making 
polymer materials and improving their service properties. 

6.2. Phase analysis of the system poly(viny1 alcohol) 
+ water 

The literature on the character of phase separation in the system PVAtwater is char- 
acteristic for phase analysis of polymer systems in general. Several researchers (Kor- 
manovskaya, 1967; Kormanovskaya et al., 1968; Tager et al., 1971; Shakhova and Meyer- 
son, 1972) classify this system with those of amorphous separation with an UCST. 

For instance, Kormanovskaya (1967) and Kormanovskaya et al. (1968) have proposed 
a phase diagram of the liquid-liquid type with an UCST at - 80°C. The left-hand branch 
of the phase separation region was obtained by extrapolation of the phase separation rate 
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to zero, and the right-hand one was obtained by measuring the swclling degree of the 
polymer in water. The phase separation kinetics was determined using light scattering 
intensity at 45". 

Shakhova and Meyerson (1972) have employed the conventional procedure of thermu 
stating at different temperatures with subsequent measuring polymer concentration in the 
two resulting layers. 

The conclusion on improvement of the solvent power of water with rising temperature 
was made on data for water vapour sorption by PVA by Tager et al. (1971). Such simple 
observation as polymer dissolution in water during heating only suggests the existence of 
an amorphous separation region with an UCST. 

On the other hand, some researchers (Amaya and Fujishiro, 1953; Dieu, 1954; Matsuo 
and Inagaki, 1962ab; Sakurada et al., 1965) have obtained experimental data about de- 
crease in the solvent power of water with rising temperature, namely: negative values of 
~1 and $1 calculated from solution viscosity (Dieu, 1954) and crosslinked gels swelling 
(Sakurada et al., 1965) (cf. Figure 3.81); negative values of dilution heat (Arnaya and 
Fujishiro, 1953) (cf. Figure 3.68); fragmentary data on the decrease in the second virial 
coefficient A2 as temperature rises (Matsuo and Inagaki, 1962ab). 

Extrapolation of viscosity (Dieu, 1954; Dmitrieva et al., 1971) has led to the 19 temper- 
ature at the LCST N 100°C. 

While analyzing the literature on the properties of PVA aqueous solution, one notices 
that there exists a quite limited body of data of PVA molecular parameters obtained 
by means of light scattering. This may be attributed to the presence of particles of the 
colloidal degree of dispersion (supramolecular particles-SMPs) in PVA aqueous solutions; 
difficulties arise while trying to remove them (Matsuo and Inagaki, 1962ab; Klenin and 
Klenina, 1971b). Meanwhile, these particles significantly distort the pattern of light 
scattering and birefringence flow in solutions (Matsuo and Inagaki, 1962ab; Peter and 
Noetzel, 1962; Peter and Fasbender, 1964; Klenin and Klenina, 1971) which hinders 
or even makes it impossible to obtain information on the molecular parameters of the 
polymer. 

Matsuo and Inagaki (1962ab) admitted these particles to be of a paracrystalline nature. 
Indeed, PVA is a crystallizing polymer (Tadokoro et al., 1957) regardless of molecular 

chain stereoregularity owing to the "compactness" of OH-groups (Bunn, 1948). However, 
X-ray analysis of PVA aqueous gels (even with a high polymer content) did not show any 
reflexes of crystal structure (Rehage, 1963). Baranov et al. (1967) have emphasized the 
internal diphility of PVA molecular chains in water, which leads to coiled (more coiled 
than a statistical coil) macromolecular conformations and kinetic difficulties for polymer 
crystallization in the presence of water. 

A cycle of investigations of the SMP thermodynamic nature and phase separation char- 
acter in the system PVA+water have been performed mainly by the turbidity spectrum 
method (subsections 2.1.5 and 3.6.2) (Klenin et al., 1966, 1973abc, 1974bc; Klenina et 
al., 1970, 1972, 1979; Kolnibolotchuk et al., 1970, 1974ab; Klenin and Klenina, 1971b; 
Kolnibolotchuk, 1975; Klenina, 1977) and led to a conclusion that the nature of SMPs is 
crystalline and that there is no region of amorphous separation. 

The following facts count in favour of this conclusion: 
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0 character of the kinetics of growth of the new phase particles which comprises two 
stages, namely, fast (exponential after Avraami) and slow (linear) rise; both can be 
related to the processes of crystallization itself and postcrystallization (Klenin et 
al., 1974bc; Klenina, 1977) (see Figure 6.4); 

+ 0.6 1 

0.2 P 
+ 

+ 

Figure 6.4. Kinetics of growth of supramolecular particles in PVA aqueous solutions 
( M ,  = 140,000; AG=0.43%, c =5 wt %, T = 20°C). Different signs mark independent 
experimental results (Klenin et al., 1974c) 

0 extremd (with a maximum) temperature dependence of particle growth rate v = 
v(T) (see Figure 6.5) and what is more, this function has an asymmetric form with 
a gently sloping low-temperature branch ending on the abscissa axis (v = 0) at the 
glass transition temperature, T,, and with a steep high-temperature branch ending 
on the same axis at the melting temperature T, (liquidus); 

0 extremal (with a maximum) concentration dependence of particle growth rate (Fig- 
ure 6.6) with its left and right branches intersecting the abscissa axis at T, and Tg, 
respectively; 

0 liquidus curve plotted according to the temperature (Figure 6.5) and concentration 
(Figure 6.6) dependences of the growth rate of the new phase particles - Figure 6.7; 
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Figure 6.5. Temperature dependence of 
the growth rate of supramolecular par- 
ticles in PVA aqueous solutions ( M v  = 
140,000; AG=0.43%, c =5 wt %) (Klen- 
ina, 1977) 
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the annealing phenomenon is characteristic for crystallization-melting: within the 
range of 60-1OO0C, the polymer dissolves in water and then, at the dissolution 
temperature, particles of a new phase are formed; 

no SMPs are formed when there are outsize acetyl groups breaking the chain regu- 
larity (5% and higher) (Budtov et al., 1974, 1978; Kolnibolotchuk et al., 1974ab); 

SMPs melt with raising temperature; the dependence of T, on the formation temper- 
ature is characteristic for crystallization-melting (Klenina et al., 1970, 1972; Klenina, 
1977); 

0 rate of SMP formation (crystallization) rises when a hydrodynamic ficld is applied 
(Kolnibolotchuk et al., 1970, 1974ab; Klenin et al., 1973b; Kolnibolotchuk, 1975); 

0 a significant difference in particle morphology after isothermal and non-isothermal 
(involving cooling cycles) formation; in the latter case, particles are larger in size and 
more perfect structurally with the narrower melting temperature range to evidence 
that (Klenina et al., 1970, 1972; Klenin et al., 1974bc; Klenina, 1977); 
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Liquidus curve o the 
PVA+water system. The points are cal- 
culated using the data of Klenin et al. 
(1974c), Klenina (1977) (I), and Klenin et 
al. (1973~) (2); the melting temperature. of 
PVA crystallites (3) is the average value on 
evidence of Pritchard (1970) 
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0 high sensitivity of the particle parameters during particle formation to external 

impacts, even such as the volume and shape of the vessel, rocking or shaking up the 
vessel, etc. (Klenina et al., 1972); 

dependence of the induction period of formation on SMP initial level parameters, 
this initial level playing the role of seeds (Klenin and Klenina, 1971b; Klenin et al., 
1974bc; Klenina, 1977). 

As a rule, after preparing PVA aqueous solutions, they always contain SMPs which are 
fragments of the most perfect crystallites of the polymer. Due to their presence (it means 
the initial level of supramolecular Organization-SMO) the formation (crystallization) of 
new SMPs proceeds almost with no induction period. If a solution is somewhat freed of 
SMPs (by filtration, ultracentrifugation, melting, etc.), the induction period rises up to 
several days (under static conditions) (Klenin and Klenina, 1971b; Klenin et al., 1974c; 
Klenina, 1977). 

Three structural levels of SMO have been discovered and studied in the system PVA+wa 
ter (Klenin et al., 1966, 1973abc, 1974bc; Klenina et al., 1970; Kolnibolotchuk et al., 1970; 
Klenina, 1977). 
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The first level: SMPs which remain in solution on dissolving the greatcr part of the 
polymer under given conditions. 

The second level is formed during storage of solutions, its degree of evolution depend- 
ing on temperature, concentration, and the structural features of the polymer. 

The SMPs, that have appeared in solution at a high temperature (2  80°C), are aggre- 
gated on cooling into anisodiametric structures which are very sensitive to temperature 
variations. They define the third level of SMO (Klenin et al., 1974bc). 

The parameters of the first (initial) SMP level do not depend on polymcr concentration 
when c 2 3g/dl. If c 5 3g/dl, the size of SMPs decreases, and, at a certain concentration 
cl (0.5.. .0.8 g/dl in accordance with polymer molecular weight), the particles dissolve. 
There are no SMPs in solution when c 5 cl (Klenin et al., 1973c, 1974bc). 

Preparing solutions with concentrations c 5 cl allowed us to obtain molecular aqueous 
solutions and to measure the molecular and thermodynamic properties of PVA in water 
by the Debye-Zimm classical light scattering method (Klenin et al., 1973c, 1974bc). 

It should be specially noted that PVA aqueous solutions in the presence of SMPs are 
not practically amenable to clearing to the molecular degree of disperse. On filtering, 
SMPs bridge the pores of filters, and the pressure rising leads to hydrodynamic effects 
and, further, to the emergence of new SMPs and even macrostructures (fibrilles, flakes, 
etc.). Centrifugation is also of limited use for removing SMPs due to their relatively 
small sizes (in any case, for the smallest fraction). In the absence of SMPs (as a result 
of their dissolution or melting), clearing solutions from dust and other particles proves to 
be effective even with simple filtration through Shott's and membrane filters (Klenin et 
al., 1973c, 1974~) .  

On evidence from classical light scattering, PVA aqueous solutions show an interesting 
feature: an extrema1 (with a minimum) temperature dependence of the second virial 
coefficient (A2 = A2(T))  and, correspondingly, a dependence with a maximum for x ,  = 
x , ( T )  (Figure 6.8). 

In essence, such a dependence x ,  = xi(?") concerns that shown in Figure 3 . 8 1 ~  so as 
y, = x , (T)  (g = g ( T ) )  (Figure 3.81b) concerns x, = x,(T)  (Figure 3.81a). 

In the second case, a slight increase in go1 from Equation 3.6-85 will lead to g ( T )  not 
intersecting g = 0.5 and to no 0 point in the system: the phase separation region looks like 
a sand-glass (Figure 3.81b). In Figure 3.81c, the constant go1 decreases so that g = g ( T )  
does not intersect g = 0.5, and the system has no 0 point as well, but, this time, it is 
owing to the absence of the phase separation region. This is the case with the system 
PVA+water (Figure 6.8). 

The dependence x1 = ~~(2') (curve 1, Figure 6.8) was obtained from the experimental 
one Az = A2(T) (Klenin et al., 1974b) according to Equation 3.1-52. In calculating the 
temperature dependence of the water partial molar volume (Eisenberg and Kauzmann, 
1969) and of the PVA specific partial volume V2 (Sakurada et al., 1965) were taken into 
account. 

The values x ,  = x , ( T )  (curve 2, Figure 6.8) were calculated in view of the function 
h(z ) .  Equation 3.1-158 allowed us to determine z h ( z )  and, then, h ( z )  using the plot in 
Figure 3.5 and x, using Equation 3.1-147 (Klenin, 1985). 

dl/g (Klenina, 
1977) (see Equation 3.6-72) which, in its turn, was found in (Klenina, 1977) from [VI, 

The unperturbed coil sizes of PVA were evaluated from KO = 16.2. 
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M,, and Az by means of the Kriegbaum (1958) semiempirical relationship 

and 

[&, = K ~ M ~ / ~ .  

Klenina (1977) notes that this KO value is in good agreement with other, independent 
estimations (eg. see (Matsuo and Inagaki, 196213)). 

The temperature dependences tcl = nl(T) and $1 = &(T) were calculated by Formu- 
lae 3.1-43, 3.1-44 from x, = x , ( T )  using curve 2. The dependence x, = x , (T)  (curve 2 
corrected for h ( z ) )  is approximated by a Koningsveld-type formula 3&85 (Klenjn, 1985): 

(1)  
113 

= 1.1103 - - - 0.00085 T .  T y , I  

Figure 6.8 shows also literature data on the temperature dependence x, = x , ( T )  ob- 
tained from experiments with the system crosslinked PVA+water (Sakurada et al., 1965; 
Ogosawa et al., 1976; Peppas and Merrill, 1976). Sakurada et al. (1965) and Peppas and 
Merrill (1976) have crosslinked the polymer with a- and ,&radiation, respectively. O g e  
sawa et al. (1976) have employed, as crosslinks, polymer crystallites which appeared in 
PVA aqueous solutions at a concentration 5 . .  . 10 wt % during 24 hours with temperature 
fixed within 0-60°C. 

Calculation of x, was performed (Sakurada et al., 1965) by Relationship 3.5-84 with 
,y, = 0.494 at t = 30°C (the cross-containing box on curve 3, from data on osmotic 
pressure-see subsection 3.6.2) accepted as a reference point of x, for preliminary eval- 
uation of uelV,. The concentration of an atactic PVA sample with Mrl =136,000 varied 
within 0 2  = 0 . .  .0.3, where x, was considered as independent from polymer concentration 
according to the data on vapour pressure over solutions (Sakurada et al., 1959) (see subsec- 
tion 3.6.2). Peppas and Merrill (1976) calculated x, within 0-90°C and v2 = 0.03.. .0.12 
by an equation like Equation 3.5-84. 

In (Ogosawa et al., 1976), x, was calculated by Formula 3.5-85, and the ratio & / y e  

by the Flory (1953) formula for the network modulus p (Equation 3.5-50). The polymer 
concentration (MT = 123,000, the content of sindiotactic diades 60.9%) varied within 
13.6.. . 17.6 wt %. 

There is qualitative agreement between curves 1 and 3 in Figure 6.8 in a limited tem- 
perature range (the left-hand branch of x, = x , ( T ) )  because of differences in molecular 
weight of PVA samples and possible differences in other details of molecular structure. 

Moreover, M -+ 00 should be accepted for any network polymer, but in (Sakurada et 
al., 1965; Ogosawa et al., 1976; Peppas and Merrill, 1976) no correction for molecular 
weight ( h ( z ) )  was provided. 

The extrema1 dependence A2 = dZ(T) (x, = x , (T) )  corresponds to the data of Shi- 
batani and Oyanagi (1976) concerning amorphous separation in the system vinyl alcohol- 
ethylene copolymer (6. .  .13 mol % of ethylene units--E)+water with a closed separation 
region like that shown in Figure 3.81~. 
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Interpolation of the dependences 6ucsT = f ( E )  and 6m.w = f ( E )  brings the curves 
to intersect at the point with E N 3 mol % within the range 80-85°C. Hence, the system 
copolymer+water with E < 3 mol % up to the homopolymer (PVA) no longer has the 8 
point. From these data, the system PVA+water should be expected to show a positive 
value of A2 over all the temperature range (T < 200'C) with a minimum at about 80- 
85"C, which has been confirmed experimentally (Figure 6.8). 

Besides, the closed phase separation region of the system copolymer+water is extrap- 
olated a.t E + 0 to a point T ~80-90"C and c ~ 2 . .  .3%. 

Experimental data on the concentration dependence x = x ( c )  for the system PVA+water 
(their summary is given by Peppas and Merrill, 1976) are very conflicting. On these data, 
the dependence x = x ( c )  within c = 3 . .  .12 vol % is like the left-hand branch of the 
extrema1 curve in the temperature range 10-90°C, but the x values are quite large. 

On the same data, a very strong temperature dependence x = x ( T )  was obtained 
(curve 5 in Figure 6.8). 

Therefore, on Shibatani's and Oyanagi's (1971) evidence, as on our own data, the system 
PVA+water is a degenerated version of systems with a closed amorphous separation region 
and minimal solution stability (a maximum of x )  at the configurative point T = 90°C and 
c x 2 . .  . 3  % for A4 M 100,000, i.e. PVA aqueous solutions are thermodynamically stable 
with respect to amorphous separation when T < 200°C and over all the concentration 
range. This emphasizes once again that the new phase particles formed in the system are 
of a crystal nature. 

An amorphous separation region with a LCST is discovered in the system PVA+water 
at high (above 200°C) temperatures (Andreyeva, 1969), so more generally, the system is 
described by a state diagram like that shown in Figure 3.92b with the degenerated closed 
separation region. 

All the published experimental facts find their explanation on the strength of the pre- 
sented data on the character of phase separation in the system PVA+water, including 
those serving as the reason to accept the existence of an amorphous separation region 
with an UCST about 80°C. 

The inferences of Kormanovskaya (1967), Kormanovskaya et al. (1968), and Tager et 
al. (1971) about amorphous separation within 20-80°C and the increase of solvent power 
of water, based on studying polymer swelling in water and water vapour adsorption, are 
related to neglecting the dependence of swelling degree and water vapour sorption on the 
crystallinity degree of a polymer sample (Takizawa et al., 1968). 

With a high relative humidity, partial fusion of crystallites (Takizawa et al., 1968) 
acting as crosslinks occurs even at room temperature, and a long-term treatment of PVA 
with water vapour will lead to an additional crystallization (Priest, 1951) (the effect of 
annealing). 

In any case, the degree of crystallinity may vary with keeping PVA in water vapour 
and may affect sorption sigriificantly. 011 thermostating PVA with water, its crystallinity 
degree influences polymer swelling and redistribution among the layers. Restricted PVA 
swelling in water and the increase in swelling degree with temperature (Kormanovskaya, 
1967; Kormanovskaya et al., 1968; Tager et al., 1971; Shakhova and Meyerson, 1972) are 
related to fusion of a part of crystallites-crosslinks as temperature increases. Thus, the 
increase in swelling degree is due to the decrease in the number of crosslinks despite the 
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thermodynamic power of water getting worse, i.e. the former effect takes preference over 
the latter one. 

The same feature explains the fact of polymer dissolution at higher temperatures. At 
room temperature, crystallites keep the polymer from dissolution like fasteners, but its 
swelling takes place (the maximal value of Az). On heating, crystallites melt and let 
the polymer dissolve though the thermodynamic power of water is getting worse at high 
temperatures. The most complete fragments of crystallites remain in solution, forming 
the first level of SMO. On the other hand, vinyl alcohol copolymers with vinyl acetatc 
(10.. .12 mol % of acetate units) dissolve well at room temperature in the nearest vicinity 
of the closed region of phase separation due to the absence of crystallites in the copolymer: 
outsize acetate units are not incorporated into the crystal lattice. 

Recall that the experiments, where PVA aqueous gels swelled with a fixed number 
of crosslinks, showed the thermodynamic power of water getting worse with increasing 
temperature (Figure 6.8). 

The left-hand branch of dz = dz(T) confirms the data of Amaya and Fujishiro (1953), 
Dieu (1954), Matsuo and Inagaki (1962ab), Dmitrieva et al. (1971) on the thermody- 
namic power of water getting worse with raising temperature, except some extrapolation 
techniques (Dieu, 1954; Dmitrieva et al., 1971) for the evaluation of BLCST. The system 
PVA+water taken as an example demonstrates that great care should be taken in such 
extrapolations. 

In subsequent works (Halboth and Rehage, 1974), the crystal nature of phase separation 
in the system PVASwater has been confirmed, even using X-ray analysis. 

Budtov et al. (1974, 1976ab, 1978), Budtov and Domnicheva (1978) have determined 
the parameters of supramolecular particles in PVA aqueous solutions by a new technique 
of flow birefringence, and have come to the conclusion that they are of a crystal nature. 
This approach (Budtov et al., 1976a, 1978, Budtov and Domnicheva, 1978) undoubtedly 
deserves attention and consideration of its peculiar features. The matter is that the hydro- 
dynamic field is a factor which will certainly affect phase separation. This is particularly 
true for crystallization. 

On the other hand, the method of flow birefringence, of course, allows one to study 
how the hydrodynamic field influences the formation of the new phase particles. Besides, 
difficulties arise in data interpretation using this method. The effect of flow birefringence 
in a system with colloidal particles, measured by the method traditional for polymers, has 
several components as in the case of macromolecules: the proper anisotropy of particles, 
the effects of macro- and microforms (Tsvetkov et al., 1964), and conservative dichro- 
ism, i.e. the light scattering efficiency factor K of oriented anisodiametric, anisotropic 
particles differs in different observation planes (Onuki and Doi, 1986; Khlebtsov, 1988ab; 
Khlebtsov and Melnikov, 1990). 

In (Budtov et al., 1976a, 1978; Budtov and Domnicheva, 1978) conservative dichroism 
is not considered, and it is difficult to expect quantitative agreement with other methods 
of parameter determination. 

It is natural that the method of flow birefringence does not detect particles of the first 
organization level in PVA aqueous solutions (Budtov et al., 1976b) as they possess almost 
a spherical form. 

This example of the identification of the thermodynamic stimulus of phase separation 
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in the system PVA+water reveals some difficulties in phase analysis of polymer systems 
when traditional methods may prove to be low-sensitive due to the colloidal level of the 
new phase as well as to the structural imperfection of the crystal phase. In such cases, 
new methods and new approaches are needed, some of them have been already discussed 
in this section. 

Blinas et al. (1976) presented another example of an effective application of the tur- 
bidity spectrum method for finding the crystal stimulus of polyamidimide solution in 
dimethylformamide aging. 

Anomalies of molecular light scattering, discovered in polyamidoacid and polyimide 
solutions in dimethylformamide and dimethylacetamide at concentrations c > CI M 
0.5 g/dl (Diakonova et al., 1986) are apparently related to the presence of crystallites. 
The absence of scattering asymmetry (Z450/11350 M 1.1) attests to the small sizes of these 
particles. 

The configurative point intersecting the liquidus curve on a decrease in polymer con- 
centration (along the isotherm) leads to crystallite dissolution at c < CI and the solution 
shows the typical properties of molecular scattering. 

6.3. Mixed types of phase separation 

Mixed types of phase separation are observed in polymer systems as well as in low- 
molecular ones (Richards, 1946; Malcolm and Rowlinson, 1957; Papkov and Yefimova, 
1966; van Emmerik and Smolders, 1971, 1973a; Ogawa and Hoshino, 1971; Papkov, 1972; 
Saeki et al., 1976; Tager et al., 1976c; Uskov et al., 1976; Kulichikhin et al., 1978; Kjel- 
lander and Florin, 1981). 

Generally speaking, for a crystallizing polymer, the liquidus curve may be located on 
the state diagram together with the liquid-liquid phase separation region of any kind from 
the existing ones (see Figure 3.81 and 3.92). 

For some systems, the liquid-liquid and liquid-crystal phase separation regions are s e p  
arated on the state diagram; this is the case, for instance, with the system poly(ethy1ene 
oxide)+water (Malcolm and Rowlinson, 1957; Saeki et al., 1976; Uskov et al., 1976; 
Kjellander and Florin, 1981) (Figure 6.9). 

A mutual overlap of phase separation regions of different thermodynamic nature occurs 
in a number of systems (Figure 6.10). 

Overlapping regions of liquid-liquid (UCST) and liquid-crystal phase separation were 
discovered for isotactic polypropylene in some solvent+precipitant mixtures (Ogawa and 
Hoshino, 1971). 

Another example of the superposition of phase separation regions of different nature is 
shown in Figure 6.11 (Koningsveld, 1975). 

In particular, there exist three phases in equilibrium in this system at the temperature 
Tz: two liquid and one crystal phases while at the temperature TE two crystal phases and 
one liquid one are present. 

A special classification for the systems P+LMWL has been proposed by Papkov and 
Yefimova (1966) and Papkov (1971), using the mutual location of phase separation regions 
of different nature. 
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Figure 6.9. State diagram of the system 
PEO+water: liquid-liquid separation-M = 
5,000 (I), M = 3,000 (2) ;  liquid-crystal 
separation-M = 5,000 (3) ,  M = 3,000 ( 4 )  
(Malcolm et al., 1957) [Reprinted with permission 
from: G.N.Malcolm, J.S.Rowlinson. Trans. Faraday 
SOC. 7(415) (1957) 921-931. Copyright @ 1957 by 
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Figure 6.10. State diagram of the sys- 
tem pol yet hylene+ LMWL (nitroben- 
zene ( I ) ,  amyl acetate ( 2 ) ,  xylene (3)) 
(Richards, 1946) [Reprinted with perrnis- 
sion from: R.B.Richards. Trans. Faraday SOC. 
42 (1946) 10-20. Copyright @ 1946 by the 

I Royal Society of Chemistry]. 
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The identification of mixed types of phase separation in polymer systems causes great 
difficulties. Important information for phase analysis of a system with a mixed type of 
phase separation regions can be given by differences in the kinetics of phase separation of 
different nature. 

With due allowance for high rate of liquid-liquid phase separation, Papkov (1971, 1981) 
develops a concept of mutual independence of phase separation of different nature. 
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6.4. Phase analysis of the system 
poly (ethylene oxide) + water 

The following details of phase separation in the system PEO+water indicate how diffi- 
cult it is to identify phase separation in polymer systems. 

By the state diagram (Figure 6.9), one could expect that molecular PEO solution in 
water can be obtained without great difficulties within 0-90°C and 0 . .  . 5  wt %. How- 
ever, even under the most optimal conditions of PEO dissolution in water, the SMPs 
remain which parameters depend on the sample dissolved and the way of dissolution. Vi- 
sually, such solutions are transparent with SMPs being detected by means of the turbidity 
spectrum method with a photoelectric colorimeter or a spectrophotometer. 

Studies have shown SMPs to be of crystalline nature and to be fragments of polymer 
crystallites, whose structure, in its turn, depends on the ways of synthesis, subsequent 
treatment, and polymer storage. 

The liquidus curve on the state diagram (Figure 6.9) was obtained by using DTA 
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and, therefore, concerns the main amount of polymer, while the existence of the most 
perfect crystallites is beyond the capabilities of the method, apparently due to their 
small content. Meanwhile, these crystallites and their fragments may significantly affect 
the properties of PEO aqueous solutions. First, their presence in solution causes some 
rncthodical difficulties in determining the molecular and thermodynamic parameters of 
the polymer by means of classical light scattering and other methods sensitive to SMPs. 
Indeed, such data are lacking essentially in the literature. Second, the presence of SMPs in 
PEO aqueous solutions may change their performance concerning filling in oil pools with 
water (in secondary oil production), lowering water hydrodynamic resistance in turbulent 
flows etc. Third, these crystallites act as crosslinks hindering the polymer dissolution 
even in the case of rather dilute solutions at usual temperatures. They remain in the 
solution after the usual macrodissolution of a polymer sample when the solution looks 
homogeneous. 

That is why it is reasonable to introduce another liquidus curve responsible for SMPs 
in solution along with the “macroliquidus” curve related to the main amount of polymer. 
Such “microliquidus” curve has been obtained by the turbidity spectrum method while 
measuring SMP dissolution rate vd as a function of temperature and PEO concentration 
(Figure 6.12). 

Figure 6.12. Temperature dependence 
of crystallite melting rate vd in the sys- 
tem PEO+water (polymer concentration 
2 g/dl, M,, = lo6) (Klenin et al., 1987) 

20 40 60 80 T ,  “C 

Extrapolation of the dependence vd = V d ( T )  to vd = 0 at a given concentration c gives 
a limit temperature of SMP dissolution. A set of such temperatures evaluated within a 
certain concentration range will lead to the “microliquidus” (liquidus-2) (Figure 6.13). 

One can see that the liquidus-2 curve is significantly shifted towards small concentra- 
tions and high temperatures, which attests to a much more perfect structure of SMPs in 
comparison with the bulk amount of crystallites. 

Practically, the liquidus-2 curve is the line on the state diagram under which SMPs 
do not dissolve, but no new ones are formed because some are already present in the 
system. But if the existing SMPs are melted or ultracentrifuged, the new ones will be 
formed under the liquidus-2 curve. Above it, the SMPs melt over a very wide temperature 
range, including the amorphous separation range, which is of interest in connection with 
the superposition of several phase separation regions of different thermodynamic nature. 
Relaxation times of amorphous phase separation are very small and cannot be measured 
with traditional methods. On the contrary, those of crystalline particles seem huge (a few 
days). 



772 6.4. Phase analysis of poly(ethy1ene oxide+water) 

0 0.2 0.4 0.6 0.8 w, wt 
a 

w, wt 
I I  I 

0 0.02 0.06 
b 

Figure 6.13. LiquiduR curves in the systems PEO+water (1-4) and PEOtdiethyl cebacate 
(5) obtained by DTA (1, 2, 5) and turbidity spectrum analysis ( I  ’). Mq = 1. lo6 (1, 1 ’), 

4 .  lo4 (2) ,  3 lo3 (3), 5 - lo3 (4) by Jain and Swinton (1967) (5) [Reprinted from: N.J.Jain, 
F.L.Swinton. Europ. Polym. J. 3 (1967) 371-378. Copyright @ 1967 with kind permission of Elsevier 
Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands], Malcolm et al. 
(1957) (3, 4), Klenin et al. (1987) ( I ,  1’ ,2). Amorphous phase separation region in the 
system PEO+water (Klenin et al., 1987). Mv = 1 . lo6 (Q). Curve 1’ is scaled up (b) 

In view of the character of the state diagram in Figure 6.13b, one can explain the 
complex dependence of turbidity in the system PEO+water with raising temperature and 
subsequent cooling (Figure 6.14). 

The smooth turbidity fall is related to crystalline melting in a wide temperature range. 
As the configurative point has intersected the binodal, liquid-liquid phase separation 
proceeds practically at once, which can be fixed just visually (the system grows very 
turbid). At the same time, the SMPs as crystalline particles continuc to melt. After an 
insignificant decrease in temperature sufficient to withdraw the configurative point out 
of the amorphous separation region, the heterogeneous regions of amorphous separation 
disappear, and the system gets transparent. Incidentally, the SMPs prove to be partially 
melted and the more so the longer the system has stayed at a high temperature in the 
amorphous separation region (Figure 6.14). 

These combined phase transformations are distorted by PEO macromolecule destruc- 
tion, and the liquid-liquid phase separation region then shifts towards higher tempera- 
tures. 

These observations also count in favour of the independence of the amorphous and 
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cry st alline phase separations. 
Thus, when the configurative point is above the liquidus-2, the particles, which are 

fragments of the most perfect crystallites of the source polymer sample, dissolve. Their 
parameters (sizes, numerical and weight-volume concentrations) depend on the quality of 
the polymer sample, and, mainly, on the duration of its storage. The matter is that the 
polymer is usually kept overcooled with respect to the liquidus-1 and crystallizes, which 
leads to an increase in particle concentration after dissolution of the bulk of the polymer. 

Hence, the liquidus-2 characterizes particles formed in a polymer sample in an uncon- 
trollable way: during polymer extraction from solution after synthesis, then, in the course 
of its drying, storage, etc. owing to the configurative point's motion under the liquidus-1 
curve and its staying there during the storage of the air-dried (5-8% of water) polymer 
sample. 

Under the liquidus-2, particles will remain infinitely long, which should be taken into 
account when PEO aqueous solutions are used in practice, or studied by methods sensitive 
to the presence of these particles in solution (such as light scattering, flow birefringence, 
etc.), the more so as the liquidus-2 is in the range of polymer-diluted compositions (2- 
6 wt %). The liquidus-2 is found to have a more general thermodynamic meaning, as 
during the motion of the configurative point under its curve, new particles of the crystalline 
type are formed. However, the system must preliminary be cleaned from particles of the 
initial supramolecular level by centrifugation or long-term storage at any configurative 
point to the left of the liquidu-2. 

Klenin et al. (1988) drove the configurative point under the liquidus-2 along the 
isotherm T N 25°C from left to right, i.e. by means of concentration of the polymer 
solution. 

As the configurative point penetrates deep into the phase separation region (polymer 
concentration rises), particles of the new phase are formed, their concentration increases, 
and the particles grow larger (Figure 6.15, curve 1). 

For comparison, this figure reports the parameters of particles that remained in the 
system after dissolution of the greater part of the polymer (c  = 2 g/dl) and subsequent 
dilution (Figure 6.15, curve 2). Curve 3 relates to the parameters of particles that re- 
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Figure 6.15. Formation of the new phase parti- 
cles after concentrating PEO aqueous solutions 
(Mv = 3.5 . lo6) (1) in comparison with par- 
ticle dissolution on diluting the solution with 
c = 2 g/dl ( 2 )  and with the parameters of parti- 
cles which remain in the system after the greater 
part has dissolved at a given concentration (3 ) .  
TIC is the reduced turbidity at X = 546 nm, is 
the mean particle size (Klenin et al., 1988) 

mained in the system after the bulk of the polymer had dissolved at a given (fixed) 
concentration. Clearly, the parameters of particles in the three mentioned versions are in 
good agreement. 

The proximity of the concentration, where 7 -+ 0 (the absence of particles within 
the limits of experimental accuracy), when either dilution (the configurative point moves 
from right to left) or concentrating (backwards) means the proximity of a fixed liquidus-2 
point to its equilibrium value. Thus, two phases coexist within a large area of the state 
diagram (to the right of the liquidus-2), namely, polymer solution and crystallites (a small 
fraction-polymer). These crystallites apparently do not affect measurement of intrinsic 
viscosity but significantly hinder (or evcn prevent) employing the classical methods of 
light scattering and flow birefringence. 

The existence of these particles may influence the performance of the system used as a 
thickener, an active agent in filling in oil pools, or for lowering hydrodynamic resistance 
in turbulent flows. 

In the hydrodynamic field, the liquidus-2 curve drifts to the left (by concentration) by 
three decimal orders (Klenin et al., 1993). 

The SMP properties in solutions of crystallizing polymers, which have been discussed 
in this chapter, can be explained in a rather general context. It follows that a similar 
morphological crystallite fraction is likely to be characteristic for systems crystallizing 
polymer+LMWL of a more general type (Klenin et al., 1991). 

Chapter summary 

1. With the mean field approximation, the better the thermodynamic power of a 
solvent, the greater the depression of temperature of the crystallites melting in the system 
crystallizing polymer+LMWL. 

2. Traditional methods of the structural analysis of crystalline solids are used to study 
the structure of polymer crystalline forms. 

However, the imperfection of crystalline structure and the colloidal degree of dispersion 
of the crystalline phase may cause significant difficulties in the identification and study 
of the properties of this phase. 
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In this connection, a new approach in the phase analysis of polymers based on the use of 
the turbidity spectrum method as a structural one in terms of physicechemical analysis 
is proposed. 
3. Applying this approach to the phase analysis of the system poly(viny1 alcohol) 

(PVA)+water has shown supramolecular particles (SMPs) formed in this system in a 
wide temperature and composition range to be of a crystalline nature. 

Three levels of the crystallite organization are reported. 
The SMPs which remain in the system on dissolution of the bulk of the polymer belong 

to the first level. 
The second level of the supramolecular organization (SMO) is formed in a wide tem- 

perature and composition range and the degree of its morphological perfection depends 
on the formation conditions. 

The SMPs, appearing in the system at high temperatures (> 80°C) after cooling, 
aggregate into anisodiametric structures of the third SMO level. The structural transition 
3rd level f) 2nd one, connected with the SMP aggregation ++ deaggregation, proceeds 
with a small relaxation time which can not be fixed with the common equipment. As the 
transition 3rd ++ 2nd levels of SMO is accompanied with a significant turbidity change, the 
system PVA+water (in this structural modification) is a sensitive temperature indicator 
with a small response time. 

Due to the anisodiametric shape of SMO third-level particles, the system is expected 
to show the properties of liquid crystals. 

4. Applying other methods, Debye-Zimm classical light scattering in the first place, 
has shown the system PVA+water to have no amorphous separation region below 200°C. 

The state diagram of the system PVA+water can be represented as a couple of two 
melting lines (macro- and microliquiduses) with lines x, being parallel to the abscissa 
axis, that represent extremal dependences along the temperature axis with a minimum 
near 80°C (for M w 100,000), if x, is considered not to depend upon the polymer con- 
centration in solution. Otherwise, the concentration dependence of x will superpose on 
its temperature one. 

As the maximal value )in,, does not reach 112, the system has no 0 point and, hence, 
has no amorphous separation region. 

The state diagram of the system PVA+water presented here explains all its properties 
known to date. 

5. The systems “copolymer of vinyl alcohol with hydrophobic ethylene or acetate 
units”+water show a closed region of the amorphous separation with the centre at T E 

80”C, c M 2..  .3% of the polymer. Due to the absence of crystallites, solvates (copolymers 
of vinyl alcohol with 8 .  . . l a %  of acetic groups) dissolve well in water at room temperature 
(below the closed binodal). 

0. In polymer systems (a9 well as in low-molecular-weight ones), mixed types of phase 
separation can be observed, namely, crystalline and amorphous. In principle, for the 
system crystallizing polymer+LMWL the liquidus curve can be combined with the amor- 
phous separation region of any kind. On the state diagram, the separation regions of 
both the crystalline and amorphous type can either be separated spatially or superposed 
to each other. 
7. Owing to the significant difference in the phase separation rates, a mutual inde- 
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pendence of the phase separation kinetics of the amorphous and crystalline types reveals 
itself. 

8. A complex pattern of phase equilibria (involving crystal solvates) is characteristic for 
systems crystallizing polymer+LMWL with strong interactions between LMWL molecules 
and single groups of the polymer. 

The to the independence of the phase separation of two types in the system 
poly(ethy1ene oxide) (PEO)+water, the phase separation of the amorphous type proceeds 
at a high rate, while under the same conditions crystallites melt very slowly. 

10. Using the systems PVA+water, PEO+water, etc. as model ones, a new morpholog- 
ical form of crystalline particles being in equilibrium with a dilute solution (liquidus-2) 
has been revealed. 

The fraction of these crystallites amounts to a small part of the polymer (less than 
0.1%) and can have no effect on the intrinsic viscosity as well as on some other properties 
of the solution, but essentially breaks the method of classic light scattering and of flow 
birefringence of solutions of Crystallizing polymers. 

These particles can also influence the service properties of solution, which are sensitive 
to the presence of supramolecular particles there. 

9. 
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768 

polyamidoacid+dimethylacetamide, 
768 

polyamidoacid+dimet hylformamide, 
768 

polybutylmethacry- 
late+benzene+heptane, 352 

polybutylmethacrylate+isopropanol, 
346 

poly chloroprene+ C Cl, , 6 13 
polychloroprene+decdine, 655 
poly(D-P-hydroxybutylate)$ trifluo- 

methanol, 653 
poly (D,GP-methyl-P- 

propiolactone)+tetrahydrofuran, 
653, 654 

polyethylene+amyl acetate, 769 
polyethylene+diethyl ether, 427 
polyethyleneSdipheny1 ether, 424- 

polyethylene+nitromethane, 769 
polyethyleneSxylene, 769 

426 
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polyimide+dimethylacetamide, 768 
polyimide+dimethylformamide, 768 
polyisobutylene+benzene, 478, 537 
polyisobutylene+cyclohexane, 478 
polyisobutylene+diisobutylketone, 

polyisobutylene+n-pentane, 478 
polymethylsiloxane+tetraline, 346 

294 

PolYProPY- 
IeneSpolyet hyleneSdipheny1 
ether, 460 

polystyrene (net- 
work)+chlorobenzene, 397 

polystyrene (network)+cyclohexane, 
397 

polystyrene+CC14, 279, 280 
polystyrene+n-butylacetate, 363 
polystyrene+acetone, 451, 477, 478 
polystyrene+benzene, 418, 478, 540, 

polystyrene+ bromoform, 279 
polystyrene+cyclohexane, 291, 294, 

295, 312, 344, 346, 347, 349, 350, 

563, 564, 653 

352, 354, 363, 372-374, 378, 379, 
383, 398, 424, 426-428, 432-435, 
449, 451, 478, 536-538, 570-572, 
653, 654 

polystyrene+decaline, 279, 478 
polystyrene+diethyl ether, 477 
polystyrene+dioctylphthalate, 373, 

polystyrene+ethylbenzene, 342, 478 
polystyrene+methylacetate, 374, 375 
polystyrene+methylacetate+antioxidant , 

polystyrene+methylcyclohexane, 

polystyrene+methylethylketone, 563, 

polystyrene+polyisobutylate+ toluene, 

polystyrene+polypropylene+ toluene, 

polystyreneStoluene, 539, 563, 624, 

378, 383 

374, 375 

424, 543-549 

564, 624, 625 

460 

460 

625 

polystyrenetpbutylacetate, 67 3 
polystyrene+ trans-decaline, 366, 613 
polystyrene+ trunsdecaline, 366 
polyvinylpyrrolidone+water, 364 
PVA (network)+water, 398, 405 
rubber (nat mal)+ benzene, 478 
toluene+an alcohol, 192 
tricosane+&hydroxyquinoline, 334 
vinyl alcohol copolymer with ethylene 

vinyl alcohol copolymer with vinylac- 
+water, 451 

etate+water, 451 

temperature 
cloud temperature, 3 I3 
Curie temperature, 69 
Flory’s temperature, 259 
lower critical solution temperature 

(LCST), 38 
0 temperature, 259 
upper critical solution temperature 

(UCST), 38 
temperature tit ration, 31 7 
tension modulus, 389 
ternary distribution function, 166 
theories 

Flory-Huggins’ theory, 253 
tweparameter theory, 277 

theory of corresponding states, 469 
theory of liquid state, 469 
thermal diffusion ratio, 195 
thermal pressure coefficient, 473 
thermodynamic coordinates, 2 
thermodynamic factor, 191 
thermodynamic forces, 2 
thermodynamic limit, 95 
thermodynamic problem, 317 
thermodynamic quality, 258 
thermodynamic retardation, 466 
three-phase point, 486 
tie lines, 308 
total propagator, 234 
total square end-to-cnd distance, 688 
translational wave, 409 
transversal functions, 519 
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transversal waves, 409 
triple point, 429, 486 
truncated diagram, 236 
turbidimetric titration, 317 
turbidity, 112, 113 
twepoint vertex function, 238 

ultraviolet divergence, 240 
unary function, 166 
uniform compression, 387 
unstable critical point, 429 

vacuum graph, 221 
vertex function, 237 
virial expansion, 102 
viruses, 143 
volume factor, 395 

wave number, 109 
wavelength exponent, 127 
Wiener’s integral, 283 
Wiener’s measure, 281 

Young modulus, 389 

zero loop approximation, 240 
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